Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2021, Vol. 8 Issue (4) : 595-614    https://doi.org/10.1007/s42524-021-0173-1
RESEARCH ARTICLE
Robust energy-efficient train speed profile optimization in a scenario-based position–time–speed network
Yu CHENG, Jiateng YIN(), Lixing YANG
State Key Laboratory of Rail Traffic Control & Safety, Beijing Jiaotong University, Beijing 100044, China
 Download: PDF(21147 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Train speed profile optimization is an efficient approach to reducing energy consumption in urban rail transit systems. Different from most existing studies that assume deterministic parameters as model inputs, this paper proposes a robust energy-efficient train speed profile optimization approach by considering the uncertainty of train modeling parameters. Specifically, we first construct a scenario-based position–time–speed (PTS) network by considering resistance parameters as discrete scenario-based random variables. Then, a percentile reliability model is proposed to generate a robust train speed profile, by which the scenario-based energy consumption is less than the model objective value at α confidence level. To solve the model efficiently, we present several algorithms to eliminate the infeasible nodes and arcs in the PTS network and propose a model reformulation strategy to transform the original model into an equivalent linear programming model. Lastly, on the basis of our field test data collected in Beijing metro Yizhuang line, a series of experiments are conducted to verify the effectiveness of the model and analyze the influences of parameter uncertainties on the generated train speed profile.

Keywords robust train speed profile      percentile reliability model      scenario-based position–time–speed network      mixed-integer programming     
Corresponding Author(s): Jiateng YIN   
Just Accepted Date: 09 September 2021   Online First Date: 12 October 2021    Issue Date: 01 November 2021
 Cite this article:   
Yu CHENG,Jiateng YIN,Lixing YANG. Robust energy-efficient train speed profile optimization in a scenario-based position–time–speed network[J]. Front. Eng, 2021, 8(4): 595-614.
 URL:  
https://academic.hep.com.cn/fem/EN/10.1007/s42524-021-0173-1
https://academic.hep.com.cn/fem/EN/Y2021/V8/I4/595
Publication Da/Ub Model Solution approach
Shangguan et al. (2015) D Multiobjective model Hybrid evolutionary algorithm
Wang and Goverde (2016) D Multiple-phase optimal control model Pseudospectral method
Amrani et al. (2018) D Data-driven model GA
Huang et al. (2019) D Data-driven model Integrated algorithm based on machine learning
Li et al. (2013b) U Expected value model Efficient iterative algorithm
Sicre et al. (2014) U Fuzzy model GA
Fernández-Rodríguez et al. (2018) U Fuzzy model Multiobjective optimization solution
Wang et al. (2020) U Expected value model Approximate DP
Wang et al. (2017) U Expected value model; speed–distance network Lagrangian relaxation algorithm
This paper U PRMs; scenario-based PTS network MILP reformulation and CPLEX
Tab.1  Differences between recent publications and our work on the train speed profile optimization problem
Notations Detailed definition
Parameters
F Force provided by the train
R Resistance force of the train
a Acceleration/Deceleration of the train
S Distance between two stations
T Planned travel time of the train between two stations
V A large value of the speed
Δs, Δt, Δv Length of each discrete segment for position, time, and speed dimensions, respectively
H1, H2, H3 Total number of discrete segments for position, time, and speed dimensions, respectively
(s , t , v ), (s, t, v) Nodes in the PTS network
N Set of nodes in the PTS network
(s , t , v , s , t , v ) Arc in the PTS network
A Set of arcs in the PTS network
Fs,t, v,s , t,v Force provided by the train moving on arc (s, t, v, s, t, v)A
es,t, v,s , t,v Traction energy consumption on arc (s, t, v, s, t, v)A
R Bs,t ,v,s, t,v Basic resistance of the train moving on arc (s, t, v, s, t, v)A
R Gs,t ,v,s, t,v Resistance caused by the gradient of the railway track
m Weight of the train, including onboard passengers
as,t, v,s , t,v Acceleration/Deceleration of the train on arc (s, t, v, s, t, v)A
β1, β2, β3 Parameters of Davis’ formula about the basic resistance of the train
g Acceleration parameter of gravity
v ¯s,t, v,s , t,v Average speed of the train on arc (s, t, v, s, t, v)A
θs Gradient at position s
Vmax Maximum speed the train can achieve
amax, dmax Maximum acceleration and deceleration the train can reach, respectively
N* Node set of the reduced PTS network
A* Arc set of the reduced PTS network
a^s,t,v, d ^s ,t,v Maximum acceleration and deceleration the train can reach at node (s, t, v), respectively
v^s,t,v, vs,t,v Maximum and minimum speeds of the follower nodes for node (s, t, v), respectively
V^s Speed limit at position s
ω Random scenario
Pω Probability of scenario ω
Ω Set of scenarios
β1ω, β2ω, β3ω Parameters of Davis’ formula about the basic resistance of the train under scenario ω
es,t ,v,s, t,v ω Traction energy consumption on arc (s, t, v, s, t, v)A under scenario ω
a^s,t,vω, d^s,t,vω Maximum acceleration and deceleration the train can reach at node (s, t, v) under scenario ω, respectively
M A sufficiently large number
α Confidence level of the PRM
γ Upper limit of the comfort level
Variables
xs,t, v,s , t,v Binary decision variable; it takes 1 if arc (s, t, v, s, t, v)A is selected; otherwise, it takes 0
φ Critical value for the total energy consumption of a speed profile, introduced by PRM
L, yω Introduced variables for the linearization of PRM
Tab.2  Relevant parameters and variables used in this paper
Fig.1  Speed profiles over an interstation.
Fig.2  Example of a PTS network.
Fig.3  Projection region of the feasible speed profile in each coordinate plane.
Algorithm 1 Algorithm for identifying the feasible nodes in the PTS network
Input: Vmax, amax, dmax, S, T, V, Δs, Δt, Δv
Output: Initialize: IN // Feasible node indicator, 1 if feasible, and 0 otherwise
1: IN0
2: H1 ?S/Δs?, H2 ?T/Δt?, H3 ?V/Δv?
3: t1 ?( Vmax/ amax)/Δt?, t2 H2 ?( Vmax/dmax)/Δt ?
4: s1 ? (V max)2 /(2 amax)/Δs?, s2 H1 ?( Vmax)2/ (2dmax)/Δs ?
5: for k=1: H2do // Generate a feasible region boundary in Speed–Time plane (ST)
6: if 1k<t1 1then
7: ?S Tkamax(kΔt)/Δv
8: ?else if t1k t2then
9: ??S TkV max/ Δv
10: ?else
11: ??S Tkdmax((H2 k)Δt) /Δv
12: for h=1: H1 // Generate a feasible region boundary in Speed–Position plane (SP)
13: ?if 1h<s1 1then
14: ??S Ph2amaxhΔs/Δ v
15: ?else if s1h s2then
16: ??S PhV max/ Δv
17: ?else
18: ??S Ph2dmax( H1h)Δs/Δv
19: for l=1: H1do // Generate a feasible region boundary in Time–Position plane (TP)
20: ?if 1l<s1 1then
21: ??T Pl2(lΔs) /amax/Δ t
22: ?else
23: ??T Pl(lΔs/V max+Vmax/ (2amax))/Δ t
24: for s=1: H1do // Check the feasibility of the network nodes
25: ?for t=1: H2do
26: ??for v=1: H3do
27: ???if vSPs & vSTt & t TPsthen
28: ????INs,t ,v1
Tab.3  Algorithm for identifying the feasible nodes in the PTS network
Algorithm 2 DP algorithm for generating feasible arcs in the PTS network
Input: IN, V^s, amax, dmax, β1, β2, β3, S, T, V, Δs, Δt, Δv, m, g
Output: A*, N *, as,t, v,s , t,v , ?e s,t,v,s , t ,v, (s, t, v, s, t, v)A*
1: Initialize: A*Null, CN{(0, 0, 0)}, FNNull, ?ONNull, DNNull
// CN: Current node set, FN: Feasible follower node set, ON: Set of origin node for arcs in A *, DN: Set of destination node for arcs in A *
2: H1 ?S/Δs?, H2 ?T/Δt?, H3 ?V/Δv?
3: for k=1: H21do // Search for feasible arcs
4: ?for (s0, t0 , v0)CNdo
5: ??a^s0 ,t0, v0 (mamax RBs0, t0,v0R Gs 0,t0, v0) /m
6: ??v^s0 ,t0, v0min( v0+ a^Δt, V^s), H v^? v^/Δv ?
7: ??if k=1then // When the current node is the origin node, acceleration only
8: ??? v0 ,0,0Δv, Hv1
9: ??else
10: ???d^s0 ,t0, v0 (mdmax +RB s0, t0,v0+RGs 0,t0, v0) /m
11: ??? vs0 ,t0, v0max(v0d^Δt, Δ v), Hv v/Δv
12: for v=H v:H v ^do
13: ??s s0+? (( v0+v) Δv/2)Δt/Δs?
14: ??if INs,k ,v=1&( v0+v) Δv V ^sthen
15: ??as0, t0,v0 ,s,k, v(vv 0)Δv/Δt
16: ??es0, t0,v0 ,s,k, vEqs. (2)–(6)
17: ??A*A* {(s 0, t0, v0, s, k, v)}
18: ??FNFN{(s, k, v) }
19: ??CNFN, FNNull
20: for k=H 2do // Search for the feasible arcs ended with the destination node ( H1, H2, 0 )
21: ?for (s0, t0 , v0)CNdo
22: ???d^s0 ,t0, v0 (mdmax +RB s0, t0,v0+RGs 0,t0, v0) /m
23: ???s s0+? (v0 Δv/2) Δt/Δs?
24: ???as0, t0,v0 ,H1, H2,0v0Δv/Δt
25: ?if s=H 1 & as0, t0,v0 ,H1, H2,0 d ^s0,t 0, v0then
26: ??es0, t0,v0 ,s,k, vEqs. (2)–(6)
27: ??A*A* {(s 0, t0, v0, H1, H2 , 0)}
28: ??ON{(s 0, t0 , v0)|( s0, t0, v0 , s , t , v )A*}
29: ??DN{(s, t, v)|(s 0, t0 , v0, s, t, v)A*}
30: for (s, t, v)DN *\{ (H1, H2 , 0)}do // Remove the disconnected arcs from A*
31: ?if (s, t, v)ONthen
32: ??A*A*\ {(s, t, v, s, t, v) }
33: ??ON{(s 0, t0 , v0)|( s0, t0, v0 , s , t , v )A*}
34: ??DN{(s, t, v)|(s 0, t0 , v0, s, t, v)A*}
35: ??N*DN{(0, 0 , 0)}
Tab.4  DP algorithm for generating feasible arcs in the PTS network
Fig.4  Example of the process of generating a feasible arc set.
Variable/Constraints Total number at most
PRM LPRM
Binary variable X |A| |A|
Continuous variable φ 1 0
Binary variable Y 0 |Ω |
Continuous variable L 0 1
Constraint (33) 1 0
Flow balance constraint (34) |N| |N|
Comfort constraint (35) |N| |N|
Constraint (39) 0 |Ω |
Constraint (40) 0 1
Tab.5  Numbers of variables and constraints in PRM and LPRM, respectively
Fig.5  Values of speed limit and track gradient between Rongjingdongjie and Wanyuanjie stations on the Yizhuang line.
Scenario ω β1 β2 β3
Scenario 1 2.0×a 1 2.0×a 2 2.0×a 3
Scenario 2 1.8×a 1 1.8×a 2 1.8×a 3
Scenario 3 1.6×a 1 1.6×a 2 1.6×a 3
Scenario 4 1.5×a 1 1.5×a 2 1.5×a 3
Scenario 5 1.4×a 1 1.4×a 2 1.4×a 3
Scenario 6 1.2×a 1 1.2×a 2 1.2×a 3
Scenario 7 1.0×a 1 1.0×a 2 1.0×a 3
Scenario 8 0.8×a 1 0.8×a 2 0.8×a 3
Scenario 9 0.6×a 1 0.6×a 2 0.6×a 3
Scenario 10 0.4×a 1 0.4×a 2 0.4×a 3
Tab.6  List of resistance parameter values for different scenarios
Fig.6  Optimal speed profiles in different scenarios.
α Energy consumption (J) Objective value (J) Probability
Scenario 1 Scenario 3 Scenario 6 Scenario 8 Scenario 10
0.2 1.32×108 1.13×108 9.34×107 7.39×107 5.66×107 5.66×107 0.2
0.4 1.29×108 1.09×108 8.95×107 7.01×107 6.11×107 7.01×107 0.4
0.6 1.24×108 1.04×108 8.56×107 7.63×107 6.98×107 8.56×107 0.6
0.8 1.23×108 1.02×108 8.91×107 7.86×107 6.98×107 1.02×108 0.8
1.0 1.21×108 1.05×108 9.52×107 8.46×107 7.40×107 1.21×108 1.0
Tab.7  Results of the conducted experiments on different scenarios
α Objective value (J) EEC (J) CT (s)
5 scenarios 10 scenarios 5 scenarios 10 scenarios 5 scenarios 10 scenarios
1.0 1.21×108 1.21×108 9.62×107 9.67×107 1.9 4.7
0.9 1.21×108 1.11×108 9.62×107 9.41×107 2.0 2.7
0.8 1.02×108 1.02×108 9.26×107 9.26×107 2.3 3.1
0.7 1.02×108 9.85×107 9.26×107 9.26×107 2.3 2.7
0.6 8.56×107 9.40×107 9.18×107 9.21×107 2.4 3.2
0.5 8.56×107 8.56×107 9.18×107 9.19×107 2.3 2.7
0.4 7.01×107 7.78×107 9.17×107 9.16×107 2.3 2.6
0.3 7.01×107 5.66×107 9.17×107 9.51×107 2.2 3.0
0.2 5.66×107 5.66×107 9.38×107 9.51×107 2.2 3.2
0.1 5.66×107 5.66×107 9.38×107 9.51×107 2.1 3.1
Tab.8  Results of experiments on two sets of scenarios with different confidence levels
Fig.7  Optimal speed profiles with different confidence levels.
Test index Network discretization EEC (J) CT (s) Network scale
Δs Δt Δv Δa Node Arc
1 5 5 2 0.40 1.05×108 0.6 274 644
2 2 4 1 0.25 1.02×108 1.1 1115 4358
3 0.5 2 0.5 0.25 9.82×107 437.1 37186 233695
4 10 10 2 0.20 9.82×107 0.5 105 239
5 2.5 5 1 0.20 9.62×107 2.1 1830 9477
6 5 10 1 0.10 9.30×107 0.7 483 2191
7 1.25 5 0.5 0.10 9.46×107 66.0 10406 112996
8 2.5 10 0.5 0.05 9.26× 107 2.3 2064 18646
9 2 10 0.4 0.04 9.23×107 15.7 3443 39791
Tab.9  Results of the experiments on different network discretizations
Running time (s) EEC (J) Network scale CT (s)
Node Arc
86 1.18×108 2990 12722 5
88 1.02×108 16871 96834 59
90 9.82×107 37186 233695 417
92 9.65×107 62313 410596 1147
94 9.28×107 91409 620717 4449
96 9.21×107 123919 859515 10986
Tab.10  Results of the experiments on different total running times
Fig.8  Optimal speed profiles with different total running times.
1 A Albrecht, P Howlett, P Pudney, X Vu, P Zhou (2016a). The key principles of optimal train control—part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points. Transportation Research Part B: Methodological, 94: 482–508
https://doi.org/10.1016/j.trb.2015.07.023
2 A Albrecht, P Howlett, P Pudney, X Vu, P Zhou (2016b). The key principles of optimal train control—part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques. Transportation Research Part B: Methodological, 94: 509–538
https://doi.org/10.1016/j.trb.2015.07.024
3 A Amrani, A Hamida, T Liu, O Langlois (2018). Train speed profiles optimization using a genetic algorithm based on a random-forest model to estimate energy consumption. In: Proceedings of 7th Transport Research Arena. Vienna, hal-01767006
4 N Bešinović, E Quaglietta, R M P Goverde (2013). A simulation-based optimization approach for the calibration of dynamic train speed profiles. Journal of Rail Transport Planning and Management, 3(4): 126–136
https://doi.org/10.1016/j.jrtpm.2013.10.008
5 V Calderaro, V Galdi, G Graber, A Piccolo, D Cogliano (2014). An algorithm to optimize speed profiles of the metro vehicles for minimizing energy consumption. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Ischia:IEEE, 813–819
6 V de Martinis, F Corman (2018). Data-driven perspectives for energy efficient operations in railway systems: Current practices and future opportunities. Transportation Research Part C: Emerging Technologies, 95: 679–697
https://doi.org/10.1016/j.trc.2018.08.008
7 A Fernández-Rodríguez, A Fernández-Cardador, A P Cucala (2018). Balancing energy consumption and risk of delay in high speed trains: A three-objective real-time eco-driving algorithm with fuzzy parameters. Transportation Research Part C: Emerging Technologies, 95: 652–678
https://doi.org/10.1016/j.trc.2018.08.009
8 Z Gao, L Yang (2019). Energy-saving operation approaches for urban rail transit systems. Frontiers of Engineering Management, 6(2): 139–151
https://doi.org/10.1007/s42524-019-0030-7
9 P G Howlett (2000). The optimal control of a train. Annals of Operations Research, 98(1/4): 65–87
https://doi.org/10.1023/A:1019235819716
10 P G Howlett, P J Pudney (1995). Energy-efficient Train Control: Advances in Industrial Control. London: Springer
11 K Huang, J Wu, X Yang, Z Gao, F Liu, Y Zhu (2019). Discrete train speed profile optimization for urban rail transit: A data-driven model and integrated algorithms based on machine learning. Journal of Advanced Transportation, (4): 7258986
https://doi.org/10.1155/2019/7258986
12 B R Ke, C L Lin, C W Lai (2011). Optimization of train-speed trajectory and control for mass rapid transit systems. Control Engineering Practice, 19(7): 675–687
https://doi.org/10.1016/j.conengprac.2011.03.003
13 K Kim, S I Chien (2011). Optimal train operation for minimum energy consumption considering track alignment, speed limit, and schedule adherence. Journal of Transportation Engineering, 137(9): 665–674
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000246
14 H Ko, T Koseki, M Miyatake (2004). Application of dynamic programming to the optimization of the running profile of a train. WIT Transactions on the Built Environment, 74: 103–112
https://doi.org/10.2495/CR040111
15 X Li, Z Gao, W Sun (2013a). Existence of an optimal strategy for stochastic train energy-efficient operation problem. Soft Computing, 17(4): 651–657
https://doi.org/10.1007/s00500-012-0938-x
16 X Li, L Li, Z Gao, T Tang, S Su (2013b). Train energy-efficient operation with stochastic resistance coefficient. International Journal of Innovative Computing, Information and Control, 9(8): 3471–3483
17 B Liu (2002). Random fuzzy variables. In: Liu B, ed. Theory and Practice of Uncertain Programming. Heidelberg: Physica-Verlag, Springer, 295–308
https://doi.org/10.1007/978-3-7908-1781-2_19
18 R Liu, I Golovitcher (2003). Energy-efficient operation of rail vehicles. Transportation Research Part A: Policy and Practice, 37(10): 917–932
https://doi.org/10.1016/j.tra.2003.07.001
19 S Lu, S Hillmansen, T K Ho, C Roberts (2013). Single-train trajectory optimization. IEEE Transactions on Intelligent Transportation Systems, 14(2): 743–750
https://doi.org/10.1109/TITS.2012.2234118
20 M Mahmoudi, X Zhou (2016). Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations. Transportation Research Part B: Methodological, 89: 19–42
https://doi.org/10.1016/j.trb.2016.03.009
21 G M Scheepmaker, R M P Goverde, L G Kroon (2017). Review of energy-efficient train control and timetabling. European Journal of Operational Research, 257(2): 355–376
https://doi.org/10.1016/j.ejor.2016.09.044
22 W Shangguan, X H Yan, B G Cai, J Wang (2015). Multiobjective optimization for train speed trajectory in CTCS high-speed railway with hybrid evolutionary algorithm. IEEE Transactions on Intelligent Transportation Systems, 16(4): 2215–2225
https://doi.org/10.1109/TITS.2015.2402160
23 C Sicre, A P Cucala, A Fernández-Cardador (2014). Real time regulation of efficient driving of high speed trains based on a genetic algorithm and a fuzzy model of manual driving. Engineering Applications of Artificial Intelligence, 29: 79–92
https://doi.org/10.1016/j.engappai.2013.07.015
24 S Su, X Li, T Tang, Z Gao (2013). A subway train timetable optimization approach based on energy-efficient operation strategy. IEEE Transactions on Intelligent Transportation Systems, 14(2): 883–893
https://doi.org/10.1109/TITS.2013.2244885
25 L Wang, L Yang, Z Gao, Y Huang (2017). Robust train speed trajectory optimization: A stochastic constrained shortest path approach. Frontiers of Engineering Management, 4(4): 408–417
https://doi.org/10.15302/J-FEM-2017042
26 P Wang, R M P Goverde (2016). Multiple-phase train trajectory optimization with signaling and operational constraints. Transportation Research Part C: Emerging Technologies, 69: 255–275
https://doi.org/10.1016/j.trc.2016.06.008
27 P Wang, R M P Goverde (2019). Multi-train trajectory optimization for energy-efficient timetabling. European Journal of Operational Research, 272(2): 621–635
https://doi.org/10.1016/j.ejor.2018.06.034
28 P Wang, A Trivella, R M P Goverde, F Corman (2020). Train trajectory optimization for improved on-time arrival under parametric uncertainty. Transportation Research Part C: Emerging Technologies, 119: 102680
https://doi.org/10.1016/j.trc.2020.102680
29 Y Wang, B de Schutter, T J J van den Boom, B Ning (2013). Optimal trajectory planning for trains: A pseudospectral method and a mixed integer linear programming approach. Transportation Research Part C: Emerging Technologies, 29: 97–114
https://doi.org/10.1016/j.trc.2013.01.007
30 L Yang, Y Feng (2007). A bicriteria solid transportation problem with fixed charge under stochastic environment. Applied Mathematical Modelling, 31(12): 2668–2683
https://doi.org/10.1016/j.apm.2006.10.011
31 L Yang, X Zhou (2014). Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem. Transportation Research Part B: Methodological, 59(1): 22–44
https://doi.org/10.1016/j.trb.2013.10.012
32 L Yang, X Zhou (2017). Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations. Transportation Research Part B: Methodological, 96: 68–91
https://doi.org/10.1016/j.trb.2016.11.012
33 J Yin, D Chen, L Li (2014). Intelligent train operation algorithms for subway by expert system and reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 15(6): 2561–2571
https://doi.org/10.1109/TITS.2014.2320757
34 J Yin, S Su, J Xun, T Tang, R Liu (2020). Data-driven approaches for modeling train control models: Comparison and case studies. ISA Transactions, 98: 349–363
https://doi.org/10.1016/j.isatra.2019.08.024 pmid: 31451233
35 J Yin, T Tang, L Yang, J Xun, Y Huang, Z Gao (2017a). Research and development of automatic train operation for railway transportation systems: A survey. Transportation Research Part C: Emerging Technologies, 85: 548–572
https://doi.org/10.1016/j.trc.2017.09.009
36 J Yin, L Yang, T Tang, Z Gao, B Ran (2017b). Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches. Transportation Research Part B: Methodological, 97: 182–213
https://doi.org/10.1016/j.trb.2017.01.001
37 L Zhou, L Tong, J Chen, J Tang, X Zhou (2017). Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks. Transportation Research Part B: Methodological, 97: 157–181
https://doi.org/10.1016/j.trb.2017.01.002
[1] Braulio BRUNAUD, Maria Paz OCHOA, Ignacio E. GROSSMANN. Product decomposition strategy for optimization of supply chain planning[J]. Front. Eng, 2018, 5(4): 466-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed