Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2022, Vol. 9 Issue (3) : 425-438    https://doi.org/10.1007/s42524-022-0205-5
RESEARCH ARTICLE
Sustainability performance analysis of environment innovation systems using a two-stage network DEA model with shared resources
Jiangjiang YANG1, Jie WU1, Xingchen LI2(), Qingyuan ZHU3()
1. School of Management, University of Science and Technology of China, Hefei 230026, China
2. School of Accounting, Nanjing Audit University, Nanjing 211815, China
3. College of Economics and Management, Research Center for Soft Energy Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
 Download: PDF(2025 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The term environmental innovation system refers to an innovation network composed of enterprises, universities, and research institutions involved in the development and diffusion of environmental technology, with the participation of a government. An environmental innovation system not only exerts important impact on the achievement of carbon neutrality but also affects social and economic activities. Investigations on environmental innovation system performance constantly assume a single-stage independent system while ignoring its internal structure. However, such systems are composed of environmental innovation research and development (R&D) and environmental innovation conversion subsystems. A two-stage data envelopment analysis (DEA) model is developed in this study to analyze the efficiency of Chinese regional environmental innovation system by opening the “black box” and considering shared resources. Empirical results indicated that China presents high overall environmental innovation efficiency although some regions need to improve. Regions with low efficiencies in both environmental innovation R&D (EIR) and environmental innovation conversion (EIC) subsystems should expand their investment in and strengthen the management of environmental innovation resources. Regions with low EIR efficiency should improve the absorption and transformation of environmental innovation achievements. Regions with low EIC efficiency should increase investment in the commercialization of environmental innovation achievements and encourage green economy industries, such as new energy, art, tourism, and environmental protection.

Keywords data envelopment analysis      environmental efficiency      environmental innovation system      shared resources      two-stage structure     
Corresponding Author(s): Xingchen LI,Qingyuan ZHU   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 24 May 2022   Online First Date: 03 August 2022    Issue Date: 05 September 2022
 Cite this article:   
Jiangjiang YANG,Jie WU,Xingchen LI, et al. Sustainability performance analysis of environment innovation systems using a two-stage network DEA model with shared resources[J]. Front. Eng, 2022, 9(3): 425-438.
 URL:  
https://academic.hep.com.cn/fem/EN/10.1007/s42524-022-0205-5
https://academic.hep.com.cn/fem/EN/Y2022/V9/I3/425
Fig.1  The two-stage environmental innovation system with shared inputs.
Variables 2015 2016 2017 2018 2019
Expenditure on R&D Min 115842.70 139976.70 179108.60 172951.10 205680.10
Max 18012271.00 20351439.90 23436283.20 27046969.00 30984890.00
Mean 4722253.49 5224843.35 5867754.90 6558074.18 7379747.62
SD 5182068.27 5778686.80 6492727.04 7234770.81 8117404.69
New products Min 24.00 37.00 36.00 49.00 72.00
Max 15127.00 22541.00 32392.00 38526.00 46263.00
Mean 2571.93 3104.27 3795.80 4387.10 5223.87
SD 3717.68 4865.39 6462.94 7550.92 8997.01
Green patent applications Min 124.00 145.00 155.00 256.00 342.00
Max 13554.00 15575.00 18693.00 28621.00 26176.00
Mean 3282.57 3890.50 4175.03 5923.47 5534.67
SD 3720.31 4292.47 4770.06 6901.04 6484.31
Electricity Min 272.36 287.31 304.95 327.00 354.89
Max 5310.69 5610.13 5958.97 6323.00 6695.85
Mean 1896.42 1989.93 2118.90 2279.30 2413.60
SD 1346.39 1433.11 1502.58 1604.27 1676.25
Labor Min 321.41 324.28 326.97 329.26 330.20
Max 6723.30 6726.39 6766.86 7132.99 7150.25
Mean 2777.57 2766.12 2766.24 2770.74 2750.14
SD 1809.62 1804.02 1801.15 1830.15 1812.12
R&D full-time equivalent Min 4007.70 4165.60 5655.80 4301.10 5476.00
Max 520302.50 543437.70 565287.30 762733.30 803207.80
Mean 125257.25 129231.05 134411.64 145995.87 159967.29
SD 135187.98 139860.03 148161.03 174246.07 189819.45
Gross domestic product (GDP) Min 2417.05 2572.49 2624.83 2865.23 2965.95
Max 72812.55 80854.91 89705.23 97277.77 107671.07
Mean 24058.05 25963.95 28194.31 30440.99 32787.84
SD 18046.47 19937.99 22025.35 23731.16 25774.58
Carbon emissions Min 3647.83 4518.03 4231.69 6326.27 3953.70
Max 105702.99 110811.29 110615.20 121494.22 125030.31
Mean 34186.58 34440.09 35424.97 37264.38 37904.16
SD 23181.53 23852.49 24527.65 26589.50 28425.38
Tab.1  Statistical descriptions of the dataset
Indicator Variable Units Definition
Input in EIR Expenditure on R&D 10000 yuan Intramural expenditure on R&D by provincial region
Output in EIR New products Unit Number of new product development projects
Intermediate output in EIR (Input in EIC) Green patent applications Piece Number of green patent applications
Shared input R&D full-time equivalent Person-year Total workload of full-time and part-time personnel
Input in EIC Electricity 100 million kWh Regional consumption of electricity
Labor 10000 persons Number of full-time employees of a specific region in China
Desirable outputs in EIC GDP 100 million yuan Gross domestic product
Undesirable outputs in EIC Carbon emissions 10 thousand tons Annual regional carbon emissions
Tab.2  Variables and definitions
Fossil fuels Coal Petrol Kerosene Diesel Fuel oil Natural gas
CCF 27.28 18.90 19.60 20.17 21.09 15.32
HE 192.14 448.00 447.50 433.30 401.90 0.38
COF (%) 92.3 98.0 98.6 98.2 98.5 99.0
Tab.3  Carbon emission factors of major fossil fuel types in China
Region Ej0? e1j0? e2j0? αj0 1?αj0
Beijing 0.9690 0.9095 1.0000 0.25 0.75
Tianjin 0.8368 0.8433 0.8334 0.57 0.43
Hebei 0.7856 0.7174 0.8015 0.53 0.47
Shanxi 0.8216 0.6152 0.8595 0.53 0.47
Inner Mongolia 1.0000 1.0000 1.0000 0.56 0.44
Liaoning 0.8453 0.6524 0.9011 0.53 0.47
Jilin 0.8521 0.6202 0.9003 0.57 0.43
Heilongjiang 0.8237 0.6000 0.8667 0.63 0.37
Shanghai 0.9935 0.9751 1.0000 0.53 0.47
Jiangsu 0.8044 0.6890 0.8858 0.51 0.49
Zhejiang 0.7356 0.6906 0.7787 0.35 0.65
Anhui 0.8087 0.6012 0.8799 0.34 0.66
Fujian 1.0000 1.0000 1.0000 0.51 0.49
Jiangxi 0.9530 0.9413 0.9610 0.38 0.62
Shandong 0.8457 0.6814 0.9082 0.48 0.52
Henan 0.8998 0.7714 0.9459 0.55 0.45
Hubei 0.9771 0.8602 1.0000 0.51 0.49
Hunan 0.9941 0.9672 1.0000 0.36 0.64
Guangdong 1.0000 1.0000 1.0000 0.26 0.74
Guangxi 0.9847 0.9538 1.0000 0.60 0.40
Hainan 1.0000 1.0000 1.0000 0.55 0.45
Chongqing 1.0000 1.0000 1.0000 0.26 0.74
Sichuan 1.0000 1.0000 1.0000 0.26 0.74
Guizhou 0.8613 0.7430 0.8828 0.61 0.39
Yunnan 1.0000 1.0000 1.0000 0.51 0.49
Shaanxi 0.8662 0.6308 0.9337 0.57 0.43
Gansu 0.6787 0.7829 0.6139 0.62 0.38
Qinghai 0.9679 1.0000 0.9616 0.61 0.39
Ningxia 0.7319 0.8424 0.7085 0.57 0.43
Xinjiang 1.0000 1.0000 1.0000 0.57 0.43
Average 0.9012 0.8363 0.9208 0.49 0.51
Tab.4  Efficiencies of environmental innovation systems of 30 Chinese provincial-level regions in 2019
Fig.2  Overall efficiency of 30 Chinese regions from 2015 to 2019.
Fig.3  EIR efficiency of 30 Chinese regions from 2015 to 2019.
Fig.4  EIC efficiency of 30 Chinese regions from 2015 to 2019.
1 C A Amado, S P Santos, P M Marques, ( 2012). Integrating the data envelopment analysis and the balanced scorecard approaches for enhanced performance assessment. Omega, 40( 3): 390– 403
https://doi.org/10.1016/j.omega.2011.06.006
2 A Amirteimoori, ( 2013). A DEA two-stage decision processes with shared resources. Central European Journal of Operations Research, 21( 1): 141– 151
https://doi.org/10.1007/s10100-011-0218-3
3 H T A Bressers, W A Rosenbaum, ( 2000). Innovation, learning, and environmental policy: Overcoming “a plague of uncertainties”. Policy Studies Journal: The Journal of the Policy Studies Organization, 28( 3): 523– 539
https://doi.org/10.1111/j.1541-0072.2000.tb02046.x
4 S B Brunnermeier, M A Cohen, ( 2003). Determinants of environmental innovation in US manufacturing industries. Journal of Environmental Economics and Management, 45( 2): 278– 293
https://doi.org/10.1016/S0095-0696(02)00058-X
5 Y T Chang, N Zhang, D Danao, N Zhang, ( 2013). Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy, 58: 277– 283
https://doi.org/10.1016/j.enpol.2013.03.011
6 A Charnes, W W Cooper, ( 1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9( 3–4): 181– 186
https://doi.org/10.1002/nav.3800090303
7 A Charnes, W W Cooper, E Rhodes, ( 1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2( 6): 429– 444
https://doi.org/10.1016/0377-2217(78)90138-8
8 J Chen, H Cui, Y Xu, Q Ge, ( 2021). Long-term temperature and sea-level rise stabilization before and beyond 2100: Estimating the additional climate mitigation contribution from China’s recent 2060 carbon neutrality pledge. Environmental Research Letters, 16( 7): 074032
https://doi.org/10.1088/1748-9326/ac0cac
9 L Chen, G Jia, ( 2017). Environmental efficiency analysis of China’s regional industry: A data envelopment analysis (DEA) based approach. Journal of Cleaner Production, 142: 846– 853
https://doi.org/10.1016/j.jclepro.2016.01.045
10 X Chen, Z Liu, Q Zhu, ( 2018). Performance evaluation of China’s high-tech innovation process: Analysis based on the innovation value chain. Technovation, 74–75: 42– 53
https://doi.org/10.1016/j.technovation.2018.02.009
11 Y Chen, W D Cook, N Li, J Zhu, ( 2009). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research, 196( 3): 1170– 1176
https://doi.org/10.1016/j.ejor.2008.05.011
12 Y Chen, J Du, H D Sherman, J Zhu, ( 2010). DEA model with shared resources and efficiency decomposition. European Journal of Operational Research, 207( 1): 339– 349
https://doi.org/10.1016/j.ejor.2010.03.031
13 Y S Chen, ( 2008). The driver of green innovation and green image–green core competence. Journal of Business Ethics, 81( 3): 531– 543
https://doi.org/10.1007/s10551-007-9522-1
14 J H Cho, S Y Sohn, ( 2018). A novel decomposition analysis of green patent applications for the evaluation of R&D efforts to reduce CO2 emissions from fossil fuel energy consumption. Journal of Cleaner Production, 193: 290– 299
https://doi.org/10.1016/j.jclepro.2018.05.060
15 Y H Chung, R Färe, S Grosskopf, ( 1997). Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 51( 3): 229– 240
https://doi.org/10.1006/jema.1997.0146
16 V Costantini, M Mazzanti, A Montini, ( 2013). Environmental performance, innovation and spillovers: Evidence from a regional NAMEA. Ecological Economics, 89: 101– 114
https://doi.org/10.1016/j.ecolecon.2013.01.026
17 R Färe, S Grosskopf, D Tyteca, ( 1996). An activity analysis model of the environmental performance of firms: Application to fossil-fuel-fired electric utilities. Ecological Economics, 18( 2): 161– 175
https://doi.org/10.1016/0921-8009(96)00019-5
18 E Fraj, J Matute, I Melero, ( 2015). Environmental strategies and organizational competitiveness in the hotel industry: The role of learning and innovation as determinants of environmental success. Tourism Management, 46: 30– 42
https://doi.org/10.1016/j.tourman.2014.05.009
19 H Fujii, S Managi, ( 2019). Decomposition analysis of sustainable green technology inventions in China. Technological Forecasting and Social Change, 139: 10– 16
https://doi.org/10.1016/j.techfore.2018.11.013
20 C Ghisetti, F Quatraro, ( 2017). Green technologies and environmental productivity: A cross-sectoral analysis of direct and indirect effects in Italian regions. Ecological Economics, 132: 1– 13
https://doi.org/10.1016/j.ecolecon.2016.10.003
21 S Gopalakrishnan, F Damanpour, ( 1997). A review of innovation research in economics, sociology and technology management. Omega, 25( 1): 15– 28
https://doi.org/10.1016/S0305-0483(96)00043-6
22 J Guan, K Chen, ( 2010). Measuring the innovation production process: A cross-region empirical study of China’s high-tech innovations. Technovation, 30( 5–6): 348– 358
https://doi.org/10.1016/j.technovation.2010.02.001
23 J Guan, K Chen, ( 2012). Modeling the relative efficiency of national innovation systems. Research Policy, 41( 1): 102– 115
https://doi.org/10.1016/j.respol.2011.07.001
24 A Hailu, T S Veeman, ( 2001). Non-parametric productivity analysis with undesirable outputs: An application to the Canadian pulp and paper industry. American Journal of Agricultural Economics, 83( 3): 605– 616
https://doi.org/10.1111/0002-9092.00181
25 G Halkos, K N Petrou, ( 2019). Treating undesirable outputs in DEA: A critical review. Economic Analysis and Policy, 62: 97– 104
https://doi.org/10.1016/j.eap.2019.01.005
26 F He, Q Zhang, J Lei, W Fu, X Xu, ( 2013). Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs. Energy Policy, 54: 204– 213
https://doi.org/10.1016/j.enpol.2012.11.020
27 J Hemmelskamp, K Rennings, F Leone, ( 2000). Innovation-oriented Environmental Regulation: Theoretical Approaches and Empirical Analysis. Berlin, Heidelberg: Springer– Verlag
28 C Kao, S N Hwang, ( 2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185( 1): 418– 429
https://doi.org/10.1016/j.ejor.2006.11.041
29 P J Korhonen, M Luptacik, ( 2004). Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 154( 2): 437– 446
https://doi.org/10.1016/S0377-2217(03)00180-2
30 M Kortelainen, ( 2008). Dynamic environmental performance analysis: A Malmquist index approach. Ecological Economics, 64( 4): 701– 715
https://doi.org/10.1016/j.ecolecon.2007.08.001
31 X Lei, Y Li, Q Xie, L Liang, ( 2015). Measuring Olympics achievements based on a parallel DEA approach. Annals of Operations Research, 226( 1): 379– 396
https://doi.org/10.1007/s10479-014-1708-1
32 H Li, J Chen, Z Wan, H Zhang, M Wang, Y Bai, ( 2020). Spatial evaluation of knowledge spillover benefits in China’s free trade zone provinces and cities. Growth and Change, 51( 3): 1158– 1181
https://doi.org/10.1111/grow.12410
33 L Liang, W D Cook, J Zhu, ( 2008). DEA models for two-stage processes: Game approach and efficiency decomposition. Naval Research Logistics, 55( 7): 643– 653
https://doi.org/10.1002/nav.20308
34 R J Lin, K H Tan, Y Geng, ( 2013). Market demand, green product innovation, and firm performance: Evidence from Vietnam motorcycle industry. Journal of Cleaner Production, 40: 101– 107
https://doi.org/10.1016/j.jclepro.2012.01.001
35 X Long, Y Chen, J Du, K Oh, I Han, ( 2017). Environmental innovation and its impact on economic and environmental performance. Energy Policy, 107: 131– 137
https://doi.org/10.1016/j.enpol.2017.04.044
36 C N Mensah, X Long, K B Boamah, I A Bediako, L Dauda, M Salman, ( 2018). The effect of innovation on CO2 emissions of OCED countries from 1990 to 2014. Environmental Science and Pollution Research International, 25( 29): 29678– 29698
https://doi.org/10.1007/s11356-018-2968-0 pmid: 30144011
37 S M Meyer, ( 1995). The economic impact of environmental regulation. Journal of Environmental Law and Practice, 3( 2): 4– 15
38 S Pathomsiri, A Haghani, M Dresner, R J Windle, ( 2008). Impact of undesirable outputs on the productivity of US airports. Transportation Research Part E: Logistics and Transportation Review, 44( 2): 235– 259
https://doi.org/10.1016/j.tre.2007.07.002
39 D Pujari, ( 2006). Eco-innovation and new product development: Understanding the influences on market performance. Technovation, 26( 1): 76– 85
https://doi.org/10.1016/j.technovation.2004.07.006
40 S Reinhard, C A Knox Lovell, G J Thijssen, ( 2000). Environmental efficiency with multiple environmentally detrimental variables: Estimated with SFA and DEA. European Journal of Operational Research, 121( 2): 287– 303
https://doi.org/10.1016/S0377-2217(99)00218-0
41 D Satterthwaite, ( 2011). How urban societies can adapt to resource shortage and climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369( 1942): 1762– 1783
https://doi.org/10.1098/rsta.2010.0350
42 R W Shephard ( 1971). Theory of Cost and Production Functions. Princeton, NJ: Princeton University Press
43 M Song, Q An, W Zhang, Z Wang, J Wu, ( 2012). Environmental efficiency evaluation based on data envelopment analysis: A review. Renewable & Sustainable Energy Reviews, 16( 7): 4465– 4469
https://doi.org/10.1016/j.rser.2012.04.052
44 M Song, S Wang, W Liu, ( 2014). A two-stage DEA approach for environmental efficiency measurement. Environmental Monitoring and Assessment, 186( 5): 3041– 3051
https://doi.org/10.1007/s10661-013-3599-z pmid: 24399369
45 T Sterner, B Turnheim, ( 2009). Innovation and diffusion of environmental technology: Industrial NOx abatement in Sweden under refunded emission payments. Ecological Economics, 68( 12): 2996– 3006
https://doi.org/10.1016/j.ecolecon.2009.06.028
46 S Tiba, A Omri, ( 2017). Literature survey on the relationships between energy, environment and economic growth. Renewable & Sustainable Energy Reviews, 69: 1129– 1146
https://doi.org/10.1016/j.rser.2016.09.113
47 C Tomkovick, C Miller, ( 2000). Riding the wind: Managing new product development in an age of change. Journal of Product Innovation Management, 17( 6): 413– 423
https://doi.org/10.1111/1540-5885.1760413
48 K Wang, S Yu, W Zhang, ( 2013). China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Mathematical and Computer Modelling, 58( 5–6): 1117– 1127
https://doi.org/10.1016/j.mcm.2011.11.067
49 Q Wang, Y Hang, L Sun, Z Zhao, ( 2016). Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach. Technological Forecasting and Social Change, 112: 254– 261
https://doi.org/10.1016/j.techfore.2016.04.019
50 J Wu, B Xiong, Q An, J Sun, H Wu, ( 2017). Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs. Annals of Operations Research, 255( 1–2): 257– 276
https://doi.org/10.1007/s10479-015-1938-x
51 J Wu, J Yang, Z Zhou, ( 2020). How does environmental regulation affect environmental performance? A case study of China’s regional energy efficiency. Expert Systems: International Journal of Knowledge Engineering and Neural Networks, 37( 3): e12326
https://doi.org/10.1111/exsy.12326
52 J Wu, Z Zhou, N A Liang, ( 2010). Measuring the performance of Chinese regional innovation systems with two-stage DEA-based model. International Journal of Sustainable Society, 2( 1): 85– 99
https://doi.org/10.1504/IJSSOC.2010.030564
53 J Wu, Q Zhu, J Chu, H Liu, L Liang, ( 2016a). Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach. Transportation Research Part D: Transport and Environment, 48: 460– 472
https://doi.org/10.1016/j.trd.2015.08.001
54 J Wu, Q Zhu, L Liang, ( 2016b). CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China. Applied Energy, 166: 282– 291
https://doi.org/10.1016/j.apenergy.2016.01.008
55 H Yang, M Pollitt, ( 2009). Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants. European Journal of Operational Research, 197( 3): 1095– 1105
https://doi.org/10.1016/j.ejor.2007.12.052
56 L Yang, H Ouyang, K Fang, L Ye, J Zhang, ( 2015). Evaluation of regional environmental efficiencies in China based on super-efficiency-DEA. Ecological Indicators, 51: 13– 19
https://doi.org/10.1016/j.ecolind.2014.08.040
57 W L Yew, Z Zhu, ( 2019). Innovative autocrats? Environmental innovation in public participation in China and Malaysia. Journal of Environmental Management, 234: 28– 35
https://doi.org/10.1016/j.jenvman.2018.12.081 pmid: 30599327
58 J Zhang, Y Chang, L Zhang, D Li, ( 2018). Do technological innovations promote urban green development? A spatial econometric analysis of 105 cities in China. Journal of Cleaner Production, 182: 395– 403
https://doi.org/10.1016/j.jclepro.2018.02.067
59 Y J Zhang, Y L Peng, C Q Ma, B Shen, ( 2017). Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy, 100: 18– 28
https://doi.org/10.1016/j.enpol.2016.10.005
60 L Zhao, Y Zha, Y Zhuang, L Liang, ( 2019). Data envelopment analysis for sustainability evaluation in China: Tackling the economic, environmental, and social dimensions. European Journal of Operational Research, 275( 3): 1083– 1095
https://doi.org/10.1016/j.ejor.2018.12.004
61 P Zhou, B W Ang, J Y Han, ( 2010). Total factor carbon emission performance: A Malmquist index analysis. Energy Economics, 32( 1): 194– 201
https://doi.org/10.1016/j.eneco.2009.10.003
62 P Zhou, B W Ang, K L Poh, ( 2008). Measuring environmental performance under different environmental DEA technologies. Energy Economics, 30( 1): 1– 14
https://doi.org/10.1016/j.eneco.2006.05.001
63 Q Zhu, J Aparicio, F Li, J Wu, G Kou, ( 2022). Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects. European Journal of Operational Research, 296( 3): 927– 939
https://doi.org/10.1016/j.ejor.2021.04.019
64 Q Zhu, X Li, F Li, J Wu, D Zhou, ( 2020). Energy and environmental efficiency of China’s transportation sectors under the constraints of energy consumption and environmental pollutions. Energy Economics, 89: 104817
https://doi.org/10.1016/j.eneco.2020.104817
[1] Shizhen BAI, Xinrui BI, Chunjia HAN, Qijun ZHOU, Wen-Long SHANG, Mu YANG, Lin WANG, Petros IEROMONACHOU, Hao HE. Evaluating R&D efficiency of China’s listed lithium battery enterprises[J]. Front. Eng, 2022, 9(3): 473-485.
[2] Stefan NIEWERTH, Peter VOGT, Markus THEWES. Tender evaluation through efficiency analysis for public construction contracts[J]. Front. Eng, 2022, 9(1): 148-158.
[3] Qingxian AN, Xuyang LIU, Shijie DING. Efficiency measurement for mixed two-stage nonhomogeneous network processes with shared extra intermediate resources[J]. Front. Eng, 2020, 7(2): 259-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed