Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2022, Vol. 9 Issue (3) : 486-498    https://doi.org/10.1007/s42524-022-0215-3
RESEARCH ARTICLE
Decomposition and decoupling analysis of electricity consumption carbon emissions in China
Yuwen ZHENG1, Yifang ZHENG2, Guannan HE1(), Jie SONG1()
1. Department of Industrial Engineering and Management, College of Engineering, Peking University, Beijing 100871, China
2. School of Management, Shandong University, Jinan 250100, China
 Download: PDF(3014 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electricity consumption is one of the major contributors to greenhouse gas emissions. In this study, we build a power consumption carbon emission measurement model based on the operating margin factor. We use the decomposition and decoupling technology of logarithmic mean Divisia index method to quantify six effects (i.e., emission intensity, power generation structure, consumption electricity intensity, economic scale, population structure, and population scale) and comprehensively reflect the degree of dependence of electricity consumption carbon emissions on China’s economic development and population changes. Moreover, we utilize the decoupling model to analyze the decoupling state between carbon emissions and economic growth and identify corresponding energy efficiency policies. The results of this study provide a new perspective to understand carbon emission reduction potentials in the electricity use of China.

Keywords electricity consumption carbon emission measurement      LMDI model      decoupling model      data driven     
Corresponding Author(s): Guannan HE,Jie SONG   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 30 June 2022   Online First Date: 11 August 2022    Issue Date: 05 September 2022
 Cite this article:   
Yuwen ZHENG,Yifang ZHENG,Guannan HE, et al. Decomposition and decoupling analysis of electricity consumption carbon emissions in China[J]. Front. Eng, 2022, 9(3): 486-498.
 URL:  
https://academic.hep.com.cn/fem/EN/10.1007/s42524-022-0215-3
https://academic.hep.com.cn/fem/EN/Y2022/V9/I3/486
Categories Status ΔCO2 ΔGDP Tt Practical implications
Negative decoupling Expansionary negative decoupling >0 >0 Tt>1.2 Both GDP and CO2 emissions are growing; the growth rate of GDP is slower than that of CO2 emissions
Weak negative decoupling <0 <0 0?Tt<0.8 Both GDP and CO2 emissions are declining; the decline rate of GDP is faster than that of CO2 emissions
Strong negative decoupling >0 <0 Tt<0 CO2 emissions are growing, but GDP is declining
Decoupling Recessive decoupling <0 <0 Tt>1.2 Both GDP and CO2 emissions are declining; the decline rate of GDP is slower than that of CO2 emissions
Weak decoupling >0 >0 0?Tt<0.8 Both GDP and CO2 emissions are growing; the growth rate of GDP is faster than that of CO2 emissions
Strong decoupling <0 >0 Tt<0 CO2 emissions are declining, but GDP is growing
Coupling Expansionary coupling >0 >0 0.8?Tt?1.2 CO2 emissions and GDP are growing at similar rates
Recessive coupling <0 <0 0.8?Tt?1.2 CO2 emissions and GDP are declining at similar rates
Tab.1  Decoupling/Coupling states in the Tapio decoupling model
Fig.1  2015–2019 overall electricity consumption carbon emission data.
Fig.2  Proportion of China’s thermal power generation in 2015 and 2019, respectively.
Fig.3  Accumulation map of the contribution value of each provincial-level region for 2015–2019.
Fig.4  Contribution rate of each provincial-level region in China from 2015 to 2019.
Province/City Time period Contribution value (million tons) Contribution rate (%)
Value added ΔF ΔEG ΔGP ΔPP ΔP ΔF ΔEG ΔGP ΔPP ΔP
Heilongjiang 15–16 0.83 ?1.83 0.97 1.98 ?0.79 0.50 ?219 117 237 ?95 60
16–17 0.64 ?2.36 0.17 3.05 ?0.68 0.46 ?367 27 476 ?106 71
17–18 2.02 ?2.12 1.67 2.84 ?0.70 0.33 ?104 82 140 ?34 16
18–19 ?0.14 ?2.08 18.12 ?15.66 ?0.81 0.29 1485 ?12925 11173 576 ?210
Jilin 15–16 ?1.96 ?3.33 ?1.50 3.30 ?0.77 0.34 171 77 ?169 39 ?17
16–17 1.71 ?1.29 2.34 1.00 ?0.65 0.31 ?76 138 59 ?38 18
17–18 3.04 ?0.91 3.43 0.81 ?0.52 0.23 ?30 113 27 ?17 8
18–19 2.37 ?0.08 18.31 ?15.55 ?0.52 0.21 ?4 771 ?655 ?22 9
Liaoning 15–16 ?5.34 ?9.87 48.59 ?43.90 ?1.18 1.02 185 ?911 823 22 ?19
16–17 3.08 ?5.04 ?0.67 9.14 ?1.27 0.92 ?164 ?22 297 ?41 30
17–18 4.58 ?8.68 ?0.54 14.21 ?1.08 0.67 ?189 ?12 310 ?23 15
18–19 3.34 ?4.26 10.52 ?2.63 ?0.89 0.60 ?127 315 ?79 ?27 18
Guizhou 15–16 7.45 4.31 ?3.28 6.02 0.07 0.33 58 ?44 81 1 4
16–17 7.17 0.25 ?1.93 8.40 0.11 0.34 4 ?27 117 1 5
17–18 4.13 ?0.55 ?1.48 5.78 0.12 0.26 ?13 ?36 140 3 6
18–19 5.19 2.34 ?6.32 8.70 0.22 0.25 45 ?122 167 4 5
Sichuan 15–16 ?4.20 ?5.29 ?0.80 1.75 0.02 0.12 126 19 ?42 ?1 ?3
16–17 0.10 ?0.81 ?1.26 2.08 ?0.01 0.10 ?824 ?1289 2121 ?9 102
17–18 5.65 3.30 0.30 1.95 0.02 0.08 58 5 34 0 1
18–19 3.88 2.05 ?1.76 3.48 0.02 0.09 53 ?46 90 0 2
Yunnan 15–16 ?1.85 ?1.62 ?1.18 0.88 0.00 0.07 88 64 ?48 0 ?4
16–17 ?0.63 ?1.52 ?0.16 0.99 0.01 0.05 244 26 ?159 ?2 ?9
17–18 2.03 1.07 0.00 0.90 0.02 0.04 53 0 44 1 2
18–19 1.32 0.35 ?2.35 3.25 0.03 0.04 26 ?179 247 2 3
Chongqing 15–16 0.59 ?2.15 ?3.29 5.52 0.22 0.29 ?363 ?556 933 37 49
16–17 4.85 0.93 ?0.84 4.30 0.18 0.28 19 ?17 89 4 6
17–18 10.80 3.83 4.13 2.31 0.30 0.23 36 38 21 3 2
18–19 2.20 ?0.23 ?7.45 9.41 0.25 0.22 ?10 ?338 427 11 10
Tibet 15–16 / / / / / / / / / / /
16–17 0.01 0.00 0.00 0.00 0.00 0.00 49 12 34 4 2
17–18 0.06 0.05 0.00 0.01 0.00 0.00 82 5 11 2 0
18–19 ?0.01 ?0.02 0.00 0.01 0.00 0.00 207 20 ?109 ?15 ?3
Tab.2  2015–2019 LMDI decomposition results of some provincial-level regions in China
Fig.5  Decoupling elasticity between carbon emissions and economic development by province and region (Notes: 1) BJ: Beijing, XZ: Tibet, GX: Guangxi, HE: Hebei, HN: Hunan, JX: Jiangxi, SD: Shandong, SN: Shaanxi, AH: Anhui, FJ: Fujian, HL: Heilongjiang, JL: Jilin, LN: Liaoning, IM: Inner Mongolia, TJ: Tianjin; 2) The formula Tt=ΔCO2/ΔCO2CO20CO20ΔGDP/ΔGDPGDP0GDP0 is used to calculate the decoupling status of carbon emissions and economic development in each region).
Fig.6  Decoupling elasticity of carbon emissions and economic growth and its decomposition for each province and region in China (Notes: BJ: Beijing, XZ: Tibet, GX: Guangxi, HN: Hunan, SD: Shandong, SN: Shaanxi, GZ: Guizhou, HB: Hubei, CQ: Chongqing, AH: Anhui, FJ: Fujian, HL: Heilongjiang, JL: Jilin, LN: Liaoning, IM: Inner Mongolia, TJ: Tianjin, HI: Hainan, NX: Ningxia, HA: Henan, GS: Gansu).
1 E Abokyi, P Appiah-Konadu, K F Tangato, F Abokyi, ( 2021). Electricity consumption and carbon dioxide emissions: The role of trade openness and manufacturing sub-sector output in Ghana. Energy and Climate Change, 2: 100026
https://doi.org/10.1016/j.egycc.2021.100026
2 F Andersson, P Karpestam, ( 2013). CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity. Energy Policy, 61: 1285– 1294
https://doi.org/10.1016/j.enpol.2013.06.004
3 V Andreoni, S Galmarini, ( 2012). Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption. Energy, 44( 1): 682– 691
https://doi.org/10.1016/j.energy.2012.05.024
4 G Chen ( 2011). Trends in US carbon intensity indicator and enlightenment to China. Sino-Global Energy, 16( 2): 17– 22 (in Chinese)
5 L Chen, W Cai, M Ma, ( 2020). Decoupling or delusion? Mapping carbon emission per capita based on the human development index in Southwest China. Science of the Total Environment, 741: 138722
https://doi.org/10.1016/j.scitotenv.2020.138722 pmid: 32505488
6 K Feng, S J Davis, L Sun, X Li, D Guan, W Liu, Z Liu, K Hubacek, ( 2013). Outsourcing CO2 within China. Proceedings of the National Academy of Sciences of the United States of America, 110( 28): 11654– 11659
https://doi.org/10.1073/pnas.1219918110 pmid: 23754377
7 B Howard, M Waite, V Modi, ( 2017). Current and near-term GHG emissions factors from electricity production for New York State and New York City. Applied Energy, 187: 255– 271
https://doi.org/10.1016/j.apenergy.2016.11.061
8 Q Jiang, S I Khattak, Z U Rahman, ( 2021). Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: New evidence from an EKC-based assessment. Energy, 229: 120616
https://doi.org/10.1016/j.energy.2021.120616
9 M Kucukvar, B Cansev, G Egilmez, N C Onat, H Samadi, ( 2016). Energy–climate–manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries. Applied Energy, 184: 889– 904
https://doi.org/10.1016/j.apenergy.2016.03.068
10 J Lin, D Pan, S J Davis, Q Zhang, K He, C Wang, D G Streets, D J Wuebbles, D Guan, ( 2014). China’s international trade and air pollution in the United States. Proceedings of the National Academy of Sciences of the United States of America, 111( 5): 1736– 1741
https://doi.org/10.1073/pnas.1312860111 pmid: 24449863
11 M Liu, X Zhang, M Zhang, Y Feng, L Liu, J Wen, L Liu, ( 2021). Influencing factors of carbon emissions in transportation industry based on C–D function and LMDI decomposition model: China as an example. Environmental Impact Assessment Review, 90: 106623
https://doi.org/10.1016/j.eiar.2021.106623
12 Z Liu, K Feng, K Hubacek, S Liang, L D Anadon, C Zhang, D Guan, ( 2015a). Four system boundaries for carbon accounts. Ecological Modelling, 318: 118– 125
https://doi.org/10.1016/j.ecolmodel.2015.02.001
13 Z Liu, D Guan, W Wei, S J Davis, P Ciais, J Bai, S Peng, Q Zhang, K Hubacek, G Marland, R J Andres, D Crawford-Brown, J Lin, H Zhao, C Hong, T A Boden, K Feng, G P Peters, F Xi, J Liu, Y Li, Y Zhao, N Zeng, K He, ( 2015b). Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524( 7565): 335– 338
https://doi.org/10.1038/nature14677 pmid: 26289204
14 Q Lu, H Yang, X Huang, X Chuai, C Wu, ( 2015). Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China. Energy, 82: 414– 425
https://doi.org/10.1016/j.energy.2015.01.052
15 M Ma, W Cai, ( 2019). Do commercial building sector-derived carbon emissions decouple from the economic growth in tertiary industry? A case study of four municipalities in China. Science of the Total Environment, 650( Part 1): 822– 834
https://doi.org/10.1016/j.scitotenv.2018.08.078 pmid: 30308857
16 Z Mi, J Meng, H Zheng, Y Shan, Y M Wei, D Guan, ( 2018). A multi-regional input–output table mapping China’s economic outputs and interdependencies in 2012. Scientific Data, 5( 1): 180155
https://doi.org/10.1038/sdata.2018.155 pmid: 30084849
17 J C Quick, ( 2014). Carbon dioxide emission tallies for 210 US coal-fired power plants: A comparison of two accounting methods. Journal of the Air & Waste Management Association, 64( 1): 73– 79
https://doi.org/10.1080/10962247.2013.833146 pmid: 24620404
18 Y Shan, J Liu, Z Liu, X Xu, S Shao, P Wang, D Guan, ( 2016). New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Applied Energy, 184: 742– 750
https://doi.org/10.1016/j.apenergy.2016.03.073
19 P Tapio, ( 2005). Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transport Policy, 12( 2): 137– 151
https://doi.org/10.1016/j.tranpol.2005.01.001
20 Q Wang, Y Hang, P Zhou, Y Wang, ( 2016). Decoupling and attribution analysis of industrial carbon emissions in Taiwan. Energy, 113: 728– 738
https://doi.org/10.1016/j.energy.2016.07.108
21 X Xi, F Han, Y Xie, L Yang, H Yan, C Luo, L Sun, ( 2021). The key factors influencing the decline of carbon emission intensity in low-carbon cities and countermeasure research: A case of Fuzhou, Jiangxi. IOP Conference Series: Earth and Environmental Science, 769( 2): 022040
https://doi.org/10.1088/1755-1315/769/2/022040
22 I Yousuf, A R Ghumman, H N Hashmi, M A Kamal, ( 2014). Carbon emissions from power sector in Pakistan and opportunities to mitigate those. Renewable & Sustainable Energy Reviews, 34: 71– 77
https://doi.org/10.1016/j.rser.2014.03.003
23 X Zhang, Q Jiang, S I Khattak, M Ahmad, Z U Rahman, ( 2021). Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China. Energy Policy, 155: 112332
https://doi.org/10.1016/j.enpol.2021.112332
24 X Zhang, H Zhang, C Zhao, J Yuan, ( 2019). Carbon emission intensity of electricity generation in Belt and Road Initiative countries: A benchmarking analysis. Environmental Science and Pollution Research International, 26( 15): 15057– 15068
https://doi.org/10.1007/s11356-019-04860-5 pmid: 30919179
25 Y J Zhang, Y B Da, ( 2015). The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renewable & Sustainable Energy Reviews, 41: 1255– 1266
https://doi.org/10.1016/j.rser.2014.09.021
26 Y Zhao, H Li, Z Zhang, Y Zhang, S Wang, Y Liu, ( 2017). Decomposition and scenario analysis of CO2 emissions in China’s power industry: Based on LMDI method. Natural Hazards, 86( 2): 645– 668
https://doi.org/10.1007/s11069-016-2710-5
27 Z Zhou, J Liu, H Zeng, M Xu, S Li, ( 2022). Carbon performance evaluation model from the perspective of circular economy — The case of Chinese thermal power enterprise. Frontiers of Engineering Management, 9( 2): 297– 311
https://doi.org/10.1007/s42524-020-0143-z
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed