Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2016, Vol. 3 Issue (4) : 321-330    https://doi.org/10.15302/J-FEM-2016051
ENGINEERING MANAGEMENT TREATISES
Research Trends in Fischer--Tropsch Catalysis for Coal to Liquids Technology
Emiel J. M. Hensen1(),Peng Wang1,2,Wayne Xu3
1. Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
2. National Institute of Clean-and-Low-Carbon Energy (NICE), Shenhua NICE, Future Science & Technology City, Changping District, Beijing 102211, China
3. National Institute of Clean-and-Low-Carbon Energy (NICE), Shenhua NICE, Future Science & Technology City, Changping District, Beijing 102211, China
 Download: PDF(3501 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fischer–Tropsch Synthesis (FTS) constitutes catalytic technology that converts synthesis gas to synthetic liquid fuels and chemicals. While synthesis gas can be obtained from any carbonaceous feedstock, current industrial FTS operations are almost exclusively based on natural gas. Due to the energy structure of China where cheap coal is abundant, coal to liquids (CTL) technology involving coal gasification, FTS and syncrude upgrading is increasingly being considered as a viable option to convert coal to clean transportation fuels. In this brief paper, we review some pertinent issues about Fe- and Co-based FTS catalysts. Fe is better suited to convert synthesis gas derived from coal gasification into fuels. The authors limit themselves to noting some important trends in the research on Fe-based catalysts. They focus on the preparation of phase-pure carbides and innovative cheap synthesis methods for obtaining active and stable catalysts. These approaches should be augmented by (1) computational investigations that are increasingly able to predict not only mechanism, reaction rates and selectivity but also optimum catalyst composition, as well as (2) characterization of the catalytic materials under conditions close to the operation in real reactors.

Keywords Fischer–Tropsch      FTS      CTL      Fe catalyst      iron carbide      computational modeling     
Corresponding Author(s): Emiel J. M. Hensen   
Issue Date: 27 December 2016
 Cite this article:   
Emiel J. M. Hensen,Peng Wang,Wayne Xu. Research Trends in Fischer--Tropsch Catalysis for Coal to Liquids Technology[J]. Front. Eng, 2016, 3(4): 321-330.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2016051
https://academic.hep.com.cn/fem/EN/Y2016/V3/I4/321
Fig.1  Main conversion pathways from fossil and renewable feedstock to transportation fuels and chemical intermediates, highlighting the direct route from crude oil and the indirect route from other carbonaceous resources involving synthesis gas as a platform. Fischer–Tropsch synthesis is an essential technology to convert synthesis gas to clean transportation fuels (used with permission of Dr. Ivo Filot, Eindhoven University of Technology).
Fig.2  Three basic steps of CTL technology (Jahangiri, Bennett, Mahjoubi, Wilson, & Gua, 2014).
Fig.3  Global coal demand by region (historical and forecast) from IEA, 2015.
Fig.4  Selectivity of transition metals in syngas conversion (colors refer to main reaction products; green: long-chain hydrocarbons; red: methane; blue: methane and ethanol; orange: methanol; white: no activity in syngas conversion).
Component Relative content Function
Fe (Fe3+/Fe2+) 100 Active metal
SiO2/Al2O3/TiO2/ ZrO2 5–30 Improve anti-abrasion
Cu 1–6 Improve reduction
K 1–6 Improve activity, α-value
Mn/Zn/Cr/La/Ti/Zr/V/Ce/Mg/Ca 0.05–40 Adjust dispersion, improve activity
Alkaline earth metal 1–6 Improve activity, α-value
Alkaline metal (except K) 1–6 Improve activity, α-value
Co/Ru 1–10 Improve activity, increase light olefin selectivity with K promoters
Tab.1  Typical Composition of Fe-based FTS Catalysts
Fig.5  Qualitative Interpretation of the ab Initio Atomistic Thermodynamics Study of the Iron Carbide Structures (de Smit et al., 2010).
?Catalyst pretreatment XAFSa (mol %) XRDb (vol %, crystallite size) Raman Fischer–Tropsch Performance
High mC Before
FTS
c-Fe5C2 (76%),
FexC (24%)
c-Fe5C2 (90%, 16 nm)
ε-carbides (10%, 20 nm)
Some graphitic C
After
FTS
c-Fe5C2 (74%),
FexC (12%)
Fe3O4 (14%)
c-Fe5C2 (57%, 15 nm)
ε-carbides (5%, 24 nm)
Fe3O4 (38%, 15 nm)
No significant
increase of
graphitic C
Conversion relatively high and increasing with time-on-stream,C4+ selectivity high, WGS active
Low mC Before FTS c-Fe5C2 +
q-Fe3C (51%),
FexC (49%)
c-Fe5C2 (56%, 18 nm)
q-Fe3C (44% , 15 nm)
Some graphitic C
After FTS c-Fe5C2 (76%) +
q-Fe3C (50%),
FexC (50%)
c-Fe5C2 (61%, 11 nm)
q-Fe3C (39%, 13 nm)
Incremental formation of graphitic C Conversion relatively low, C4+ Selectivity, decreasing with time-on-stream, pCO2 low
Tab.2  Overview of the Physicochemical and Catalytic Properties of the Catalyst Materials before and after 6 h FTS at 10 bar, 250°C (de Smit et al., 2010)
?Catalyst FTY* (mol gFe-1s-1) Catalyst productivity (L kg-1 s-1) Reference
0.6K38-Fe@C 4.38 × 10-4 6.9a This work
Ruhrchemie 4.90 × 10-6 0.1a 38
Fused HTFT (slurry reactor)b - 0.7c 39
Fused HTFT (fluidized reactor)b - 0.2c 39
Tab.3  Productivities of Promoted Fe@C and Commercial Catalysts
Fig.6  Schematic Illustration of the Formation Mechanism of Fe5C2NPs (Yang, Zhao, Hou & Ma, 2012).
Entry Catalyst da (nm) T (K) r0 (molCOmolM h-1)b
1 RQ Fe 8.2 423 16
2 RQ Fe 8.1 443 43
3 RQ Fe 8.3 473 71
4 Crystalline Fe NPs 33.2 443 3.7
5 Fe-Cu-K-Si 8.6 443 4.6
6 RQ Fe-c 8.3 443 10
7 RQ Co 7.3 443 9.8
8 Co-B 9.5 443 7.8
Tab.4  Catalytic Activities in LTFTS
Fig.7  Reaction path analysis for the FT reaction on Ru(11`21) (t = 500 K; p = 20 bar; H2/CO= 2). The nodes represent reactants, surface intermediates, and products, the lines between them the elementary reaction steps and the numbers molar rates (Filot, van Santen, & Hensen, 2014).
Fig.8  (a) CO consumption rate and steady-state surface coverage; (b–e) Simulated kinetic parameters for the FT reaction (Filot, van Santen, & Hensen, 2014).
ASF: Anderson–Schulz–Flory
CTO: Coal to olefins
CTL: Coal to liquid
DFT: Density functional theory
FTS: Fischer–Tropsch synthesis
GHSV: Gas hourly space velocity
GTL: Gas to liquid
HTFT: High temperature Fischer–Tropsch
LTFT: Low temperature Fischer–Tropsch
MOF: metal organic framework
MTO: Methanol to Olefins
NPs: Nanoparticles
RQ Fe: rapidly quenched skeletal iron
TOF: Turn over frequency
TON: Turn over number
TOS: Time on stream
WGS: Water gas shift
a: Chain growth probability
Tab.1  
1 Bahome, M., Jewell, L., Padayachy, K., Hildebrandt, D., Glasser, D., Datye, A.K., & Coville, N.J. (2007). Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer–Tröpsch synthesis. Applied Catalysis A, General, 328, 243–251.
https://doi.org/10.1016/j.apcata.2007.06.018
2 Bedel, L., Roger, A., Rehspringer, J., Zimmermann, Y., & Kiennemann, A. (2005). La(1-y)Co0.4Fe0.6O3-d perovskite oxides as catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 235, 279–294.
https://doi.org/10.1016/j.jcat.2005.07.025
3 Biloen, P., & Sachtler, W.M.H. (1981). Mechanism of hydrocarbon synthesis over Fischer–Tropsch catalysts. Advances in Catalysis, 30, 165–216.
https://doi.org/10.1016/S0360-0564(08)60328-4
4 Brady, R.C., & Pettit, R. (1980). Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer–Tropsch reaction. Journal of the American Chemical Society, 102, 6181–6182.
https://doi.org/10.1021/ja00539a053
5 Calderone, V.R., Shiju, N.R., Ferre, D.C., & Rothenberg, G. (2011). Bimetallic catalysts for the Fischer–Tropsch reaction. Green Chemistry, 13, 1950–1959.
https://doi.org/10.1039/c0gc00919a
6 Cheon, J., Kang, S., Bae, J., Park, S., Jun, K., Dhar, G.M., & Lee, K. (2010). Effect of active component contents to catalytic performance on Fe-Cu-K/ZSM5 Fischer–Tropsch catalyst. Catalysis Letters, 134, 233–241.
https://doi.org/10.1007/s10562-009-0241-3
7 Dalai, A.K., & Davis, B.H. (2008). Fischer–Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts. Applied Catalysis A, General, 348, 1–15.
https://doi.org/10.1016/j.apcata.2008.06.021
8 Davis, B.H., & Occelli, M.L. (2016). Fischer–Tropsch synthesis, catalysts and catalysis: Advances and applications. (No location): CRC Press.
10 de Smit, E., Cinquini, F., Beale, A.M., Safonova, O.V., van Beek, W., Sautet, P., & Weckhuysen, B.M. (2010). Stability and Reactivity of ϵ-c-q Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis: Controlling mC. Journal of the American Chemical Society, 132, 14928–14941.
https://doi.org/10.1021/ja105853q
9 de Smit, E., & Weckhuysen, B.M. (2008). The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chemical Society Reviews, 37, 2758–2781.
https://doi.org/10.1039/b805427d
11 Dry, M. (2004). Studies in surface science and catalysis, Elsevier,152.
12 Dry, M.E., & Oosthuizen, G.J. (1968). The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer–Tropsch synthesis. Journal of Catalysis, 11, 18–24.
https://doi.org/10.1016/0021-9517(68)90004-3
13 Fahim, M.A., Alsahhaf, T.A., & Elkilani, A. (2010). In Fundamentals of Petroleum Refining, M. A. Fahim, T. A. Alsahhaf, & A. Elkilani, (Eds.), Elsevier, Amsterdam, 303–324.
14 Filot, I.A.W., van Santen, R.A., & Hensen, E.J.M. (2014). The optimally performing Fischer–Tropsch catalyst. Angewandte Chemie, 126, 12960–12964.
https://doi.org/10.1002/ange.201406521
15 Filot, I.A.W., van Santen, R.A., & Hensen, E.J.M. (2014). Quantum chemistry of the Fischer–Tropsch reaction catalysed by a stepped ruthenium surface. Catalysis Science & Technology, 4, 3129–3140.
https://doi.org/10.1039/C4CY00483C
16 Filot, I.A.W., Shetty, S.G., Hensen, E.J.M., & van Santen, R.A. (2011). Size and topological effects of rhodium surfaces, clusters and nanoparticles on the dissociation of CO. Journal of Physical Chemistry C, 115, 14204–14212.
https://doi.org/10.1021/jp201783f
17 Gallegos, N.G., Alvarez, A.M., Cagnoli, M.V., Bengoa, J.F., Marchetti, S.G., Mercader, R.C., & Yeramian, A.A. (1996). Selectivity to olefins of Fe/SiO2–MgO catalysts in the Fischer–Tropsch reaction. Journal of Catalysis, 161, 132–142.
https://doi.org/10.1006/jcat.1996.0170
18 Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology, 4, 2210–2229.
https://doi.org/10.1039/C4CY00327F
19 Jin, Y.M., & Datye, A.K. (2000). Phase transformations in iron Fischer–Tropsch catalysts during temperature-programmed reduction. Journal of Catalysis, 196, 8–17.
https://doi.org/10.1006/jcat.2000.3024
20 Kang, J., Cheng, K., Zhang, L., Zhang, Q., Ding, J., Hua, W., Lou, Y., Zhai, Q., & Wang, Y. (2011). Mesoporous Zeolite‐supported ruthenium nanoparticles as highly selective Fischer–Tropsch catalysts for the production of C5–C11 isoparaffins. Angewandte Chemie, 123, 5306–5309. Angewandte Chemie International Edition, 50, 5200–5203.
https://doi.org/10.1002/anie.201101095
21 Khodakov, A.Y., Chu, W., & Fongarland, P. (2007). Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chemical Reviews, 107, 1692–1744.
https://doi.org/10.1021/cr050972v
22 Li, S., Krishnamoorthy, S., Li, A., Meitzner, G.D., & Iglesia, E. (2002). Promoted iron-based catalysts for the Fischer–Tropsch synthesis: design, synthesis, site densities, and catalytic properties. Journal of Catalysis, 206, 202–217.
https://doi.org/10.1006/jcat.2001.3506
23 Li, S., Li, A., Krishnamoorthy, S., & Iglesia, E. (2001). Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts. Catalysis Letters, 77, 197–205.
https://doi.org/10.1023/A:1013284217689
24 Liu, Y., Ersen, O., Meny, C., Luck, F., & Pham-Huu, C. (2014). Fischer–Tropsch reaction on a thermally conductive and reusable silicon carbide support. ChemSusChem, 7, 1218–1239.
https://doi.org/10.1002/cssc.201300921
25 Lohitharn, N., Goodwin, J.G. Jr, & Lotero, E. (2008). Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters. Journal of Catalysis, 255, 104–113.
https://doi.org/10.1016/j.jcat.2008.01.026
26 Martin, G., Larsen, J., & Wender, I. (1982). Coal Science. New York: Academic Press.
27 Mousavi, S., Zamaniyan, A., Irani, M., & Rashidzadeh, M. (2015). Generalized kinetic model for iron and cobalt based Fischer–Tropsch synthesis catalysts: Review and model evaluation. Applied Catalysis A, General, 506, 57–66.
https://doi.org/10.1016/j.apcata.2015.08.020
28 Nakhaei Pour, A., Shahri, S.M.K., Bozorgzadeh, H.R., Zamani, Y., Tavasoli, A., & Marvast, M.A. (2008). Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis. Applied Catalysis A, General, 348, 201–208.
https://doi.org/10.1016/j.apcata.2008.06.045
29 Ngantsoue-Hoc, W., Zhang, Y., O’Brien, R.J., Luo, M., & Davis, B.H. (2002). Fischer–Tropsch synthesis: Activity and selectivity for Group I alkali promoted iron-based catalysts. Applied Catalysis A, General, 236, 77–89.
https://doi.org/10.1016/S0926-860X(02)00278-8
30 Rytter, E., & Holmen, A. (2015). Deactivation and regeneration of commercial type Fischer–Tropsch Co-Catalysts—A mini-review. Applied Catalysis, 5, 478–499.
31 Saib, A.M., Moodley, D.J., Ciobîcă, I.M., Hauman, M.M., Sigwebela, B.H., Weststrate, C.J., Niemantsverdriet, J.W., & van de Loosdrecht, J. (2010). Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catalysis Today, 154, 271–282.
https://doi.org/10.1016/j.cattod.2010.02.008
32 Santos, V., Wezendonk, T., Jaén, J., Dugulan, I., Nasalevich, M., Islam, H.-U., Chojecki, A., Sartipi, S., Sun, X., Hakeem, A.A., Koeken, A.C.J, Ruitenbeek, M., Davidian, T., Meima, G.R., Sankar, G., Kapteijn, F., Makkee, M., & Gascon, J., (2015). Metal organic framework-mediated synthesis of highly active and stable Fischer–Tropsch catalysts. Nature Communications, 6, 6451.
https://doi.org/10.1038/ncomms7451
33 Tao, Z., Yang, Y., Zhang, C., Li, T., Ding, M., Xiang, H., & Li, Y. (2007). Study of manganese promoter on a precipitated iron-based catalyst for Fischer–Tropsch synthesis. Journal of Natural Gas Chemistry, 16, 278–285.
https://doi.org/10.1016/S1003-9953(07)60060-7
34 Tsakoumis, N.E., Ronning, M., Borg, O., Rytter, E., & Holmen, A. (2010). Deactivation of cobalt based Fischer–Tropsch catalysts: A review. Catalysis Today, 154, 162–182
https://doi.org/10.1016/j.cattod.2010.02.077.
35 van Santen, R.A., Ciobîcă, I.M., van Steen, E., & Ghouri, M.M. (2011). Mechanistic Issues in Fischer—Tropsch Catalysis. Advances in Catalysis, 54, 127–187
https://doi.org/10.1016/B978-0-12-387772-7.00003-4.
36 van Santen, R.A., Markvoort, A.J., Filot, I.A.W., Ghouri, M.M., & Hensen, E.J.M. (2013). Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 15, 17038–17063.
https://doi.org/10.1039/c3cp52506f
37 Vannice, M.A. (1975). The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: II. The kinetics of the methanation reaction over supported metals. Journal of Catalysis, 37, 449–461.
https://doi.org/10.1016/0021-9517(75)90181-5
38 Xu, K., Sun, B., Lin, J., Wen, W., Pei, Y., Yan, S., Qiao, M., Zhang, X., & Zong, B. (2014). e-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst. Nature Communications, 5, 5783.
https://doi.org/10.1038/ncomms6783
39 Yang, C., Zhao, H., Hou, Y., & Ma, D. (2012). Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. Journal of the American Chemical Society, 134, 15814–15821.
https://doi.org/10.1021/ja305048p
40 Yang, Y., Xiang, H., Xu, Y., Bai, L., & Li, Y. (2004). Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis. Applied Catalysis A, General, 266, 181–194.
https://doi.org/10.1016/j.apcata.2004.02.018
41 Zhang, Q.H., Kang, J.C., & Wang, Y. (2010). Development of novel catalysts for Fischer–Tropsch synthesis: Tuning the product selectivity. ChemCatChem, 2, 1030–1058.
https://doi.org/10.1002/cctc.201000071
1 Bahome, M., Jewell, L., Padayachy, K., Hildebrandt, D., Glasser, D., Datye, A.K., & Coville, N.J. (2007). Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer–Tröpsch synthesis. Applied Catalysis A, General, 328, 243–251.
https://doi.org/10.1016/j.apcata.2007.06.018
2 Bedel, L., Roger, A., Rehspringer, J., Zimmermann, Y., & Kiennemann, A. (2005). La(1-y)Co0.4Fe0.6O3-d perovskite oxides as catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 235, 279–294.
https://doi.org/10.1016/j.jcat.2005.07.025
3 Biloen, P., & Sachtler, W.M.H. (1981). Mechanism of hydrocarbon synthesis over Fischer–Tropsch catalysts. Advances in Catalysis, 30, 165–216.
https://doi.org/10.1016/S0360-0564(08)60328-4
4 Brady, R.C., & Pettit, R. (1980). Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer–Tropsch reaction. Journal of the American Chemical Society, 102, 6181–6182.
https://doi.org/10.1021/ja00539a053
5 Calderone, V.R., Shiju, N.R., Ferre, D.C., & Rothenberg, G. (2011). Bimetallic catalysts for the Fischer–Tropsch reaction. Green Chemistry, 13, 1950–1959.
https://doi.org/10.1039/c0gc00919a
6 Cheon, J., Kang, S., Bae, J., Park, S., Jun, K., Dhar, G.M., & Lee, K. (2010). Effect of active component contents to catalytic performance on Fe-Cu-K/ZSM5 Fischer–Tropsch catalyst. Catalysis Letters, 134, 233–241.
https://doi.org/10.1007/s10562-009-0241-3
7 Dalai, A.K., & Davis, B.H. (2008). Fischer–Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts. Applied Catalysis A, General, 348, 1–15.
https://doi.org/10.1016/j.apcata.2008.06.021
8 Davis, B.H., & Occelli, M.L. (2016). Fischer–Tropsch synthesis, catalysts and catalysis: Advances and applications. (No location):CRC Press.
9 de Smit, E., & Weckhuysen, B.M. (2008). The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chemical Society Reviews, 37, 2758–2781.
https://doi.org/10.1039/b805427d
10 de Smit, E., Cinquini, F., Beale, A.M., Safonova, O.V., van Beek, W., Sautet, P., & Weckhuysen, B.M. (2010). Stability and Reactivity of ϵ-c-q Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis: Controlling mC. Journal of the American Chemical Society, 132, 14928–14941.
https://doi.org/10.1021/ja105853q
11 Dry, M. (2004). Studies in surface science and catalysis, Elsevier,152.
12 Dry, M.E., & Oosthuizen, G.J. (1968). The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer–Tropsch synthesis. Journal of Catalysis, 11, 18–24.
https://doi.org/10.1016/0021-9517(68)90004-3
13 Fahim, M.A., Alsahhaf, T.A., & Elkilani, A. (2010). In Fundamentals of Petroleum Refining, M. A. Fahim, T. A. Alsahhaf, & A. Elkilani, (Eds.), Elsevier, Amsterdam, 303–324.
14 Filot, I.A.W., van Santen, R.A., & Hensen, E.J.M. (2014). The optimally performing Fischer–Tropsch catalyst. Angewandte Chemie, 126, 12960–12964.
https://doi.org/10.1002/ange.201406521
15 Filot, I.A.W., van Santen, R.A., & Hensen, E.J.M. (2014). Quantum chemistry of the Fischer–Tropsch reaction catalysed by a stepped ruthenium surface. Catalysis Science & Technology, 4, 3129–3140.
https://doi.org/10.1039/C4CY00483C
16 Filot, I.A.W., Shetty, S.G., Hensen, E.J.M., & van Santen, R.A. (2011). Size and topological effects of rhodium surfaces, clusters and nanoparticles on the dissociation of CO. Journal of Physical Chemistry C, 115, 14204–14212.
https://doi.org/10.1021/jp201783f
17 Gallegos, N.G., Alvarez, A.M., Cagnoli, M.V., Bengoa, J.F., Marchetti, S.G., Mercader, R.C., & Yeramian, A.A. (1996). Selectivity to olefins of Fe/SiO2–MgO catalysts in the Fischer–Tropsch reaction. Journal of Catalysis, 161, 132–142.
https://doi.org/10.1006/jcat.1996.0170
18 Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology, 4, 2210–2229.
https://doi.org/10.1039/C4CY00327F
19 Jin, Y.M., & Datye, A.K. (2000). Phase Transformations in Iron Fischer–Tropsch Catalysts during Temperature-Programmed Reduction. Journal of Catalysis, 196, 8–17.
https://doi.org/10.1006/jcat.2000.3024
20 Kang, J., Cheng, K., Zhang, L., Zhang, Q., Ding, J., Hua, W., Lou, Y., Zhai, Q., & Wang, Y. (2011). Mesoporous Zeolite‐supported ruthenium nanoparticles as highly selective Fischer–Tropsch catalysts for the production of C5–C11 isoparaffins. Angewandte Chemie, 123, 5306–5309. Angewandte Chemie International Edition, 50, 5200–5203.
https://doi.org/10.1002/anie.201101095
21 Khodakov, A.Y., Chu, W., & Fongarland, P. (2007). Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chemical Reviews, 107, 1692–1744.
https://doi.org/10.1021/cr050972v
22 Li, S., Krishnamoorthy, S., Li, A., Meitzner, G.D., & Iglesia, E. (2002). Promoted iron-based catalysts for the Fischer–Tropsch synthesis: design, synthesis, site densities, and catalytic properties. Journal of Catalysis, 206, 202–217.
https://doi.org/10.1006/jcat.2001.3506
23 Li, S., Li, A., Krishnamoorthy, S., & Iglesia, E. (2001). Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts. Catalysis Letters, 77, 197–205.
https://doi.org/10.1023/A:1013284217689
24 Liu, Y., Ersen, O., Meny, C., Luck, F., & Pham-Huu, C. (2014). Fischer–Tropsch reaction on a thermally conductive and reusable silicon carbide support. ChemSusChem, 7, 1218–1239.
https://doi.org/10.1002/cssc.201300921
25 Lohitharn, N., Goodwin, J.G. Jr, & Lotero, E. (2008). Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters. Journal of Catalysis, 255, 104–113.
https://doi.org/10.1016/j.jcat.2008.01.026
26 Martin, G., Larsen, J., & Wender, I. (1982). Coal Science. New York: Academic Press.
27 Mousavi, S., Zamaniyan, A., Irani, M., & Rashidzadeh, M. (2015). Generalized kinetic model for iron and cobalt based Fischer–Tropsch synthesis catalysts: Review and model evaluation. Applied Catalysis A, General, 506, 57–66.
https://doi.org/10.1016/j.apcata.2015.08.020
28 Nakhaei Pour, A., Shahri, S.M.K., Bozorgzadeh, H.R., Zamani, Y., Tavasoli, A., & Marvast, M.A. (2008). Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis. Applied Catalysis A, General, 348, 201–208.
https://doi.org/10.1016/j.apcata.2008.06.045
29 Ngantsoue-Hoc, W., Zhang, Y., O’Brien, R.J., Luo, M., & Davis, B.H. (2002). Fischer–Tropsch synthesis: Activity and selectivity for Group I alkali promoted iron-based catalysts. Applied Catalysis A, General, 236, 77–89.
https://doi.org/10.1016/S0926-860X(02)00278-8
30 Rytter, E., & Holmen, A. (2015). Deactivation and regeneration of commercial type Fischer–Tropsch Co-Catalysts—A mini-review. Applied Catalysis, 5, 478–499.
31 Saib, A.M., Moodley, D.J., Ciobîcă, I.M., Hauman, M.M., Sigwebela, B.H., Weststrate, C.J., Niemantsverdriet, J.W., & van de Loosdrecht, J. (2010). Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catalysis Today, 154, 271–282.
https://doi.org/10.1016/j.cattod.2010.02.008
32 Santos, V., Wezendonk, T., Jaén, J., Dugulan, I., Nasalevich, M., Islam, H.-U., Chojecki, A., Sartipi, S., Sun, X., Hakeem, A.A., (2015). Metal organic framework-mediated synthesis of highly active and stable Fischer–Tropsch catalysts. Nature Communications, 6, 6451.
https://doi.org/10.1038/ncomms7451
33 Tao, Z., Yang, Y., Zhang, C., Li, T., Ding, M., Xiang, H., & Li, Y. (2007). Study of manganese promoter on a precipitated iron-based catalyst for Fischer–Tropsch synthesis. Journal of Natural Gas Chemistry, 16, 278–285.
https://doi.org/10.1016/S1003-9953(07)60060-7
34 Tsakoumis, N.E., Ronning, M., Borg, O., Rytter, E., & Holmen, A. (2010). Deactivation of cobalt based Fischer–Tropsch catalysts: A review. Catalysis Today, 154, 162–182doi:10.1016/j.cattod.2010.02.077.
35 van Santen, R.A., Ciobîcă, I.M., van Steen, E., & Ghouri, M.M. (2011). Mechanistic Issues in Fischer—Tropsch Catalysis. Advances in Catalysis, 54, 127–187doi:10.1016/B978-0-12-387772-7.00003-4.
36 van Santen, R.A., Markvoort, A.J., Filot, I.A.W., Ghouri, M.M., & Hensen, E.J.M. (2013). Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 15, 17038–17063.
https://doi.org/10.1039/c3cp52506f
37 Vannice, M.A. (1975). The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: II. The kinetics of the methanation reaction over supported metals. Journal of Catalysis, 37, 449–461.
https://doi.org/10.1016/0021-9517(75)90181-5
38 Xu, K., Sun, B., Lin, J., Wen, W., Pei, Y., Yan, S., Qiao, M., Zhang, X., & Zong, B. (2014). e-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst. Nature Communications, 5, 5783.
https://doi.org/10.1038/ncomms6783
39 Yang, C., Zhao, H., Hou, Y., & Ma, D. (2012). Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. Journal of the American Chemical Society, 134, 15814–15821.
https://doi.org/10.1021/ja305048p
40 Yang, Y., Xiang, H., Xu, Y., Bai, L., & Li, Y. (2004). Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis. Applied Catalysis A, General, 266, 181–194.
https://doi.org/10.1016/j.apcata.2004.02.018
41 Zhang, Q.H., Kang, J.C., & Wang, Y. (2010). Development of novel catalysts for Fischer–Tropsch synthesis: Tuning the product selectivity. ChemCatChem, 2, 1030–1058.
https://doi.org/10.1002/cctc.201000071
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed