ENGINEERING MANAGEMENT TREATISES |
|
|
|
Research Trends in Fischer--Tropsch Catalysis for Coal to Liquids Technology |
Emiel J. M. Hensen1( ),Peng Wang1,2,Wayne Xu3 |
1. Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands 2. National Institute of Clean-and-Low-Carbon Energy (NICE), Shenhua NICE, Future Science & Technology City, Changping District, Beijing 102211, China 3. National Institute of Clean-and-Low-Carbon Energy (NICE), Shenhua NICE, Future Science & Technology City, Changping District, Beijing 102211, China |
|
|
Abstract Fischer–Tropsch Synthesis (FTS) constitutes catalytic technology that converts synthesis gas to synthetic liquid fuels and chemicals. While synthesis gas can be obtained from any carbonaceous feedstock, current industrial FTS operations are almost exclusively based on natural gas. Due to the energy structure of China where cheap coal is abundant, coal to liquids (CTL) technology involving coal gasification, FTS and syncrude upgrading is increasingly being considered as a viable option to convert coal to clean transportation fuels. In this brief paper, we review some pertinent issues about Fe- and Co-based FTS catalysts. Fe is better suited to convert synthesis gas derived from coal gasification into fuels. The authors limit themselves to noting some important trends in the research on Fe-based catalysts. They focus on the preparation of phase-pure carbides and innovative cheap synthesis methods for obtaining active and stable catalysts. These approaches should be augmented by (1) computational investigations that are increasingly able to predict not only mechanism, reaction rates and selectivity but also optimum catalyst composition, as well as (2) characterization of the catalytic materials under conditions close to the operation in real reactors.
|
Keywords
Fischer–Tropsch
FTS
CTL
Fe catalyst
iron carbide
computational modeling
|
Corresponding Author(s):
Emiel J. M. Hensen
|
Issue Date: 27 December 2016
|
|
1 |
Bahome, M., Jewell, L., Padayachy, K., Hildebrandt, D., Glasser, D., Datye, A.K., & Coville, N.J. (2007). Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer–Tröpsch synthesis. Applied Catalysis A, General, 328, 243–251.
https://doi.org/10.1016/j.apcata.2007.06.018
|
2 |
Bedel, L., Roger, A., Rehspringer, J., Zimmermann, Y., & Kiennemann, A. (2005). La(1-y)Co0.4Fe0.6O3-d perovskite oxides as catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 235, 279–294.
https://doi.org/10.1016/j.jcat.2005.07.025
|
3 |
Biloen, P., & Sachtler, W.M.H. (1981). Mechanism of hydrocarbon synthesis over Fischer–Tropsch catalysts. Advances in Catalysis, 30, 165–216.
https://doi.org/10.1016/S0360-0564(08)60328-4
|
4 |
Brady, R.C., & Pettit, R. (1980). Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer–Tropsch reaction. Journal of the American Chemical Society, 102, 6181–6182.
https://doi.org/10.1021/ja00539a053
|
5 |
Calderone, V.R., Shiju, N.R., Ferre, D.C., & Rothenberg, G. (2011). Bimetallic catalysts for the Fischer–Tropsch reaction. Green Chemistry, 13, 1950–1959.
https://doi.org/10.1039/c0gc00919a
|
6 |
Cheon, J., Kang, S., Bae, J., Park, S., Jun, K., Dhar, G.M., & Lee, K. (2010). Effect of active component contents to catalytic performance on Fe-Cu-K/ZSM5 Fischer–Tropsch catalyst. Catalysis Letters, 134, 233–241.
https://doi.org/10.1007/s10562-009-0241-3
|
7 |
Dalai, A.K., & Davis, B.H. (2008). Fischer–Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts. Applied Catalysis A, General, 348, 1–15.
https://doi.org/10.1016/j.apcata.2008.06.021
|
8 |
Davis, B.H., & Occelli, M.L. (2016). Fischer–Tropsch synthesis, catalysts and catalysis: Advances and applications. (No location): CRC Press.
|
10 |
de Smit, E., Cinquini, F., Beale, A.M., Safonova, O.V., van Beek, W., Sautet, P., & Weckhuysen, B.M. (2010). Stability and Reactivity of ϵ-c-q Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis: Controlling mC. Journal of the American Chemical Society, 132, 14928–14941.
https://doi.org/10.1021/ja105853q
|
9 |
de Smit, E., & Weckhuysen, B.M. (2008). The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chemical Society Reviews, 37, 2758–2781.
https://doi.org/10.1039/b805427d
|
11 |
Dry, M. (2004). Studies in surface science and catalysis, Elsevier,152.
|
12 |
Dry, M.E., & Oosthuizen, G.J. (1968). The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer–Tropsch synthesis. Journal of Catalysis, 11, 18–24.
https://doi.org/10.1016/0021-9517(68)90004-3
|
13 |
Fahim, M.A., Alsahhaf, T.A., & Elkilani, A. (2010). In Fundamentals of Petroleum Refining, M. A. Fahim, T. A. Alsahhaf, & A. Elkilani, (Eds.), Elsevier, Amsterdam, 303–324.
|
14 |
Filot, I.A.W., van Santen, R.A., & Hensen, E.J.M. (2014). The optimally performing Fischer–Tropsch catalyst. Angewandte Chemie, 126, 12960–12964.
https://doi.org/10.1002/ange.201406521
|
15 |
Filot, I.A.W., van Santen, R.A., & Hensen, E.J.M. (2014). Quantum chemistry of the Fischer–Tropsch reaction catalysed by a stepped ruthenium surface. Catalysis Science & Technology, 4, 3129–3140.
https://doi.org/10.1039/C4CY00483C
|
16 |
Filot, I.A.W., Shetty, S.G., Hensen, E.J.M., & van Santen, R.A. (2011). Size and topological effects of rhodium surfaces, clusters and nanoparticles on the dissociation of CO. Journal of Physical Chemistry C, 115, 14204–14212.
https://doi.org/10.1021/jp201783f
|
17 |
Gallegos, N.G., Alvarez, A.M., Cagnoli, M.V., Bengoa, J.F., Marchetti, S.G., Mercader, R.C., & Yeramian, A.A. (1996). Selectivity to olefins of Fe/SiO2–MgO catalysts in the Fischer–Tropsch reaction. Journal of Catalysis, 161, 132–142.
https://doi.org/10.1006/jcat.1996.0170
|
18 |
Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology, 4, 2210–2229.
https://doi.org/10.1039/C4CY00327F
|
19 |
Jin, Y.M., & Datye, A.K. (2000). Phase transformations in iron Fischer–Tropsch catalysts during temperature-programmed reduction. Journal of Catalysis, 196, 8–17.
https://doi.org/10.1006/jcat.2000.3024
|
20 |
Kang, J., Cheng, K., Zhang, L., Zhang, Q., Ding, J., Hua, W., Lou, Y., Zhai, Q., & Wang, Y. (2011). Mesoporous Zeolite‐supported ruthenium nanoparticles as highly selective Fischer–Tropsch catalysts for the production of C5–C11 isoparaffins. Angewandte Chemie, 123, 5306–5309. Angewandte Chemie International Edition, 50, 5200–5203.
https://doi.org/10.1002/anie.201101095
|
21 |
Khodakov, A.Y., Chu, W., & Fongarland, P. (2007). Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chemical Reviews, 107, 1692–1744.
https://doi.org/10.1021/cr050972v
|
22 |
Li, S., Krishnamoorthy, S., Li, A., Meitzner, G.D., & Iglesia, E. (2002). Promoted iron-based catalysts for the Fischer–Tropsch synthesis: design, synthesis, site densities, and catalytic properties. Journal of Catalysis, 206, 202–217.
https://doi.org/10.1006/jcat.2001.3506
|
23 |
Li, S., Li, A., Krishnamoorthy, S., & Iglesia, E. (2001). Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts. Catalysis Letters, 77, 197–205.
https://doi.org/10.1023/A:1013284217689
|
24 |
Liu, Y., Ersen, O., Meny, C., Luck, F., & Pham-Huu, C. (2014). Fischer–Tropsch reaction on a thermally conductive and reusable silicon carbide support. ChemSusChem, 7, 1218–1239.
https://doi.org/10.1002/cssc.201300921
|
25 |
Lohitharn, N., Goodwin, J.G. Jr, & Lotero, E. (2008). Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters. Journal of Catalysis, 255, 104–113.
https://doi.org/10.1016/j.jcat.2008.01.026
|
26 |
Martin, G., Larsen, J., & Wender, I. (1982). Coal Science. New York: Academic Press.
|
27 |
Mousavi, S., Zamaniyan, A., Irani, M., & Rashidzadeh, M. (2015). Generalized kinetic model for iron and cobalt based Fischer–Tropsch synthesis catalysts: Review and model evaluation. Applied Catalysis A, General, 506, 57–66.
https://doi.org/10.1016/j.apcata.2015.08.020
|
28 |
Nakhaei Pour, A., Shahri, S.M.K., Bozorgzadeh, H.R., Zamani, Y., Tavasoli, A., & Marvast, M.A. (2008). Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis. Applied Catalysis A, General, 348, 201–208.
https://doi.org/10.1016/j.apcata.2008.06.045
|
29 |
Ngantsoue-Hoc, W., Zhang, Y., O’Brien, R.J., Luo, M., & Davis, B.H. (2002). Fischer–Tropsch synthesis: Activity and selectivity for Group I alkali promoted iron-based catalysts. Applied Catalysis A, General, 236, 77–89.
https://doi.org/10.1016/S0926-860X(02)00278-8
|
30 |
Rytter, E., & Holmen, A. (2015). Deactivation and regeneration of commercial type Fischer–Tropsch Co-Catalysts—A mini-review. Applied Catalysis, 5, 478–499.
|
31 |
Saib, A.M., Moodley, D.J., Ciobîcă, I.M., Hauman, M.M., Sigwebela, B.H., Weststrate, C.J., Niemantsverdriet, J.W., & van de Loosdrecht, J. (2010). Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catalysis Today, 154, 271–282.
https://doi.org/10.1016/j.cattod.2010.02.008
|
32 |
Santos, V., Wezendonk, T., Jaén, J., Dugulan, I., Nasalevich, M., Islam, H.-U., Chojecki, A., Sartipi, S., Sun, X., Hakeem, A.A., Koeken, A.C.J, Ruitenbeek, M., Davidian, T., Meima, G.R., Sankar, G., Kapteijn, F., Makkee, M., & Gascon, J., (2015). Metal organic framework-mediated synthesis of highly active and stable Fischer–Tropsch catalysts. Nature Communications, 6, 6451.
https://doi.org/10.1038/ncomms7451
|
33 |
Tao, Z., Yang, Y., Zhang, C., Li, T., Ding, M., Xiang, H., & Li, Y. (2007). Study of manganese promoter on a precipitated iron-based catalyst for Fischer–Tropsch synthesis. Journal of Natural Gas Chemistry, 16, 278–285.
https://doi.org/10.1016/S1003-9953(07)60060-7
|
34 |
Tsakoumis, N.E., Ronning, M., Borg, O., Rytter, E., & Holmen, A. (2010). Deactivation of cobalt based Fischer–Tropsch catalysts: A review. Catalysis Today, 154, 162–182
https://doi.org/10.1016/j.cattod.2010.02.077.
|
35 |
van Santen, R.A., Ciobîcă, I.M., van Steen, E., & Ghouri, M.M. (2011). Mechanistic Issues in Fischer—Tropsch Catalysis. Advances in Catalysis, 54, 127–187
https://doi.org/10.1016/B978-0-12-387772-7.00003-4.
|
36 |
van Santen, R.A., Markvoort, A.J., Filot, I.A.W., Ghouri, M.M., & Hensen, E.J.M. (2013). Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 15, 17038–17063.
https://doi.org/10.1039/c3cp52506f
|
37 |
Vannice, M.A. (1975). The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: II. The kinetics of the methanation reaction over supported metals. Journal of Catalysis, 37, 449–461.
https://doi.org/10.1016/0021-9517(75)90181-5
|
38 |
Xu, K., Sun, B., Lin, J., Wen, W., Pei, Y., Yan, S., Qiao, M., Zhang, X., & Zong, B. (2014). e-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst. Nature Communications, 5, 5783.
https://doi.org/10.1038/ncomms6783
|
39 |
Yang, C., Zhao, H., Hou, Y., & Ma, D. (2012). Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. Journal of the American Chemical Society, 134, 15814–15821.
https://doi.org/10.1021/ja305048p
|
40 |
Yang, Y., Xiang, H., Xu, Y., Bai, L., & Li, Y. (2004). Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis. Applied Catalysis A, General, 266, 181–194.
https://doi.org/10.1016/j.apcata.2004.02.018
|
41 |
Zhang, Q.H., Kang, J.C., & Wang, Y. (2010). Development of novel catalysts for Fischer–Tropsch synthesis: Tuning the product selectivity. ChemCatChem, 2, 1030–1058.
https://doi.org/10.1002/cctc.201000071
|
1 |
Bahome, M., Jewell, L., Padayachy, K., Hildebrandt, D., Glasser, D., Datye, A.K., & Coville, N.J. (2007). Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer–Tröpsch synthesis. Applied Catalysis A, General, 328, 243–251.
https://doi.org/10.1016/j.apcata.2007.06.018
|
2 |
Bedel, L., Roger, A., Rehspringer, J., Zimmermann, Y., & Kiennemann, A. (2005). La(1-y)Co0.4Fe0.6O3-d perovskite oxides as catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 235, 279–294.
https://doi.org/10.1016/j.jcat.2005.07.025
|
3 |
Biloen, P., & Sachtler, W.M.H. (1981). Mechanism of hydrocarbon synthesis over Fischer–Tropsch catalysts. Advances in Catalysis, 30, 165–216.
https://doi.org/10.1016/S0360-0564(08)60328-4
|
4 |
Brady, R.C., & Pettit, R. (1980). Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer–Tropsch reaction. Journal of the American Chemical Society, 102, 6181–6182.
https://doi.org/10.1021/ja00539a053
|
5 |
Calderone, V.R., Shiju, N.R., Ferre, D.C., & Rothenberg, G. (2011). Bimetallic catalysts for the Fischer–Tropsch reaction. Green Chemistry, 13, 1950–1959.
https://doi.org/10.1039/c0gc00919a
|
6 |
Cheon, J., Kang, S., Bae, J., Park, S., Jun, K., Dhar, G.M., & Lee, K. (2010). Effect of active component contents to catalytic performance on Fe-Cu-K/ZSM5 Fischer–Tropsch catalyst. Catalysis Letters, 134, 233–241.
https://doi.org/10.1007/s10562-009-0241-3
|
7 |
Dalai, A.K., & Davis, B.H. (2008). Fischer–Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts. Applied Catalysis A, General, 348, 1–15.
https://doi.org/10.1016/j.apcata.2008.06.021
|
8 |
Davis, B.H., & Occelli, M.L. (2016). Fischer–Tropsch synthesis, catalysts and catalysis: Advances and applications. (No location):CRC Press.
|
9 |
de Smit, E., & Weckhuysen, B.M. (2008). The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chemical Society Reviews, 37, 2758–2781.
https://doi.org/10.1039/b805427d
|
10 |
de Smit, E., Cinquini, F., Beale, A.M., Safonova, O.V., van Beek, W., Sautet, P., & Weckhuysen, B.M. (2010). Stability and Reactivity of ϵ-c-q Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis: Controlling mC. Journal of the American Chemical Society, 132, 14928–14941.
https://doi.org/10.1021/ja105853q
|
11 |
Dry, M. (2004). Studies in surface science and catalysis, Elsevier,152.
|
12 |
Dry, M.E., & Oosthuizen, G.J. (1968). The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer–Tropsch synthesis. Journal of Catalysis, 11, 18–24.
https://doi.org/10.1016/0021-9517(68)90004-3
|
13 |
Fahim, M.A., Alsahhaf, T.A., & Elkilani, A. (2010). In Fundamentals of Petroleum Refining, M. A. Fahim, T. A. Alsahhaf, & A. Elkilani, (Eds.), Elsevier, Amsterdam, 303–324.
|
14 |
Filot, I.A.W., van Santen, R.A., & Hensen, E.J.M. (2014). The optimally performing Fischer–Tropsch catalyst. Angewandte Chemie, 126, 12960–12964.
https://doi.org/10.1002/ange.201406521
|
15 |
Filot, I.A.W., van Santen, R.A., & Hensen, E.J.M. (2014). Quantum chemistry of the Fischer–Tropsch reaction catalysed by a stepped ruthenium surface. Catalysis Science & Technology, 4, 3129–3140.
https://doi.org/10.1039/C4CY00483C
|
16 |
Filot, I.A.W., Shetty, S.G., Hensen, E.J.M., & van Santen, R.A. (2011). Size and topological effects of rhodium surfaces, clusters and nanoparticles on the dissociation of CO. Journal of Physical Chemistry C, 115, 14204–14212.
https://doi.org/10.1021/jp201783f
|
17 |
Gallegos, N.G., Alvarez, A.M., Cagnoli, M.V., Bengoa, J.F., Marchetti, S.G., Mercader, R.C., & Yeramian, A.A. (1996). Selectivity to olefins of Fe/SiO2–MgO catalysts in the Fischer–Tropsch reaction. Journal of Catalysis, 161, 132–142.
https://doi.org/10.1006/jcat.1996.0170
|
18 |
Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology, 4, 2210–2229.
https://doi.org/10.1039/C4CY00327F
|
19 |
Jin, Y.M., & Datye, A.K. (2000). Phase Transformations in Iron Fischer–Tropsch Catalysts during Temperature-Programmed Reduction. Journal of Catalysis, 196, 8–17.
https://doi.org/10.1006/jcat.2000.3024
|
20 |
Kang, J., Cheng, K., Zhang, L., Zhang, Q., Ding, J., Hua, W., Lou, Y., Zhai, Q., & Wang, Y. (2011). Mesoporous Zeolite‐supported ruthenium nanoparticles as highly selective Fischer–Tropsch catalysts for the production of C5–C11 isoparaffins. Angewandte Chemie, 123, 5306–5309. Angewandte Chemie International Edition, 50, 5200–5203.
https://doi.org/10.1002/anie.201101095
|
21 |
Khodakov, A.Y., Chu, W., & Fongarland, P. (2007). Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chemical Reviews, 107, 1692–1744.
https://doi.org/10.1021/cr050972v
|
22 |
Li, S., Krishnamoorthy, S., Li, A., Meitzner, G.D., & Iglesia, E. (2002). Promoted iron-based catalysts for the Fischer–Tropsch synthesis: design, synthesis, site densities, and catalytic properties. Journal of Catalysis, 206, 202–217.
https://doi.org/10.1006/jcat.2001.3506
|
23 |
Li, S., Li, A., Krishnamoorthy, S., & Iglesia, E. (2001). Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts. Catalysis Letters, 77, 197–205.
https://doi.org/10.1023/A:1013284217689
|
24 |
Liu, Y., Ersen, O., Meny, C., Luck, F., & Pham-Huu, C. (2014). Fischer–Tropsch reaction on a thermally conductive and reusable silicon carbide support. ChemSusChem, 7, 1218–1239.
https://doi.org/10.1002/cssc.201300921
|
25 |
Lohitharn, N., Goodwin, J.G. Jr, & Lotero, E. (2008). Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters. Journal of Catalysis, 255, 104–113.
https://doi.org/10.1016/j.jcat.2008.01.026
|
26 |
Martin, G., Larsen, J., & Wender, I. (1982). Coal Science. New York: Academic Press.
|
27 |
Mousavi, S., Zamaniyan, A., Irani, M., & Rashidzadeh, M. (2015). Generalized kinetic model for iron and cobalt based Fischer–Tropsch synthesis catalysts: Review and model evaluation. Applied Catalysis A, General, 506, 57–66.
https://doi.org/10.1016/j.apcata.2015.08.020
|
28 |
Nakhaei Pour, A., Shahri, S.M.K., Bozorgzadeh, H.R., Zamani, Y., Tavasoli, A., & Marvast, M.A. (2008). Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis. Applied Catalysis A, General, 348, 201–208.
https://doi.org/10.1016/j.apcata.2008.06.045
|
29 |
Ngantsoue-Hoc, W., Zhang, Y., O’Brien, R.J., Luo, M., & Davis, B.H. (2002). Fischer–Tropsch synthesis: Activity and selectivity for Group I alkali promoted iron-based catalysts. Applied Catalysis A, General, 236, 77–89.
https://doi.org/10.1016/S0926-860X(02)00278-8
|
30 |
Rytter, E., & Holmen, A. (2015). Deactivation and regeneration of commercial type Fischer–Tropsch Co-Catalysts—A mini-review. Applied Catalysis, 5, 478–499.
|
31 |
Saib, A.M., Moodley, D.J., Ciobîcă, I.M., Hauman, M.M., Sigwebela, B.H., Weststrate, C.J., Niemantsverdriet, J.W., & van de Loosdrecht, J. (2010). Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catalysis Today, 154, 271–282.
https://doi.org/10.1016/j.cattod.2010.02.008
|
32 |
Santos, V., Wezendonk, T., Jaén, J., Dugulan, I., Nasalevich, M., Islam, H.-U., Chojecki, A., Sartipi, S., Sun, X., Hakeem, A.A., (2015). Metal organic framework-mediated synthesis of highly active and stable Fischer–Tropsch catalysts. Nature Communications, 6, 6451.
https://doi.org/10.1038/ncomms7451
|
33 |
Tao, Z., Yang, Y., Zhang, C., Li, T., Ding, M., Xiang, H., & Li, Y. (2007). Study of manganese promoter on a precipitated iron-based catalyst for Fischer–Tropsch synthesis. Journal of Natural Gas Chemistry, 16, 278–285.
https://doi.org/10.1016/S1003-9953(07)60060-7
|
34 |
Tsakoumis, N.E., Ronning, M., Borg, O., Rytter, E., & Holmen, A. (2010). Deactivation of cobalt based Fischer–Tropsch catalysts: A review. Catalysis Today, 154, 162–182doi:10.1016/j.cattod.2010.02.077.
|
35 |
van Santen, R.A., Ciobîcă, I.M., van Steen, E., & Ghouri, M.M. (2011). Mechanistic Issues in Fischer—Tropsch Catalysis. Advances in Catalysis, 54, 127–187doi:10.1016/B978-0-12-387772-7.00003-4.
|
36 |
van Santen, R.A., Markvoort, A.J., Filot, I.A.W., Ghouri, M.M., & Hensen, E.J.M. (2013). Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 15, 17038–17063.
https://doi.org/10.1039/c3cp52506f
|
37 |
Vannice, M.A. (1975). The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: II. The kinetics of the methanation reaction over supported metals. Journal of Catalysis, 37, 449–461.
https://doi.org/10.1016/0021-9517(75)90181-5
|
38 |
Xu, K., Sun, B., Lin, J., Wen, W., Pei, Y., Yan, S., Qiao, M., Zhang, X., & Zong, B. (2014). e-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst. Nature Communications, 5, 5783.
https://doi.org/10.1038/ncomms6783
|
39 |
Yang, C., Zhao, H., Hou, Y., & Ma, D. (2012). Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. Journal of the American Chemical Society, 134, 15814–15821.
https://doi.org/10.1021/ja305048p
|
40 |
Yang, Y., Xiang, H., Xu, Y., Bai, L., & Li, Y. (2004). Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis. Applied Catalysis A, General, 266, 181–194.
https://doi.org/10.1016/j.apcata.2004.02.018
|
41 |
Zhang, Q.H., Kang, J.C., & Wang, Y. (2010). Development of novel catalysts for Fischer–Tropsch synthesis: Tuning the product selectivity. ChemCatChem, 2, 1030–1058.
https://doi.org/10.1002/cctc.201000071
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|