Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2017, Vol. 4 Issue (2) : 171-183    https://doi.org/10.15302/J-FEM-2017029
RESEARCH ARTICLE
Impact of household transitions on domestic energy consumption and its applicability to urban energy planning
Benachir MEDJDOUB(), Moulay Larbi CHALAL
The School of Architecture, Design, and The Built Environment, Nottingham Trent University, Nottingham, NG1 4BU, UK
 Download: PDF(2081 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The household sector consumes roughly 30% of Earth’s energy resources and emits approximately 17% of its carbon dioxide. As such, developing appropriate policies to reduce the CO2 emissions, which are associated with the world’s rapidly growing urban population, is a high priority. This, in turn, will enable the creation of cities that respect the natural environment and the well-being of future generations. However, most of the existing expertise focuses on enhancing the thermal quality of buildings through building physics while few studies address the social and behavioral aspects. In fact, focusing on these aspects should be more prominent, as they cause between 4% and 30% of variation in domestic energy consumption. Premised on that, the aim of this study was to investigate the effect in the context of the UK of household transitions on household energy consumption patterns. To achieve this, we applied statistical procedures (e.g., logistic regression) to official panel survey data comprising more than 5500 households in the UK tracked annually over the course of 18 years. This helped in predicting future transition patterns for different household types for the next 10 to 15 years. Furthermore, it enabled us to study the relationship between the predicted patterns and the household energy usage for both gas and electricity. The findings indicate that the life cycle transitions of a household significantly influence its domestic energy usage. However, this effect is mostly positive in direction and weak in magnitude. Finally, we present our developed urban energy model “EvoEnergy” to demonstrate the importance of incorporating such a concept in energy forecasting for effective sustainable energy decision-making.

Keywords urban energy planning      household transitions      smart cities      energy forecasting      household projection      serious gaming     
Corresponding Author(s): Benachir MEDJDOUB   
Online First Date: 05 July 2017    Issue Date: 17 July 2017
 Cite this article:   
Benachir MEDJDOUB,Moulay Larbi CHALAL. Impact of household transitions on domestic energy consumption and its applicability to urban energy planning[J]. Front. Eng, 2017, 4(2): 171-183.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2017029
https://academic.hep.com.cn/fem/EN/Y2017/V4/I2/171
Fig.1  Change in the number of different households in the BHPS data set between 1991 and 2008
Fig.2  Observed transition possibilities of single non-elderly households to different family types over 5, 10, and 15 years
Variables5 years transition model10 years transition model
Odds ratio95% CIOdds ratio95% CI
Household characteristics
Couple with children4.230**1.97–9.072.8910.623–13.4
(1.617)(2.264)
Age of the householder1.1**1.08–2.821.551***1.40–1.708
(0.0285)(0.0767)
Householder marital status
Never married1.9860.75–5.200.9000.58–4.62
(0.977)(0.8798)
Divorced0.6590.26–1.7
(0.318)
Separated6.343*1.49–26.80.4158
(4.667)(0.3825)
Employment mode and socioeconomic status
Higher-grade professionals0.455*0.22–0.920.304**0.12–0.72
(0.164)(0.135)
Lower-grade professionals0.5600.29–1.070.269**0.11–0.63
(0.187)0.17–0.53(0.119)
Routine non-manual employees0.431*0.17–1.060.4910.156–1.53
(0.198)0.15–0.69(0.286)
Foreman and technicians0.384**0.15–0.980.2260.05–1.11
(0.184)(0.184)
Semi-unskilled manual workers0.227*0.106-1.890.4500.08–1.44
(0.132)(0.331)
Small proprietors with employees0.1050.01–1.10
(0.126)
Tab.1  Part a: Transition models to couple without children household in the next 5 and 10 years
Variables5 years transition model10 years transition model
Odds ratio95% CIOdds ratio95% CI
Dwelling and tenure type
Living in a purpose-built flat7.456***2.46–22.570.7568
(4.214)(0.7241)
Living in a semidetached house1.856*1.012–3.4000.4630.75–4.68
(0.573)(0.284)
Living in a converted flat8.086**1.89–34.501.6932
(5.987)(2.1283)
Dwelling owned with mortgage0.5170.262–1.0190.5510.235–1.29
(0.179)(0.239)
Dwelling rented from local authorities0.129*0.021-0.7780.06320.0045-0.88
(0.118)(0.0850)
Dwelling rented from private landlords0.317*0.093–1.0720.4250.08–2.22
(0.197)(0.358)
Household income
On pension4.254**1.479–12.221.7955
(2.292)(1.6206)
Square root of annual gross income1.0050.998–1.011
(0.00329)
Square root of total benefit income0.988**0.979–0.99550.997*0.98–1.005
(0.00407)(0.00456)
Working full-time0.459*0.241–0.8751.4626
(0.151)(0.6469)
Observations1251662
Number of PID (households)12599
Type of modelFixed effectsFixed effects
McFadden’s R20.220.150
Tab.2  Part b: Transition models to couple without children household in the next 5 and 10 years
CN 1 yearCN 2 yearsCN 3 yearsCN 4 yearsCN 5 yearsCN 6 yearsCN 7 yearsCN 8 yearsCN 9 yearsCN 10 years
Log 10 annual electricity usage0.11**0.093**0.098**0.094**0.08**-.034**0.04**0.03**0.020.008
Sig. (2-tailed)0.0000.0000.0000.0000.0000.0050.0000.0060.0740.538
Square root of annual gas usage0.114**0.091**0.068**0.057**0.05**–0.09**0.0130.001–0.008–0.010
Sig. (2-tailed)0.0000.0000.0000.0000.0000.0000.2900.9300.5530.419
N6700670067006700670067006700670067006700
Tab.3  Impact of couple without children household transitions on annual gas and electricity consumption
Fig.3  Expected annual electricity consumption figures of single non-elderly households before and after their transition to different family types in 5 years
Fig.4  Main components of EvoEnergy
Fig.5  3-D model of the Sneinton residential area in EvoEnergy
Fig.6  Summary of a particular household energy usage and socioeconomic profile on mouse hover
Fig.7  Snapshot taken of the EvoEnergy Physical module
Fig.8  EvoEnergy past energy history module
Fig.9  Household life cycle transition and energy prediction module (dwelling mode)
Fig.10  Household lifecycle transition and energy prediction module (urban energy prediction mode)
1 Allison P D (2006). Fixed effects regression methods in SAS. Thirty-first Annual SAS. 
2 Bartiaux F, Gram-Hanssen K (2005). Socio-political factors influencing household electricity consumption: A comparison between Denmark and Belgium. ECEE 2005 Summer Study, 1313–1325
3 Bramlett M D, Mosher W D (2012). Cohabitation, marriage, divorce, and remarriage in the United States. Vital health statistics, 23(22): 1–32
4 Brounen D, Kok N, Quigley J M (2012). Residential energy use and conservation: Economics and demographics. European Economic Review, 56(5): 931–945
5 CIA (2015). The world factbook. 
6 DECC (2015a). Energy Consumption in the UK (2015). 
7 DECC (2015b). RPI: fuel & light: electricity (Jan 1987=100) - Office for National Statistics..
8 DECC (2015c). Annual Fuel Poverty Statistics Report
9 Druckman A, Jackson T (2008). Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model. Energy Policy, 36(8): 3177–3192
10 Du R Y, Kamakura W A (2006). Household life cycles and lifestyles in the United States. Journal of Marketing Research, 43(1): 121–132. 
11 Frederiks E R, Stenner K, Hobman E V (2015). The socio-demographic and psychological predictors of residential energy consumption: A comprehensive review. Energies, 8(1): 573–609
12 Genjo K, Tanabe S I, Matsumoto S I, Hasegawa K, Yoshino H (2005). Relationship between possession of electric appliances and electricity for lighting and others in Japanese households. Energy and Building, 37(3): 259–272
13 Gill Z M, Tierney M J, Pegg I M, Allan N (2010). Low-energy dwellings: The contribution of behaviours to actual performance. Building Research and Information, 38(5): 491–508
14 Goodman A, Greaves E (2010). Cohabitation, marriage and child outcomes.
15 Greene W W H (2012). Econometric analysis. 97. 
16 Guerra Santin O, Itard L, Visscher H (2009). The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock. Energy and Buildings, 41(11): 1223–1232
17 Hoaglin D C, Iglewicz B, Tukey J W (1986). Performance of some resistant rules for outlier labeling. Journal of the American Statistical Association, 81(396): 991–999
18 ISER (2016). British Household Panel Survey (BHPS) - Institute for Social and Economic Research (ISER).
19 JRF (2005). The effect of parents’ employment on outcomes for children/JRF.
20 Kornbrot D (2005). Point biserial correlation. Wiley StatsRef: Statistics Reference Online
21 Krüger A, Kolbe T H (2012). Building Analysis for Urban Energy Planning using Key Indicators on Virtual 3D City Models – the Energy Atlas of Berlin. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), Melbourne
22 Longhi S (2014). Residential energy use and the relevance of changes in household circumstances. ISER Working Paper Series
23 Mansouri I, Newborough M, Probert D (1996). Energy consumption in UK households: Impact of domestic electrical appliances. Applied Energy, 54(3): 211–285
24 NCT (2014). Barriers remain for parents returning to work. 
25 ONS (2013a). Divorces in England and Wales: 2013. 
26 ONS (2013b). Home ownership and renting in England and Wales – detailed characteristics
27 ONS (2014). Families in the labour market. 
28 ONS (2015a). Chapter 5: Financial wealth, wealth in Great Britain, 2012 to 2014. 
29 ONS (2015b). Births by parents’ characteristics in England and Wales: 2014. 
30 Santamouris M, Kapsis K, Korres D, Livada I, Pavlou C, Assimakopoulos M N (2007). On the relation between the energy and social characteristics of the residential sector. Energy and Building, 39(8): 893–905
31 Skelton C (2013). Soft City Culture and Technology: The Betaville Project. Springer Publishing Company, Incorporated
32 Sonderegger R C (1978). Movers and stayers: The resident’s contribution to variation across houses in energy consumption for space heating. Energy and Building, 1(3): 313–324
33 Steg L, Vlek C (2009). Encouraging pro-environmental behaviour: An integrative review and research agenda. Journal of Environmental Psychology, 29(3): 309–317
35 Van Raaij W F, Verhallen T M M (1983). A behavioral model of residential energy use. Journal of Economic Psychology, 3(1): 39–63
36 WhatPrice (2017). Advantages and disadvantages of UK house types. 
37 Whiting S (2010). Socio-demographic comparison between those UK families with up to two children and those with three or more. Population Matters. 
38 Wiesmann D, Lima Azevedo I, Ferrão P, Fernández J E (2011). Residential electricity consumption in Portugal: Findings from top-down and bottom-up models. Energy Policy, 39(5): 2772–2779
39 Zhou S, Teng F (2013). Estimation of urban residential electricity demand in China using household survey data. Energy Policy, 61: 394–402
[1] Yamuna KALUARACHCHI. Potential advantages in combining smart and green infrastructure over silo approaches for future cities[J]. Front. Eng, 2021, 8(1): 98-108.
[2] Moulay Larbi CHALAL, Benachir MEDJDOUB, Nacer BEZAI, Raid SHRAHILY. Big Data to support sustainable urban energy planning: The EvoEnergy project[J]. Front. Eng, 2020, 7(2): 287-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed