1 |
Bliemer M (2007). Dynamic queuing and spillback in analytical multiclass dynamic network loading model. Transportation Research Record: Journal of the Transportation Research Board, 2029: 14–21
https://doi.org/10.3141/2029-02
|
2 |
Daganzo C F (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28(4): 269–287
https://doi.org/10.1016/0191-2615(94)90002-7
|
3 |
Daganzo C F (1995). The cell transmission model, Part II: Network traffic. Transportation Research Part B: Methodological, 29(2): 79–93
https://doi.org/10.1016/0191-2615(94)00022-R
|
4 |
Huang H J, Lam W H K (2002). Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues. Transportation Research Part B: Methodological, 36(3): 253–273
https://doi.org/10.1016/S0191-2615(00)00049-7
|
5 |
Huang H J, Lam W H K (2003). A multi-class dynamic user equilibrium model for queuing networks with advanced traveler information systems. Journal of Mathematical Modelling and Algorithms, 2(4): 349–377
https://doi.org/10.1023/B:JMMA.0000020427.37130.23
|
6 |
Kuwahara M, Akamatsu T (2001). Dynamic user optimal assignment with physical queues for a many-to-many OD pattern. Transportation Research Part B: Methodological, 35(5): 461–479
https://doi.org/10.1016/S0191-2615(00)00005-9
|
7 |
Leclercq L, Laval J A (2007). A multiclass car-following rule based on the LWR model. In: Appert-Rolland C, Chevoir F, Gondret P, Lassarre S, Lebacque J P, Schreckenberg M, eds. Traffic and Granular Flow ’07. Berlin: Springer, 735–753
|
8 |
Levin M W, Boyles S D (2016). A multi-class cell transmission model for shared human and autonomous vehicle roads. Transportation Research Part C, Emerging Technologies, 62: 103–116
https://doi.org/10.1016/j.trc.2015.10.005
|
9 |
Lighthill M J, Whitham G B (1955). On kinematic waves. II. A theory of traffic flow on long crowded roads. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 229(1178): 317–345
|
10 |
Liu S, De Schutter B, Hellendoorn H (2013). Multi-class traffic flow and emission control for freeway networks. In: 16th International IEEE Conference on Intelligent Transportation Systems-(ITSC). IEEE, 2223–2228
|
11 |
Liu S, Hellendoorn H, De Schutter B (2017). Model predictive control for freeway networks based on multi-class traffic flow and emission models. IEEE Transactions on Intelligent Transportation Systems, 18(2): 306–320
https://doi.org/10.1109/TITS.2016.2573306
|
12 |
Lo H, Ran B, Hongola B (1996). Multiclass dynamic traffic assignment model: Formulation and computational experiences. Transportation Research Record: Journal of the Transportation Research Board, 1537: 74–82
https://doi.org/10.3141/1537-11
|
13 |
Lo H K, Szeto W Y (2002a). A cell-based variational inequality formulation of the dynamic user optimal assignment problem. Transportation Research Part B: Methodological, 36(5): 421–443
https://doi.org/10.1016/S0191-2615(01)00011-X
|
14 |
Lo H K, Szeto W Y (2002b). A cell-based dynamic traffic assignment model: formulation and properties. Mathematical and Computer Modelling, 35(7-8): 849–865
https://doi.org/10.1016/S0895-7177(02)00055-9
|
15 |
Lo H K, Szeto W Y (2004). Modeling advanced traveler information services: Static versus dynamic paradigms. Transportation Research Part B: Methodological, 38(6): 495–515
https://doi.org/10.1016/j.trb.2003.06.001
|
16 |
Logghe S, Immers L H (2008). Multi-class kinematic wave theory of traffic flow. Transportation Research Part B: Methodological, 42(6): 523–541
https://doi.org/10.1016/j.trb.2007.11.001
|
17 |
Newell G F (1993). A simplified theory of kinematic waves in highway traffic, Part I: General theory; Part II: Queuing at freeway bottlenecks; Part III: Multi-destination flows. Transportation Research Part B: Methodological, 27(4): 281–314
https://doi.org/10.1016/0191-2615(93)90038-C
|
18 |
Nie X (2003). The study of dynamic user-equilibrium traffic assignment. Dissertation for the Doctoral Degree. Davis: University of California, 242–255
|
19 |
Ran B, Boyce D (1996). Modeling Dynamic Transportation Network: An Intelligent Transportation System Oriented Approach. New York: Springer
|
20 |
Richards P I (1956). Shock waves on the highway. Operations Research, 4(1): 42–51
https://doi.org/10.1287/opre.4.1.42
|
21 |
Szeto W Y, Jiang Y, Sumalee A (2011). A cell-based model for multi-class doubly stochastic dynamic traffic assignment. Computer-Aided Civil and Infrastructure Engineering, 26(8): 595–611
https://doi.org/10.1111/j.1467-8667.2011.00717.x
|
22 |
Tuerprasert K, Aswakul C (2010). Multiclass cell transmission model for heterogeneous mobility in general topology of road network. Journal of Intelligent Transport Systems, 14(2): 68–82
https://doi.org/10.1080/15472451003719715
|
23 |
van Wageningen-Kessels F, Van Lint H, Hoogendoorn S, Vuik K (2010). Lagrangian formulation of multiclass kinematic wave model. Transportation Research Record: Journal of the Transportation Research Board, 2188: 29–36
https://doi.org/10.3141/2188-04
|
24 |
van Wageningen-Kessels F (2016). Framework to assess multiclass continuum traffic flow models. Transportation Research Record: Journal of the Transportation Research Board, 2553: 150–160
https://doi.org/10.3141/2553-16
|
25 |
Wong G C K, Wong S C (2002). A multi-class traffic flow model—An extension of LWR model with heterogeneous drivers. Transportation Research Part A, Policy and Practice, 36(9): 827–841
https://doi.org/10.1016/S0965-8564(01)00042-8
|