Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2017, Vol. 4 Issue (4) : 399-407    https://doi.org/10.15302/J-FEM-2017041
RESEARCH ARTICLE
Multi-class dynamic network traffic flow propagation model with physical queues
Yanfeng LI(), Jun LI
School of Economics and Management, Southwest Jiaotong University, Chengdu 610031, China
 Download: PDF(649 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper proposes an improved multi-class dynamic network traffic flow propagation model with a consideration of physical queues. Each link is divided into two areas: Free flow area and queue area. The vehicles of the same class are assumed to satisfy the first-in-first-out (FIFO) principle on the whole link, and the vehicles of the different classes also follow FIFO in the queue area but not in the free flow area. To characterize this phenomenon by numerical methods, the improved model is directly formulated in discrete time space. Numerical examples are developed to illustrate the unrealistic flows of the existing model and the performance of the improved model. This analysis can more realistically capture the traffic flow propagation, such as interactions between multi-class traffic flows, and the dynamic traffic interactions across multiple links.

Keywords first-in-first-out (FIFO)      multi-class traffic      physical queues      traffic flow modeling     
Corresponding Author(s): Yanfeng LI   
Just Accepted Date: 25 September 2017   Online First Date: 06 November 2017    Issue Date: 14 December 2017
 Cite this article:   
Yanfeng LI,Jun LI. Multi-class dynamic network traffic flow propagation model with physical queues[J]. Front. Eng, 2017, 4(4): 399-407.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2017041
https://academic.hep.com.cn/fem/EN/Y2017/V4/I4/399
Fig.1  The illustration for Link a
Fig.2  An intersection sketch
Fig.3  Link cumulative inflow and outflow
Fig.4  Different results with two models
Fig.5  Link travel times for cars and trucks
Fig.6  Queue length and the difference between two travel times
Fig.7  Diverge network
Fig.8  Queue in Link 2 with different mixed traffic flow ratios
Fig.9  Queue in Link 1 with different mixed traffic flow ratios
Fig.10  Queue length in Link 2 with different free traffic speeds for trucks
Fig.11  Queue length in Link 1 with different free traffic speeds for trucks
Uam (k)The cumulative inflow of Link a for vehicle type m by the end of time interval k
Uamp (k)The cumulative inflow of Link a belonging to Path p for vehicle type m by the end of time interval k
Qam (k)The cumulative queue inflow of Link a for vehicle type m by the end of time interval k
Qamp (k)The cumulative queue inflow of Link a belonging to Path p for vehicle type m by the end of time interval k
Qamb(k)The cumulative queue inflow of Link a toward link b for vehicle type m by the end of time interval k
Vam (k)The cumulative outflow of Link a for vehicle type m by the end of time interval k
Vamp (k)The cumulative outflow of Link a belonging to path p for vehicle type m by the end of time interval k
Vamb(k)The cumulative outflow from Link a to Link b for vehicle type m by the end of time interval k
JaThe queue density of Link a/(pcu·km–1)
Xam (k)The number of vehicles in Link a for vehicle type m at the end of time interval k/pcu
Xamq(k)The number of vehicles in the queuing part of Link a for vehicle type m at the end of time interval k/pcu
vamfThe free flow speed of Link a for vehicles of type m
τam(k)The actual link travel time for vehicles of type m entering Link a at the end of time interval k
δapδap=1 if Link a is on route p, and δap=0 otherwise
δabpδabp=1 if Links a and b are on route p, and a is the previous link of b, andδabp=0 otherwise
  
1 Bliemer M (2007). Dynamic queuing and spillback in analytical multiclass dynamic network loading model. Transportation Research Record: Journal of the Transportation Research Board, 2029: 14–21
https://doi.org/10.3141/2029-02
2 Daganzo C F (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28(4): 269–287
https://doi.org/10.1016/0191-2615(94)90002-7
3 Daganzo C F (1995). The cell transmission model, Part II: Network traffic. Transportation Research Part B: Methodological, 29(2): 79–93
https://doi.org/10.1016/0191-2615(94)00022-R
4 Huang H J, Lam W H K (2002). Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues. Transportation Research Part B: Methodological, 36(3): 253–273
https://doi.org/10.1016/S0191-2615(00)00049-7
5 Huang H J, Lam W H K (2003). A multi-class dynamic user equilibrium model for queuing networks with advanced traveler information systems. Journal of Mathematical Modelling and Algorithms, 2(4): 349–377
https://doi.org/10.1023/B:JMMA.0000020427.37130.23
6 Kuwahara M, Akamatsu T (2001). Dynamic user optimal assignment with physical queues for a many-to-many OD pattern. Transportation Research Part B: Methodological, 35(5): 461–479
https://doi.org/10.1016/S0191-2615(00)00005-9
7 Leclercq L, Laval J A (2007). A multiclass car-following rule based on the LWR model. In: Appert-Rolland C, Chevoir F, Gondret P, Lassarre S, Lebacque J P, Schreckenberg M, eds. Traffic and Granular Flow ’07. Berlin: Springer, 735–753
8 Levin M W, Boyles S D (2016). A multi-class cell transmission model for shared human and autonomous vehicle roads. Transportation Research Part C, Emerging Technologies, 62: 103–116
https://doi.org/10.1016/j.trc.2015.10.005
9 Lighthill M J, Whitham G B (1955). On kinematic waves. II. A theory of traffic flow on long crowded roads. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 229(1178): 317–345
10 Liu S, De Schutter B, Hellendoorn H (2013). Multi-class traffic flow and emission control for freeway networks. In: 16th International IEEE Conference on Intelligent Transportation Systems-(ITSC). IEEE, 2223–2228
11 Liu S, Hellendoorn H, De Schutter B (2017). Model predictive control for freeway networks based on multi-class traffic flow and emission models. IEEE Transactions on Intelligent Transportation Systems, 18(2): 306–320
https://doi.org/10.1109/TITS.2016.2573306
12 Lo  H, Ran B, Hongola B (1996). Multiclass dynamic traffic assignment model: Formulation and computational experiences. Transportation Research Record: Journal of the Transportation Research Board, 1537: 74–82
https://doi.org/10.3141/1537-11
13 Lo H K, Szeto W Y (2002a). A cell-based variational inequality formulation of the dynamic user optimal assignment problem. Transportation Research Part B: Methodological, 36(5): 421–443
https://doi.org/10.1016/S0191-2615(01)00011-X
14 Lo H K, Szeto W Y (2002b). A cell-based dynamic traffic assignment model: formulation and properties. Mathematical and Computer Modelling, 35(7-8): 849–865
https://doi.org/10.1016/S0895-7177(02)00055-9
15 Lo H K, Szeto W Y (2004). Modeling advanced traveler information services: Static versus dynamic paradigms. Transportation Research Part B: Methodological, 38(6): 495–515
https://doi.org/10.1016/j.trb.2003.06.001
16 Logghe S, Immers L H (2008). Multi-class kinematic wave theory of traffic flow. Transportation Research Part B: Methodological, 42(6): 523–541
https://doi.org/10.1016/j.trb.2007.11.001
17 Newell G F (1993). A simplified theory of kinematic waves in highway traffic, Part I: General theory; Part II: Queuing at freeway bottlenecks; Part III: Multi-destination flows. Transportation Research Part B: Methodological, 27(4): 281–314
https://doi.org/10.1016/0191-2615(93)90038-C
18 Nie X (2003). The study of dynamic user-equilibrium traffic assignment. Dissertation for the Doctoral Degree. Davis: University of California, 242–255
19 Ran B, Boyce D (1996). Modeling Dynamic Transportation Network: An Intelligent Transportation System Oriented Approach. New York: Springer
20 Richards P I (1956). Shock waves on the highway. Operations Research, 4(1): 42–51
https://doi.org/10.1287/opre.4.1.42
21 Szeto W Y, Jiang Y, Sumalee A (2011). A cell-based model for multi-class doubly stochastic dynamic traffic assignment. Computer-Aided Civil and Infrastructure Engineering, 26(8): 595–611
https://doi.org/10.1111/j.1467-8667.2011.00717.x
22 Tuerprasert K, Aswakul C (2010). Multiclass cell transmission model for heterogeneous mobility in general topology of road network. Journal of Intelligent Transport Systems, 14(2): 68–82
https://doi.org/10.1080/15472451003719715
23 van Wageningen-Kessels F, Van Lint H, Hoogendoorn S, Vuik K (2010). Lagrangian formulation of multiclass kinematic wave model. Transportation Research Record: Journal of the Transportation Research Board, 2188: 29–36
https://doi.org/10.3141/2188-04
24 van Wageningen-Kessels F (2016). Framework to assess multiclass continuum traffic flow models. Transportation Research Record: Journal of the Transportation Research Board, 2553: 150–160
https://doi.org/10.3141/2553-16
25 Wong G C K, Wong S C (2002). A multi-class traffic flow model—An extension of LWR model with heterogeneous drivers. Transportation Research Part A, Policy and Practice, 36(9): 827–841
https://doi.org/10.1016/S0965-8564(01)00042-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed