Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2017, Vol. 4 Issue (3) : 304-314    https://doi.org/10.15302/J-FEM-2017045
RESEARCH ARTICLE
Sliding window games for cooperative building temperature control using a distributed learning method
Zhaohui ZHANG1, Ruilong DENG2, Tao YUAN1, S. Joe QIN3()
1. Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
2. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9 , Canada
3. Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; The Chinese University of Hong Kong, Shenzhen 518172, China
 Download: PDF(582 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In practice, an energy consumer often consists of a set of residential or commercial buildings, with individual units that are expected to cooperate to achieve overall optimization under modern electricity operations, such as time-of-use price. Global utility is decomposed to the payoff of each player, and each game is played over a prediction horizon through the design of a series of sliding window games by treating each building as a player. During the games, a distributed learning algorithm based on game theory is proposed such that each building learns to play a part of the global optimum through state transition. The proposed scheme is applied to a case study of three buildings to demonstrate its effectiveness.

Keywords game theory      demand response      HVAC control      multi-building system     
Corresponding Author(s): S. Joe QIN   
Just Accepted Date: 25 August 2017   Online First Date: 26 September 2017    Issue Date: 30 October 2017
 Cite this article:   
Zhaohui ZHANG,Ruilong DENG,Tao YUAN, et al. Sliding window games for cooperative building temperature control using a distributed learning method[J]. Front. Eng, 2017, 4(3): 304-314.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2017045
https://academic.hep.com.cn/fem/EN/Y2017/V4/I3/304
Fig.1  Schematic of the payoff-based distributed learning algorithm
Fig.2  Global utility distributed (blue dot) versus centralized optimum (red cross).
Fig.3  Global utility components 1 and 2: Distributed (blue dot) versus centralized optimum (red cross)
Fig.4  Global utility component 3: Distributed (blue dot) versus centralized optimum (red cross)
Fig.5  Sliding window size= 4 (black cross) vs. window size= 1 (blue dot)
Fig.6  Outdoor (red), indoor (black cross) temperature, and pre-cooling
1 Chai B, Chen  J, Yang Z ,  Zhang Y  (2014). Demand response management with multiple utility companies: a two-level game approach. IEEE Transactions on Smart Grid, 5(2): 722–731 
https://doi.org/10.1109/TSG.2013.2295024
2 Deng R, Yang  Z, Chen J ,  Asr N R ,  Chow M Y  (2014). Residential energy consumption scheduling: a coupled-constraint game approach. IEEE Transactions on Smart Grid, 5(3): 1340–1350 
https://doi.org/10.1109/TSG.2013.2287494
3 Deng R, Yang  Z, Chow M Y ,  Chen J (2015). A survey on demand response in smart grids: mathematical models and approaches. IEEE Transactions on Industrial Informatics, 11(3): 570–582 
https://doi.org/10.1109/TII.2015.2414719
4 Deng R, Zhang  Z, Ren J ,  Liang H  (2016). Indoor temperature control of cost-effective smart buildings via real-time smart grid communications. In: Global Communications Conference (GLOBECOM), 2016 IEEE. IEEE, 1–6
5 Dimarogonas D V ,  Frazzoli E ,  Johansson K H  (2012). Distributed event-triggered control for multi-agent systems. IEEE Transactions on Automatic Control, 57(5): 1291–1297 
https://doi.org/10.1109/TAC.2011.2174666
6 Dounis A, Manolakis  D (2001). Design of a fuzzy system for living space thermal-comfort regulation. Applied Energy, 69(2): 119–144 
https://doi.org/10.1016/S0306-2619(00)00065-9
7 Dounis A I, Caraiscos  C (2009). Advanced control systems engineering for energy and comfort management in a building environment—a review. Renewable & Sustainable Energy Reviews, 13(6–7): 1246–1261 
https://doi.org/10.1016/j.rser.2008.09.015
8 Fan Y, Feng  G, Wang Y ,  Song C (2013). Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica, 49(2): 671–675 
https://doi.org/10.1016/j.automatica.2012.11.010
9 Forouzandehmehr N, Perlaza  S M, Zhu  H, Poor H V  (2013). A satisfaction game for heating, ventilation and air conditioning control of smart buildings. In: Proc. IEEE GLOBECOM, 3164–3169
10 Kolokotsa D, Stavrakakis  G, Kalaitzakis K ,  Agoris D  (2002). Genetic algorithms optimized fuzzy controller for the indoor environmental management in buildings implemented using PLC and local operating networks. Engineering Applications of Artificial Intelligence, 15(5): 417–428 
https://doi.org/10.1016/S0952-1976(02)00090-8
11 Kummert M, André  P, Nicolas J  (2001). Optimal heating control in a passive solar commercial building. Solar Energy, 69: 103–116 
https://doi.org/10.1016/S0038-092X(01)00038-X
12 Levermore G J  (2000). Building Energy Management Systems: Applications to Low-Energy HVAC and Natural Ventilation Control. Oxfordshire: Taylor & Francis
13 Li N, Chen  L, Low S H  (2011). Optimal demand response based on utility maximization in power networks. In: 2011 IEEE Power and Energy Society General Meeting. IEEE, Piscataway, 1–8
14 Li Z, Ren  W, Liu X ,  Fu M (2013). Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. International Journal of Robust and Nonlinear Control, 23(5): 534–547 
https://doi.org/10.1002/rnc.1847
15 Ma J, Qin  J, Salsbury T ,  Xu P (2012). Demand reduction in building energy systems based on economic model predictive control. Chemical Engineering Science, 67(1): 92–100 
https://doi.org/10.1016/j.ces.2011.07.052
16 Ma J, Qin  S J, Li  B, Salsbury T  (2011). Economic model predictive control for building energy systems. In: Innovative Smart Grid Technologies, 2011 IEEE PES. IEEE, 1–6
17 Ma J, Qin  S J, Salsbury  T (2014). Application of economic MPC to the energy and demand minimization of a commercial building. Journal of Process Control, 24(8): 1282–1291 
https://doi.org/10.1016/j.jprocont.2014.06.011
18 Marden J R, Young  H P, Pao  L Y (2014). Achieving Pareto optimality through distributed learning. SIAM Journal on Control and Optimization, 52(5): 2753–2770 
https://doi.org/10.1137/110850694
19 McCartney K J ,  Nicol J F  (2002). Developing an adaptive control algorithm for Europe. Energy and Buildings, 34: 623–635
20 Mohsenian-Rad A H ,  Wong V W ,  Jatskevich J ,  Schober R ,  Leon-Garcia A  (2010). Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Transactions on Smart Grid, 1(3): 320–331 
https://doi.org/10.1109/TSG.2010.2089069
21 Moon J W, Kim  J J (2010). Ann-based thermal control models for residential buildings. Building and Environment, 45(7): 1612–1625 
https://doi.org/10.1016/j.buildenv.2010.01.009
22 Oldewurtel F, Parisio  A, Jones C N ,  Morari M ,  Gyalistras D ,  Gwerder M ,  Stauch V ,  Lehmann B ,  Wirth K  (2010). Energy efficient building climate control using stochastic model predictive control and weather predictions. In: American Control Conference (ACC), 58(8):5100–5105
23 Shaikh P H, Nor  N B M, Nallagownden  P, Elamvazuthi I ,  Ibrahim T  (2014). A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renewable & Sustainable Energy Reviews, 34: 409–429 
https://doi.org/10.1016/j.rser.2014.03.027
24 Širokỳ J, Oldewurtel  F, Cigler J ,  Prívara S  (2011). Experimental analysis of model predictive control for an energy efficient building heating system. Applied Energy, 88(9): 3079–3087 
https://doi.org/10.1016/j.apenergy.2011.03.009
25 Wang S, Ma  Z (2008). Supervisory and optimal control of building HVAC systems: a review. HVAC & R Research, 14(1): 3–32 
https://doi.org/10.1080/10789669.2008.10390991
26 Weng T, Agarwal  Y (2012). From buildings to smart building-sensing and actuation to improve energy efficiency. IEEE Design & Test of Computers, 29(4): 36–44 
https://doi.org/10.1109/MDT.2012.2211855
27 Wright J A, Loosemore  H A, Farmani  R (2002). Optimization of building thermal design and control by multi-criterion genetic algorithm. Energy and Buildings, 34: 959–972
28 Zaheer-Uddin M, Zheng  G (2000). Optimal control of time-scheduled heating, ventilating and air conditioning processes in buildings. Energy Conversion and Management, 41(1): 49–60 
https://doi.org/10.1016/S0196-8904(99)00094-1
29 Zhang Z, Deng  R, Yuan T ,  Qin S J  (2017). Distributed optimization of multi-building energy systems with spatially and temporally coupled constraints. In: American Control Conference (ACC), IEEE, 2913–2918
30 Zhang Z, Deng  R, Yuan T ,  Joe Qin S  (2016). Bi-level demand response game with information sharing among consumers. IFAC-PapersOnLine, 49(7): 663–668 
https://doi.org/10.1016/j.ifacol.2016.07.252
31 Zhang Z, Li  G, Salsbury T ,  Qin S J  (2014). 389842 Game theory based distributed temperature control for energy saving of smart buildings. In: 2014 AICHE Annual Meeting, Atlanta, GA
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed