Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2018, Vol. 5 Issue (4) : 487-498    https://doi.org/10.15302/J-FEM-2018042
RESEARCH ARTICLE
Minimization of total energy consumption in an m-machine flow shop with an exponential time-dependent learning effect
Lingxuan LIU1, Zhongshun SHI2, Leyuan SHI3()
1. Department of Industrial Engineering & Management, Peking University, Beijing 100871, China
2. Department of Industrial & Systems Engineering, University of Wisconsin-Madison, WI, USA
3. Department of Industrial Engineering & Management, Peking University, Beijing 100871, China; Department of Industrial & Systems Engineering, University of Wisconsin-Madison, WI, USA
 Download: PDF(218 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study investigates an energy-aware flow shop scheduling problem with a time-dependent learning effect. The relationship between the traditional and the proposed scheduling problem is shown and objective is to determine a job sequence in which the total energy consumption is minimized. To provide an efficient solution framework, composite lower bounds are proposed to be used in a solution approach with the name of Bounds-based Nested Partition (BBNP). A worst-case analysis on shortest process time heuristic is conducted for theoretical measurement. Computational experiments are performed on randomly generated test instances to evaluate the proposed algorithms. Results show that BBNP has better performance than conventional heuristics and provides considerable computational advantage.

Keywords flow shop      energy-aware scheduling      learning effect      nested partition      worst-case error bound     
Corresponding Author(s): Leyuan SHI   
Just Accepted Date: 28 August 2018   Online First Date: 08 November 2018    Issue Date: 29 November 2018
 Cite this article:   
Lingxuan LIU,Zhongshun SHI,Leyuan SHI. Minimization of total energy consumption in an m-machine flow shop with an exponential time-dependent learning effect[J]. Front. Eng, 2018, 5(4): 487-498.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2018042
https://academic.hep.com.cn/fem/EN/Y2018/V5/I4/487
Fig.1  BBP procedure
Fig.2  BBS procedure
n a SPT NEH FL BBNP
mean max mean max mean max mean max
9 0.7 13.8 40 2.25 9.15 0.1 1.73 0 0
9 0.8 13.2 30.3 3.13 17.6 0.076 0.626 0 0
9 0.9 13.6 34.6 2.81 13.2 0.058 0.777 0 0.01
10 0.7 15.8 34.9 2.19 10 0.16 2.74 0 0.01
10 0.8 16.9 38.8 2.49 16.9 0.099 1.62 0 0.015
10 0.9 16.6 37 1.63 8.35 0.141 1.57 0 0
11 0.7 15.8 34.4 3.82 11.4 0.104 1.15 0.067 1.246
11 0.8 13.7 30.2 2.38 9.24 0.281 2.36 0 0.015
11 0.9 14.8 31.9 1.68 6.43 0.403 3.67 0.133 1.617
12 0.7 15.6 34.2 1.84 6.33 0.153 2.23 0.011 0.124
12 0.8 16.9 39.2 1.81 5.41 0.347 3.12 0.084 1.016
12 0.9 15.6 31.9 2.21 8.28 0.356 3.87 0.104 1.246
13 0.7 17.7 35.4 2.38 13.7 0.385 4.15 0.184 2.039
13 0.8 16.6 31.5 2.41 7.08 0.359 2.18 0.101 0.998
13 0.9 16.8 29.3 2.69 8.52 0.254 2.97 0.125 1.028
14 0.7 11.9 24.5 1.84 7.47 0.105 1.23 0.092 0.926
14 0.8 13.4 21.7 2.28 8.6 0.296 2.27 0.104 1.638
14 0.9 13.3 21.5 2.29 8.12 0.187 2.16 0.067 0.102
Tab.1  Error gap (%) of BBNP and heuristic algorithms for m=3
n a SPT NEH FL BBNP
mean max mean max mean max mean max
9 0.7 14.8 40.8 2.5 10.5 0.49 3.32 0.308 3.31
9 0.8 13.8 27.5 4.26 12.1 0.762 4.62 0.314 2.05
9 0.9 15.3 36.2 3.45 12.1 0.773 2.94 0.284 2.12
10 0.7 17.4 29.5 3.5 16.4 0.75 3.07 0.454 3.31
10 0.8 17.6 34.4 3.19 11.1 0.976 5.28 0.402 3.2
10 0.9 16.6 28.3 3.18 11.5 0.447 3.44 0.333 2.98
11 0.7 18 38.3 4.11 19 0.733 3.06 0.438 2.39
11 0.8 16.8 31.7 2.48 9.07 0.964 4.51 0.698 4.9
11 0.9 17.9 42.2 2.77 8.06 0.648 3.31 0.276 1.39
12 0.7 18.9 29 3.28 10.9 1.26 5.48 1.1 5.31
12 0.8 20.1 38.8 5.39 12.3 1.03 6.01 0.585 2.79
12 0.9 15.8 32.4 3.57 11.5 0.558 2.35 0.322 1.86
13 0.7 19.7 42.9 3.46 14.1 1.15 3.7 0.542 2.63
13 0.8 18.9 38.8 2.83 8.68 0.172 1.78 0.132 1.51
13 0.9 16.5 34.6 2.15 9.69 0.576 4.15 0.299 2.07
14 0.7 18.9 30.6 2.9 9 0.866 4.62 0.774 3.7
14 0.8 19.6 38.2 4.21 9.38 1.33 8.43 0.99 4.34
14 0.9 16.7 30.9 2.9 12.8 0.559 2.68 0.392 2.4
Tab.2  Error gap (%) of BBNP and heuristic algorithms for m=5
n a Frequency of maximum
LB (1) LB (2) LB (3)
9 0.7 0.36 0.37 0.27
9 0.8 0.39 0.33 0.28
9 0.9 0.33 0.34 0.33
10 0.7 0.34 0.31 0.35
10 0.8 0.29 0.35 0.36
10 0.9 0.35 0.31 0.34
11 0.7 0.25 0.41 0.34
11 0.8 0.42 0.35 0.23
11 0.9 0.31 0.33 0.36
12 0.7 0.27 0.35 0.38
12 0.8 0.33 0.25 0.42
12 0.9 0.4 0.36 0.24
13 0.7 0.35 0.27 0.38
13 0.8 0.32 0.36 0.32
13 0.9 0.35 0.35 0.3
14 0.7 0.41 0.3 0.29
14 0.8 0.31 0.35 0.34
14 0.9 0.21 0.42 0.37
Tab.3  Results of domination of different LB calculations for partial schedule (m =3)
n a E(SP T)E(AR B) E(NE H)E(AR B) E(FL )E(ARB ) E(BB NP) E(A RB)
mean max mean max mean max mean max
20 0.7 0.8211 0.9519 0.782 0.9242 0.724 0.8728 0.7148 0.8501
20 0.8 0.804 0.9259 0.7657 0.8989 0.7018 0.8396 0.688 0.8016
20 0.9 0.8107 0.9358 0.7721 0.9086 0.7028 0.8456 0.6916 0.8334
40 0.7 0.8214 0.9406 0.7823 0.9132 0.7027 0.8432 0.677 0.7954
40 0.8 0.7869 0.9366 0.7494 0.9093 0.726 0.8655 0.6751 0.8153
40 0.9 0.7973 0.9239 0.7594 0.897 0.6903 0.8432 0.6815 0.8358
60 0.7 0.8144 0.9409 0.7756 0.9135 0.7027 0.8524 0.6885 0.8251
60 0.8 0.8096 0.9456 0.771 0.9181 0.7022 0.8531 0.6751 0.8165
60 0.9 0.8073 0.9125 0.7689 0.886 0.6901 0.8216 0.6745 0.7703
80 0.7 0.8175 0.9591 0.7785 0.9312 0.7137 0.8722 0.6568 0.7869
80 0.8 0.799 0.9326 0.761 0.9054 0.6788 0.8164 0.6575 0.8317
80 0.9 0.7825 0.9007 0.7453 0.8745 0.6728 0.8359 0.6527 0.8047
100 0.7 0.7159 0.8807 0.6818 0.8551 0.6794 0.8571 0.6216 0.8094
100 0.8 0.7827 0.8968 0.7455 0.8707 0.6673 0.8058 0.6464 0.7764
100 0.9 0.7399 0.8936 0.7047 0.8675 0.6159 0.8282 0.6015 0.7978
Tab.4  Computational results of the heuristics for large-size instances (m =5)
1 Agrawal P, Rao S (2014). Energy-aware scheduling of distributed systems. IEEE Transactions on Automation Science and Engineering, 11(4): 1163–1175
https://doi.org/10.1109/TASE.2014.2308955
2 Artigues C, Lopez P, Haït A (2009). Scheduling under energy constraints. In: International Conference on Industrial Engineering and Systems Management (IESM 2009)
3 Biskup D (1999). Single-machine scheduling with learning considerations. European Journal of Operational Research, 115(1): 173–178
https://doi.org/10.1016/S0377-2217(98)00246-X
4 Chan S H, Lam T W, Lee L K (2013). Scheduling for weighted flow time and energy with rejection penalty. Theoretical Computer Science, 470: 93–104
https://doi.org/10.1016/j.tcs.2012.11.021
5 Cheng T E, Wang G (2000). Single machine scheduling with learning effect considerations. Annals of Operations Research, 98(1–4): 273–290
https://doi.org/10.1023/A:1019216726076
6 Gao F, Liu M, Wang J J, Lu Y Y (2017). No-wait two-machine permutation flow shop scheduling problem with learning effect, common due date and controllable job processing times. International Journal of Production Research, (2): 1–9
7 Garey M R, Johnson D S (1979). Computers and Intractability (Vol. 29).New York: WH Freeman
8 Gonzalez T, Sahni S (1978). Preemptive scheduling of uniform processor systems. Journal of the Association for Computing Machinery, 25(1): 92–101
https://doi.org/10.1145/322047.322055
9 Johnson S M (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics, 1(1): 61–68 (NRL)
https://doi.org/10.1002/nav.3800010110
10 Koulamas C, Kyparisis G J (2007). Single-machine and two-machine flowshop scheduling with general learning functions. European Journal of Operational Research, 178(2): 402–407
https://doi.org/10.1016/j.ejor.2006.01.030
11 Kuo W H, Hsu C J, Yang D L (2012). Worst-case and numerical analysis of heuristic algorithms for flowshop scheduling problems with a time-dependent learning effect. Information Sciences, 184(1): 282–297
https://doi.org/10.1016/j.ins.2011.08.018
12 Lee W C, Wu C C (2004). Minimizing total completion time in a two-machine flowshop with a learning effect. International Journal of Production Economics, 88(1): 85–93
https://doi.org/10.1016/S0925-5273(03)00179-8
13 Lee Y C, Zomaya A Y (2010). Energy efficient resource allocation in large scale distributed systems. In: Proceedings of Distributed Computing and Applications to Business Engineering and Science (DCABES), 2010 Ninth International Symposium on IEEE. 580–583
14 Li G, Wang X Y, Wang J B, Sun L Y (2013). Worst case analysis of flow shop scheduling problems with a time-dependent learning effect. International Journal of Production Economics, 142(1): 98–104
https://doi.org/10.1016/j.ijpe.2012.10.015
15 Liu G S, Yang H D, Cheng M B (2017). A three-stage decomposition approach for energy-aware scheduling with processing-time- dependent product quality. International Journal of Production Research, 55(11): 3073–3091
https://doi.org/10.1080/00207543.2016.1241446
16 Liu J, Chou P H, Bagherzadeh N, Kurdahi F (2001). Power-aware scheduling under timing constraints for mission-critical embedded systems. In: Proceedings of the 38th Annual Design Automation Conference. 840–845
17 Pei J, Cheng B, Liu X, Pardalos P M, Kong M (2017). Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time. Annals of Operations Research, (3): 1–25
18 Pei J, Liu X, Fan W, Pardalos P M, Lu S (2017). A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers. Omega, 82: 55–69
https://doi.org/10.1016/j.omega.2017.12.003
19 Rudek R (2011). Computational complexity and solution algorithms for flowshop scheduling problems with the learning effect. Computers & Industrial Engineering, 61(1): 20–31
https://doi.org/10.1016/j.cie.2011.02.005
20 Shi L, Ólafsson S (2000). Nested partitions method for global optimization. Operations Research, 48(3): 390–407
https://doi.org/10.1287/opre.48.3.390.12436
21 Shi L, Ólafsson S, Chen Q (2001). An optimization framework for product design. Management Science, 47(12): 1681–1692
https://doi.org/10.1287/mnsc.47.12.1681.10243
22 Smutnicki C (1998). Some results of the worst-case analysis for flow shop scheduling. European Journal of Operational Research, 109(1): 66–87
https://doi.org/10.1016/S0377-2217(97)00139-2
23 Sun L H, Cui K, Chen J H, Wang J, He X C (2013). Research on permutation flow shop scheduling problems with general position-dependent learning effects. Annals of Operations Research, 211(1): 473–480
https://doi.org/10.1007/s10479-013-1481-6
24 Wang J B, Wang D, Wang L Y, Lin L, Yin N, Wang W W (2009). Single machine scheduling with exponential time-dependent learning effect and past-sequence-dependent setup times. Computers & Mathematics with Applications, 57(1): 9–16
https://doi.org/10.1016/j.camwa.2008.09.025
25 Wang J B, Wang J J (2014). Flowshop scheduling with a general exponential learning effect. Computers & Operations Research, 43: 292–308
https://doi.org/10.1016/j.cor.2013.09.001
26 Wang J B, Xia Z Q (2005). Flow-shop scheduling with a learning effect. Journal of the Operational Research Society, 56(11): 1325–1330
https://doi.org/10.1057/palgrave.jors.2601856
27 Wang X Y, Zhou Z, Zhang X, Ji P, Wang J B (2013). Several flow shop scheduling problems with truncated position-based learning effect. Computers & Operations Research, 40(12): 2906–2929
https://doi.org/10.1016/j.cor.2013.07.001
28 Webb G K (1994). Integrated circuit (IC) pricing. Journal of High Technology Management Research, 5(2): 247–260
https://doi.org/10.1016/1047-8310(94)90005-1
29 Wright T P (1936). Factors affecting the cost of airplanes. Journal of the Aeronautical Sciences, 3(4): 122–128
https://doi.org/10.2514/8.155
30 Wu C C, Lee W C (2009). A note on the total completion time problem in a permutation flowshop with a learning effect. European Journal of Operational Research, 192(1): 343–347
https://doi.org/10.1016/j.ejor.2007.10.003
31 Wu T, Shi L, Duffie N A (2010). An HNP-MP approach for the capacitated multi-item lot sizing problem with setup times. IEEE Transactions on Automation Science and Engineering, 7(3): 500–511
https://doi.org/10.1109/TASE.2009.2039134
32 Xu J, Lin W C, Wu J, Cheng S R, Wang Z L, Wu C C (2016). Heuristic based genetic algorithms for the re-entrant total completion time flowshop scheduling with learning consideration. International Journal of Computational Intelligence Systems, 9(6): 1082–1100
https://doi.org/10.1080/18756891.2016.1256572
33 Xu Z, Sun L, Gong J (2008). Worst-case analysis for flow shop scheduling with a learning effect. International Journal of Production Economics, 113(2): 748–753
https://doi.org/10.1016/j.ijpe.2007.11.002
[1] Zhongshun SHI, Zewen HUANG, Leyuan SHI. Two-stage scheduling on batch and single machines with limited waiting time constraint[J]. Front. Eng, 2017, 4(3): 368-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed