1 |
Alperin H, Nowak I (2005). Lagrangian smoothing heuristics for max-cut. Journal of Heuristics, 11(5–6): 447–463
https://doi.org/10.1007/s10732-005-3603-z
|
2 |
Arnol’d V I (1959). On the representation of continuous functions of three variables by superpositions of continuous functions of two variables. Matematicheskii Sbornik, 90(1): 3–74
|
3 |
Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M (2012). Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties.Berlin: Springer Science & Business Media
|
4 |
Babayev D A, Bell G I (2001). An optimization problem with a separable non-convex objective function and a linear constraint. Journal of Heuristics, 7(2): 169–184
https://doi.org/10.1023/A:1009661804163
|
5 |
Becker R W, Lago G (1970). A global optimization algorithm. In: Proceedings of the 8th Allerton Conference on Circuits and Systems Theory. 3–12
|
6 |
Bertsekas D P (1999). Nonlinear Programming.Belmont: Athena Scientific
|
7 |
Bliek C (1998). Coconut deliverable d1-algorithms for solving nonlinear and constrained optimization problems. The COCONUT Project
|
8 |
Boddy M S, Johnson D P (2002). A new method for the global solution of large systems of continuous constraints. In: Bliek C, Jermann C, Neumaier A, eds. International Workshop on Global Optimization and Constraint Satisfaction.Berlin: Springer
|
9 |
Boender C G E, Romeijn H E (1995). Stochastic methods. In: Pardalos P M, Romeijin H E, eds. Handbook of global optimization. Berlin: Springer
|
10 |
Bomze I M, Csendes T, Horst R, Pardalos P M (1997). Developments in Global Optimization.Berlin: Springer Science & Business Media
|
11 |
Boyd S, Xiao L, Mutapcic A, Mattingley J (2007). Notes on Decomposition Methods.Stanford: Stanford University
|
12 |
Burkard R E, Kocher M, Rüdolf R (1997). Rounding strategies for mixed integer programs arising from chemical production planning. Yugoslav Journal of Operations Research
|
13 |
Chiang M, Low S H, Calderbank A R, Doyle J C (2007). Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings of the IEEE, 95(1): 255–312
https://doi.org/10.1109/JPROC.2006.887322
|
14 |
Chinchuluun A, Pardalos P M (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1): 29–50
https://doi.org/10.1007/s10479-007-0186-0
|
15 |
Dantzig G B, Wolfe P (1960). Decomposition principle for linear programs. Operations Research, 8(1): 101–111
https://doi.org/10.1287/opre.8.1.101
|
16 |
Dixon L C W, Szegö G P (1974). Towards global optimisation. In: Proceedings of a workshop at the university of Cagliari, Italy
|
17 |
Du D Z, Pardalos P M (2013). Handbook of Combinatorial Optimization: Supplement, Vol. 1.Berlin: Springer Science & Business Media
|
18 |
Duran M A, Grossmann I E (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical Programming, 36(3): 307–339
https://doi.org/10.1007/BF02592064
|
19 |
Ehrgott M, Gandibleux X (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum, 22(4): 425–460
https://doi.org/10.1007/s002910000046
|
20 |
Fisher M L (1980). Worst-case analysis of heuristic algorithms. Management Science, 26(1): 1–17
https://doi.org/10.1287/mnsc.26.1.1
|
21 |
Fletcher R, Leyffer S (1994). Solving mixed integer nonlinear programs by outer approximation. Mathematical Programming, 66(1–3): 327–349
https://doi.org/10.1007/BF01581153
|
22 |
Floudas C, Aggarwal A, Ciric A (1989). Global optimum search for nonconvex nlp and minlp problems. Computers & Chemical Engineering, 13(10): 1117–1132
https://doi.org/10.1016/0098-1354(89)87016-4
|
23 |
Floudas C A (2013). Deterministic Global Optimization: Theory, Methods and Applications, Vol. 37.Berlin: Springer Science & Business Media
|
24 |
Floudas C A, Pardalos P M (2013). State of the Art in Global Optimization: Computational Methods and Applications, Vol. 7.Berlin: Springer Science & Business Media
|
25 |
Floudas C A, Pardalos P M (2014). Recent Advances in Global Optimization.Princeton: Princeton University Press
|
26 |
Forrest S (1993). Genetic algorithms: principles of natural selection applied to computation. Science, 261(5123): 872–878
https://doi.org/10.1126/science.8346439
pmid: 8346439
|
27 |
Geoffrion A M (1972). Generalized benders decomposition. Journal of Optimization Theory and Applications, 10(4): 237–260
https://doi.org/10.1007/BF00934810
|
28 |
Glover F, Laguna M (1997). Tabu Search.Berlin: Springer
|
29 |
Goemans M X, Williamson D P (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the Association for Computing Machinery, 42(6): 1115–1145 (JACM)
https://doi.org/10.1145/227683.227684
|
30 |
Goertzel B (1999). Global optimization with space-filling curves. Applied Mathematics Letters, 12(8): 133–135
https://doi.org/10.1016/S0893-9659(99)00134-2
|
31 |
Grossmann I E (2002). Review of nonlinear mixed-integer and disjunctive programming techniques. Optimization and Engineering, 3(3): 227–252
https://doi.org/10.1023/A:1021039126272
|
32 |
Grossmann I E, Kravanja Z (1997). Mixed-integer nonlinear programming: A survey of algorithms and applications. In: Biegler L T, Colleman T F, Conn A R, Samtosa F N, eds. Large-scale Optimization with Applications. Berlin: Springer
|
33 |
Gu F Q (2016). Many objective optimization: Objective reduction and weight design. Dissertation for the Doctoral Degree.Hongkong: HKBU
|
34 |
Henrion D, Lasserre J B (2002). Solving global optimization problems over polynomials with gloptipoly 2.1. In: Proceedings of International Workshop on Global Optimization and Constraint Satisfaction.Berlin: Springe
|
35 |
Hirsch M J, Meneses C, Pardalos P M, Resende M G (2007). Global optimization by continuous grasp. Optimization Letters, 1(2): 201–212
https://doi.org/10.1007/s11590-006-0021-6
|
36 |
Hochbaum D, Jansen K, Rolim J D, Sinclair A (1999). Randomization, Approximation, and Combinatorial Optimization. Algorithms and Techniques: In: Proceedings of Third International Workshop on Randomization and Approximation Techniques in Computer Science, and Second International Workshop on Approximation Algorithms for Combinatorial Optimization Problems.Berlin: Springer Science & Business Media
|
37 |
Holmberg K (1990). On the convergence of cross decomposition. Mathematical Programming, 47(1–3): 269–296
https://doi.org/10.1007/BF01580863
|
38 |
Holmberg K, Ling J (1997). A lagrangean heuristic for the facility location problem with staircase costs. European Journal of Operational Research, 97(1): 63–74
https://doi.org/10.1016/S0377-2217(96)00058-6
|
39 |
Hooker J (2011). Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction, Vol. 2.Hoboken: John Wiley & Sons
|
40 |
Horst R, Pardalos P M (2013). Handbook of Global Optimization, Vol. 2.Berlin: Springer Science & Business Media
|
41 |
Horst R, Pardalos P M, Van Thoai N (2000). Introduction to Global Optimization.Berlin: Springer Science & Business Media
|
42 |
Horst R, Tuy H (2013). Global Optimization: Deterministic Approaches.Berlin: Springer Science & Business Media
|
43 |
Kelly F P, Maulloo A K, Tan D K (1998). Rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3): 237–252
https://doi.org/10.1057/palgrave.jors.2600523
|
44 |
Kesavan P, Allgor R J, Gatzke E P, Barton P I (2004). Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs. Mathematical Programming, 100(3): 517–535
https://doi.org/10.1007/s10107-004-0503-1
|
45 |
Khakifirooz M, Chien C-F, Pardalos F M, Panos M (2018). Management suggestions on semiconductor manufacturing engineering: An operations research and data science perspective.Berlin: Springer
|
46 |
Khakifirooz M, Pardalos P M, Fathi M, Power D J (2018). Decision support for smart manufacturing. Encyclopedia of IST, 5th Edition, IGI Global Book
|
47 |
Kirkpatrick S, Gelatt C D Jr, Vecchi M P (1983). Optimization by simulated annealing. Science, 220(4598): 671–680
https://doi.org/10.1126/science.220.4598.671
pmid: 17813860
|
48 |
Kobayashi Y (2014). The complexity of maximizing the difference of two matroid rank functions, METR2014–42. University of Tokyo
|
49 |
Kocis G R, Grossmann I E (1987). Relaxation strategy for the structural optimization of process flow sheets. Industrial & Engineering Chemistry Research, 26(9): 1869–1880
https://doi.org/10.1021/ie00069a026
|
50 |
Kojima M, Kim S, Waki H (2003). A general framework for convex relaxation of polynomial optimization problems over cones. Journal of the Operations Research Society of Japan, 46(2): 125–144
https://doi.org/10.15807/jorsj.46.125
|
51 |
Kolmogorov A (1956). On the representation of continuous functions of several variables as superpositions of functions of smaller number of variables.Berlin: Springer
|
52 |
Lasserre J B (2001). Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3): 796–817
https://doi.org/10.1137/S1052623400366802
|
53 |
Lera D, Sergeyev Y D (2010). Lipschitz and Hölder global optimization using space-filling curves. Applied Numerical Mathematics, 60(1–2): 115–129
https://doi.org/10.1016/j.apnum.2009.10.004
|
54 |
Li D, Sun X, Wang J, McKinnon K I (2009). Convergent lagrangian and domain cut method for nonlinear knapsack problems. Computational Optimization and Applications, 42(1): 67–104
https://doi.org/10.1007/s10589-007-9113-1
|
55 |
Locatelli M (2002). Simulated annealing algorithms for continuous global optimization. In: Horst R, Pardalos P M, eds. Handbook of global optimization.Berlin: Springer
|
56 |
Maehara T, Marumo N, Murota K (2018). Continuous relaxation for discrete DC programming. Mathematical Programming, 169(1): 199–219
https://doi.org/10.1007/s10107-017-1139-2
|
57 |
Mane S U, Rao M N (2017). Many-objective optimization: Problems and evolutionary algorithms–A short review. International Journal of Applied Engineering Research, 12(20): 9774–9793
|
58 |
Marques M, Agostinho C, Zacharewicz G, Jardim-Goncalves R (2017). Decentralized decision support for intelligent manufacturing in industry 4.0. Journal of Ambient Intelligence and Smart Environments, 9(3): 299–313
https://doi.org/10.3233/AIS-170436
|
59 |
Mart R, Panos P, Resende M (2018). Handbook of Heuristics.Berlin: Springer
|
60 |
Mawengkang H, Murtagh B (1986). Solving nonlinear integer programs with large-scale optimization software. Annals of Operations Research, 5(2): 425–437
https://doi.org/10.1007/BF02022084
|
61 |
McCormick G P (1974). A Mini-manual for Use of the Sumt Computer Program and the Factorable Programming Language.Stanford: Stanford University
|
62 |
McCormick G P (1976). Computability of global solutions to factorable nonconvex programs: Part iconvex underestimating problems. Mathematical Programming, 10(1): 147–175
https://doi.org/10.1007/BF01580665
|
63 |
McCormick G P (1983). Nonlinear Programming: Theory, Algorithms, and Applications.New York: Wiley
|
64 |
Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6): 1087–1092
https://doi.org/10.1063/1.1699114
|
65 |
Miettinen K (1999). Nonlinear Multiobjective Optimization. International Series in Operations Research and Management Science.Berlin: Springer
|
66 |
Migdalas A, Pardalos P M, Värbrand P (2013). Multilevel Optimization: Algorithms and Applications, Vol. 20.Berlin: Springer Science & Business Media
|
67 |
Mockus J (2012). Bayesian Approach to Global Optimization: Theory and Applications, Vol. 37.Berlin: Springer Science & Business Media
|
68 |
Moré J J, Wu Z (1997). Global continuation for distance geometry problems. SIAM Journal on Optimization, 7(3): 814–836
https://doi.org/10.1137/S1052623495283024
|
69 |
Mylander W C, Holmes R L, McCormick G P (1971). A guide to sumt-version 4: The computer program implementing the sequential unconstrained minimization technique for nonlinear programming (Technical Report RAC-P-63).Mclean: Research Analysis Corporation
|
70 |
Neumaier A (2004). Complete search in continuous global optimization and constraint satisfaction. Acta Numerica, 13: 271–369
https://doi.org/10.1017/S0962492904000194
|
71 |
Nowak I (2005). Relaxation and decomposition methods for mixed integer nonlinear programming, Vol. 152.Berlin: Springer Science & Business Media
|
72 |
Nowak I, Breitfeld N, Hendrix E M, Njacheun-Njanzoua G (2018). Decomposition-based inner-and outerrefinement algorithms for global optimization. Journal of Global Optimization, (4–5): 1–17
|
73 |
Nowak M P, Römisch W (2000). Stochastic lagrangian relaxation applied to power scheduling in a hydrothermal system under uncertainty. Annals of Operations Research, 100(1–4): 251–272
https://doi.org/10.1023/A:1019248506301
|
74 |
Padberg M, Rinaldi G (1991). A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33(1): 60–100
https://doi.org/10.1137/1033004
|
75 |
Palacios-Gomez F, Lasdon L, Engquist M (1982). Nonlinear optimization by successive linear programming. Management Science, 28(10): 1106–1120
https://doi.org/10.1287/mnsc.28.10.1106
|
76 |
Palomar D P, Chiang M (2006). A tutorial on decomposition methods for network utility maximization. IEEE Journal on Selected Areas in Communications, 24(8): 1439–1451
https://doi.org/10.1109/JSAC.2006.879350
|
77 |
Pardalos P M (1991). Global optimization algorithms for linearly constrained indefinite quadratic problems. Computers & Mathematics with Applications (Oxford, England), 21(6–7): 87–97
https://doi.org/10.1016/0898-1221(91)90163-X
|
78 |
Pardalos P M, Migdalas A, Pitsoulis L (2008). Pareto optimality, game theory and equilibria, Vol. 17.Berlin: Springer Science & Business Media
|
79 |
Pardalos P M, Rosen J B (1986). Methods for global concave minimization: A bibliographic survey. SIAM Review, 28(3): 367–379
https://doi.org/10.1137/1028106
|
80 |
Pardalos P M, Rosen J B (1987). Constrained Global Optimization: Algorithms and Applications.New York: Springer-Verlag
|
81 |
Pardalos P M, Wolkowicz H (1998). Topics in semidefinite and interior-point methods. American Mathematical Society
|
82 |
Pardalos P M, Zilinskas A, Zilinskas J (2017). Non-convex multi-objective optimization, Vol. 123.Berlin: Springer
|
83 |
Paules G E I V IV, Floudas C A (1989). Apros: Algorithmic development methodology for discrete-continuous optimization problems. Operations Research, 37(6): 902–915
https://doi.org/10.1287/opre.37.6.902
|
84 |
Pintér J D (1996). Global Optimization in Action.Dordrecht: Kluwer Academic Publishers
|
85 |
Rahmaniani R, Crainic T G, Gendreau M, Rei W (2017). The benders decomposition algorithm: A literature review. European Journal of Operational Research, 259(3): 801–817
https://doi.org/10.1016/j.ejor.2016.12.005
|
86 |
Resende M G C, Ribeiro C C (2003). Greedy randomized adaptive search procedures. In: Glover F, Kochenberger G, eds. Hand Book of Metaheuristics.Dordrecht: Kluwer Academic Publishers
|
87 |
Rockafellar R T (2016). Problem decomposition in block-separable convex optimization: Ideas old and new. In: Proceedings of the 5th Asian Conference on Nonlinear Analysis and Optimization, Niigata, Japan
|
88 |
Sahinidis N V (1996). Baron: A general purpose global optimization software package. Journal of Global Optimization, 8(2): 201–205
https://doi.org/10.1007/BF00138693
|
89 |
Schelstraete S, Schepens W, Verschelde H (1999). Energy minimization by smoothing techniques: A survey.Molecular Dynamics: from Classical to Quantum Methods
|
90 |
Schichl H (2010). Mathematical Modeling and Global Optimization.Cambridge: Cambridge University Press
|
91 |
Sellmann M, Fahle T (2003). Constraint programming based lagrangian relaxation for the automatic recording problem. Annals of Operations Research, 118(1–4): 17–33
https://doi.org/10.1023/A:1021845304798
|
92 |
Sergeyev Y D, Strongin R G, Lera D (2013). Introduction to Global Optimization Exploiting Space-Filling Curves.Berlin: Springer Science & Business Media
|
93 |
Smith E M, Pantelides C C (1996). Global optimisation of general process models. In: Grossmann I E, eds. Global Optimization in Engineering Design.Berlin: Springer
|
94 |
Smith E M, Pantelides C C (1999). A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex minlps. Computers & Chemical Engineering, 23(4–5): 457–478
https://doi.org/10.1016/S0098-1354(98)00286-5
|
95 |
Sprecher D (2013). Kolmogorov superpositions: A new computational algorithm. In: Igelnik B, eds. Efficiency and Scalability Methods for Computational Intellect.New York: IGI Global
|
96 |
Sprecher D (2014). On computational algorithms for real-valued continuous functions of several variables. Neural Networks, 59: 16–22
https://doi.org/10.1016/j.neunet.2014.05.015
pmid: 25036646
|
97 |
Sprecher D A, Draghici S (2002). Space-filling curves and Kolmogorov superposition-based neural networks. Neural Networks, 15(1): 57–67
https://doi.org/10.1016/S0893-6080(01)00107-1
pmid: 11958490
|
98 |
Strongin R, Sergeyev Y D (2000). Global Optimization with Non-Convex Constraints.Dordrecht: Kluwer Academic Publishers
|
99 |
Svanberg K (2002). A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM Journal on Optimization, 12(2): 555–573
https://doi.org/10.1137/S1052623499362822
|
100 |
Tawarmalani M, Sahinidis N V (2002). Convexification and Global Optimization in Continuous and Mixedinteger Nonlinear Programming: Theory, Algorithms, Software, and Applications, Vol. 65.Berlin: Springer Science & Business Media
|
101 |
Tikhomirov V (1991). On the representation of continuous functions of several variables as superpositions of continuous functions of one variable and addition. In: Kolmogorov A N, Shiryaeu A, eds. Selected Works of AN Kolmogorov.Berlin: Springer
|
102 |
Torn A, Zilinskas A (1989). Global Optimization.New York: Springer-Verlag
|
103 |
Trivedi A, Srinivasan D, Sanyal K, Ghosh A (2017). A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Transactions on Evolutionary Computation, 21(3): 440–462
|
104 |
Türkay M, Grossmann I E (1996). Logic-based minlp algorithms for the optimal synthesis of process networks. Computers & Chemical Engineering, 20(8): 959–978
https://doi.org/10.1016/0098-1354(95)00219-7
|
105 |
Vaidyanathan R, El-Halwagi M (1996). Global optimization of nonconvex minlps by interval analysis. In: Grossmann I E, eds. Global Optimization in Engineering Design.Berlin: Springer
|
106 |
Van Hentenryck P, Michel L, Deville Y (1997). Numerica: A Modeling Language for Global Optimization.Boston: MIT Press
|
107 |
Vazirani V V (2013). Approximation Algorithms.Berlin: Springer Science & Business Media
|
108 |
Vecchietti A, Grossmann I E (1999). Logmip: A disjunctive 0–1 non-linear optimizer for process system models. Computers & Chemical Engineering, 23(4–5): 555–565
https://doi.org/10.1016/S0098-1354(98)00293-2
|
109 |
Viswanathan J, Grossmann I E (1990). A combined penalty function and outer-approximation method for minlp optimization. Computers & Chemical Engineering, 14(7): 769–782
https://doi.org/10.1016/0098-1354(90)87085-4
|
110 |
Westerlund T, Lundqvist K (2001). Alpha-ECP, version 5.01: An interactive MINLP-solver based on the extended cutting plane method.
|
111 |
Westerlund T, Pettersson F (1995). An extended cutting plane method for solving convex minlp problems. Computers & Chemical Engineering, 19: 131–136
https://doi.org/10.1016/0098-1354(95)87027-X
|
112 |
Westerlund T, Pettersson F, Grossmann I E (1994). Optimization of pump configurations as a minlp problem. Computers & Chemical Engineering, 18(9): 845–858
https://doi.org/10.1016/0098-1354(94)E0006-9
|
113 |
Wu C, Wang Y, Lu Z, Pardalos P M, Xu D, Zhang Z, Du D Z (2018). Solving the degree-concentrated fault-tolerant spanning subgraph problem by dc programming. Mathematical Programming, 169(1): 255–275
https://doi.org/10.1007/s10107-018-1242-z
|
114 |
Zamora J M, Grossmann I E (1998a). A global minlp optimization algorithm for the synthesis of heat exchanger networks with no stream splits. Computers & Chemical Engineering, 22(3): 367–384
https://doi.org/10.1016/S0098-1354(96)00346-8
|
115 |
Zamora J M, Grossmann I E (1998b). Continuous global optimization of structured process systems models. Computers & Chemical Engineering, 22(12): 1749–1770
https://doi.org/10.1016/S0098-1354(98)00244-0
|
116 |
Zhang H, Wang S (2006). Global optimization of separable objective functions on convex polyhedra via piecewise-linear approximation. Journal of Computational and Applied Mathematics, 197(1): 212–217
https://doi.org/10.1016/j.cam.2005.10.034
|
117 |
Zheng Q P, Wang J, Pardalos P M, Guan Y (2013). A decomposition approach to the two-stage stochastic unit commitment problem. Annals of Operations Research, 210(1): 387–410
https://doi.org/10.1007/s10479-012-1092-7
|
118 |
Zwick U (1999). Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to max cut and other problems. In: Proceedings of the 31st annual ACM symposium on Theory of computing, ACM. 679–687
|