Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2018, Vol. 5 Issue (2) : 251-267    https://doi.org/10.15302/J-FEM-2018086
RESEARCH ARTICLE
Detection of schedule delay risk of empirical construction projects
Tsegay GEBREHIWET(), Hanbin LUO
Department of Construction Management, School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(741 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In Ethiopian construction projects, schedule delay risk is a predominant issue because it is not properly addressed. Although several studies have been focused on the various effects of risk in construction projects, limited efforts have been made to investigate the typical and the overall schedule delay risk. In this study, our aim is to detect the typical and overall schedule delay risk throughout the construction project lifecycle, which consists of the pre-construction, construction, and post-construction stages, and compare the stages with each other. Common criteria, sub-criteria, and attributes were developed for all alternatives for the purpose of making a risk decision. The methodology that was followed integrated the multiple-criteria decision-making (MCDM) model of fuzzy analytic hierarchy process comprehensive evaluation (FAHPCE) and the relative important index (RII). Data were collected from 77 participants, who were selected through purposive sampling from different contracting organizations in Ethiopian construction projects by means of questionnaires that were distributed to experienced experts. The findings showed that there is a typical delay risk either in the type or in the level of the different construction activities. Consequently, the most influenced alternative is the construction stage because of the high-risk responsibility, resource, and contract condition related criteria. The post-construction stage was the second most influenced stage because of the high-risk responsibility-related criteria. The pre-constructed stage was the least influenced stage that consist high-risk criteria of responsibility, resource, and contract condition related. These differences provided noteworthy information about risk mitigation in construction projects by identifying the exact risk level on specific activity to make appropriate decision.

Keywords fuzzy analytic hierarchy process comprehensive evaluation      construction project      detection of delay risk      relative important index     
Corresponding Author(s): Tsegay GEBREHIWET   
Just Accepted Date: 10 April 2018   Online First Date: 14 May 2018    Issue Date: 28 June 2018
 Cite this article:   
Tsegay GEBREHIWET,Hanbin LUO. Detection of schedule delay risk of empirical construction projects[J]. Front. Eng, 2018, 5(2): 251-267.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2018086
https://academic.hep.com.cn/fem/EN/Y2018/V5/I2/251
Fig.1  Proposed model to detect delay risk factors in the construction lifecycle
Goal Criteria Sub-criteria Alternatives
Construction project delay factors Responsibility-Related (A) Client-related (A1) Lack of on-time finance and payments of completed work (A11)
Interference in the execution of the work (A12)
Slowness in decision making (A13)
Late site delivery for construction work and design (A14)
Improper project feasibility study (A15)
Poor communication and coordination with other parties (A16)
Contractor-related (A2) Subcontractor-related problems (A21)
Poor site management and performance (A22)
Ineffective project planning and scheduling (A23)
Inappropriate construction methods (A24)
Poor communication and coordination with other parties (A25)
Inadequate contractor experience (A26)
Rework for the correction of unsatisfactory work (A27)
Consultant-related (A3) Inadequate experience of consultant (A31)
Late in approving and receiving a complete project work (A32)
Poor supervision and late in performing inspection and testing (A33)
Poor communication and coordination with other parties (A34)
Designer-related (A4) Unclear and inadequate details and specification of design (A41)
Late design and design documents (A42)
Design mistakes and errors (A43)
Misunderstanding of client requirements (A44)
Resource-Related (B) Material-related (B1) Lack of quality materials (B11)
Slow delivery of material (B12)
Changes in material types and specifications (B13)
Damage of materials (B14)
Inflation/price increase in materials (B15)
Finance-related (B2) Problem in the processing of financial claims (B21)
Government funding processes (B22)
Late-release budget/funds (B23)
Global financial crisis (B24)
Labor-related (B3) Low productivity (B31)
Less motivation and lower morale (B32)
Unqualified/inexperienced workers (B33)
Discipline problem (conflicts and absenteeism) (B34)
Labor accidents and injuries (B35)
Equipment-related (B4) Insufficient or shortage of equipment (B41)
Low efficiency and productivity of equipment (B42)
Failures of equipment and lack of spare parts (B43)
Equipment allocation or mobilization problem (B44)
Outdated equipment (B45)
Contract-Related (C) Absence of alternative dispute resolution (ADR) on contract (C1)
Mistakes & discrepancies/ambiguities in contract documents (C2)
Unrealistic contract durations and cost (C3)
Inadequate delay penalties/poor incentives in contract (C4)
Insufficient details in contract documents (C5)
Lack of clear understanding of contract documents (C6)
External-Related (D) Adverse weather conditions (D1)
Force majeure (acts of God) (D2)
Corruption (D3)
Effect of social and cultural factors (D4)
Government policy and commitment (D5)
Unavailability of utilities on site (D6)
Tab.1  The index system for the evaluation of delay risk factors in a construction project
Linguistic variables Fuzzy number
Very low level of impact 1
Low level of impact 3
Medium level of impact 5
High level of impact 7
Very high level of impact 9
Tab.2  The scale of the pairwise comparison matrix
Severity
0<S≤0.05 0.05<S≤0.1 0.1<S≤0.2 0.2<S≤0.4 0.4<S≤0.8
Frequency 0.7<P≤0.9 Low Medium High High High
0.5<P≤0.7 Low Medium Medium High High
0.3<P≤0.5 Low Low Medium High High
0.1<P≤0.3 Low Low Medium Medium High
0<P≤0.1 Low Low Low Low Medium
Tab.3  Frequency–Severity matrix
Pre-construction Construction Post-construction
Global Weight Global Weight Global Weight Local Weight Global Weight Local Weight Global Weight Local Weight Global Weight
A 0.3182 0.35 0.3182 A1 0.3462 0.110 0.3889 0.1361 0.3182 0.1012
A2 0.2692 0.0857 0.2778 0.0972 0.3182 0.1012
A3 0.1923 0.0612 0.2778 0.0972 0.2273 0.0723
A4 0.1923 0.0612 0.0556 0.0194 0.1364 0.0434
B 0.3182 0.25 0.3182 B1 0.45 0.1432 0.35 0.0875 0.4375 0.1392
B2 0.35 0.1114 0.35 0.0875 0.4375 0.1392
B3 0.15 0.0477 0.15 0.0375 0.0625 0.0199
B4 0.05 0.0159 0.15 0.0375 0.0625 0.0199
C 0.2273 0.25 0.2273
D 0.1364 0.15 0.1364
Tab.4  Global and local weights on the criteria and sub-criteria of the construction lifecycle
Pre-construction Construction Post-construction
Attributes Local Weight Global Weight Local Weight Global Weight Local Weight Global Weight
A11 0.1471 0.0162 0.2917 0.0397 0.2778 0.0281
A12 0.2059 0.0227 0.2083 0.0284 0.1667 0.0184
A13 0.0882 0.0097 0.125 0.0170 0.0556 0.0062
A14 0.2059 0.0227 0.2083 0.0284 0.2778 0.0306
A15 0.2647 0.0292 0.125 0.0170 0.1667 0.0184
A16 0.0882 0.0097 0.0417 0.0057 0.0556 0.0062
A21 0.1111 0.0095 0.1707 0.0166 0.2 0.0203
A22 0.2593 0.0222 0.2195 0.0213 0.2 0.0203
A23 0.3333 0.0286 0.1220 0.0119 0.1556 0.0158
A24 0.1111 0.0095 0.1707 0.0166 0.0667 0.0068
A25 0.0370 0.0032 0.0732 0.0071 0.0667 0.0068
A26 0.1111 0.0095 0.1707 0.0166 0.1556 0.0158
A27 0.0370 0.0032 0.0732 0.0071 0.1556 0.0158
A31 0.2273 0.0139 0.1364 0.0133 0.1154 0.0083
A32 0.3182 0.0195 0.3182 0.0309 0.3462 0.0250
A33 0.2273 0.0139 0.2273 0.0221 0.2692 0.0195
A34 0.2273 0.0139 0.3182 0.0309 0.2692 0.0195
A41 0.3 0.0184 0.2692 0.0052 0.25 0.0109
A42 0.3 0.0184 0.3462 0.0067 0.35 0.0152
A43 0.3 0.0184 0.2692 0.0052 0.25 0.0109
A44 0.1 0.0061 0.1154 0.0022 0.15 0.0066
B11 0.2195 0.0314 0.2432 0.0213 0.2432 0.0339
B12 0.2195 0.0314 0.2432 0.0213 0.2432 0.0339
B13 0.1707 0.0245 0.1892 0.0166 0.1351 0.0188
B14 0.1707 0.0245 0.0811 0.0071 0.1351 0.0188
B15 0.2195 0.0314 0.2432 0.0213 0.2432 0.0339
B21 0.2692 0.0300 0.25 0.0219 0.219 0.0305
B22 0.2692 0.0300 0.1786 0.0156 0.281 0.0392
B23 0.2692 0.0300 0.3214 0.0281 0.281 0.0392
B24 0.1923 0.0214 0.25 0.0219 0.219 0.0305
B31 0.2941 0.0140 0.1579 0.0059 0.2308 0.0046
B32 0.1765 0.0084 0.2632 0.0099 0.2308 0.0046
B33 0.4118 0.0197 0.3684 0.0138 0.3846 0.0077
B34 0.0588 0.0028 0.0526 0.0020 0.0769 0.0015
B35 0.0588 0.0028 0.1579 0.0059 0.0769 0.0015
B41 0.4546 0.0072 0.4286 0.0161 0.4667 0.0093
B42 0.2728 0.0043 0.4286 0.0161 0.3333 0.0066
B43 0.0909 0.0014 0.0476 0.0018 0.0667 0.0013
B44 0.0909 0.0014 0.0476 0.0018 0.0667 0.0013
B45 0.0909 0.0014 0.0476 0.0018 0.0667 0.0013
C1 0.05 0.0114 0.0455 0.0114 0.1786 0.0406
C2 0.05 0.0114 0.0455 0.0114 0.0357 0.0081
C3 0.25 0.0568 0.3182 0.0796 0.25 0.0568
C4 0.15 0.0341 0.2273 0.0568 0.25 0.0568
C5 0.25 0.0568 0.2273 0.0568 0.1786 0.0406
C6 0.25 0.0568 0.1364 0.0341 0.1071 0.0244
D1 0.1 0.0136 0.0385 0.0058 0.0333 0.0046
D2 0.1 0.0136 0.0385 0.0058 0.1 0.0136
D3 0.3 0.0409 0.3462 0.0519 0.3 0.0409
D4 0.0333 0.0046 0.0385 0.0058 0.0333 0.0046
D5 0.1667 0.0227 0.1923 0.0289 0.2333 0.0318
D6 0.3 0.0409 0.3462 0.0519 0.3 0.0409
Tab.5  Global and local weights on the attributes of the construction lifecycle
Pre-construction Construction Post-construction
Sub-criteria Severity RII Severity RII Severity RII
A1 0.6053 0.6346 0.8 0.6448 0.5614 0.6104
A2 0.4611 0.6097 0.8 0.6371 0.5614 0.6039
A3 0.3168 0.5937 0.8 0.6354 0.3796 0.5916
A4 0.3168 0.5803 0.05 0.6051 0.1977 0.5591
B1 0.8 0.6406 0.8 0.6602 0.8 0.6293
B2 0.8 0.6021 0.8 0.6461 0.8 0.6210
B3 0.8 0.5615 0.1661 0.6067 0.05 0.5463
B4 0.05 0.5458 0.2241 0.6011 0.05 0.5431
Tab.6  Severity and frequency occurrence of sub-criteria of the schedule delay factors
Pre-construction Construction Post-construction
Attributes Severity RII Severity RII Severity RII
A11 0.2498 0.5893 0.4157 0.6348 0.4122 0.5855
A12 0.3376 0.6088 0.3063 0.6167 0.2802 0.5567
A13 0.1620 0.6270 0.1969 0.5886 0.1148 0.5387
A14 0.3376 0.6105 0.3063 0.6192 0.4456 0.5804
A15 0.4253 0.6676 0.1969 0.5881 0.2802 0.5719
A16 0.0578 0.5549 0.0546 0.5831 0.0559 0.5212
A21 0.0576 0.5677 0.0676 0.6418 0.0733 0.6353
A22 0.0695 0.6092 0.0732 0.6743 0.0733 0.6571
A23 0.0755 0.6897 0.0619 0.6333 0.0678 0.6061
A24 0.0576 0.5531 0.0674 0.6486 0.0565 0.5541
A25 0.0516 0.5514 0.0563 0.5973 0.0565 0.5565
A26 0.0576 0.5735 0.0674 0.6613 0.0672 0.6090
A27 0.0516 0.5172 0.0563 0.6028 0.0672 0.6091
A31 0.0617 0.5750 0.0635 0.6081 0.0584 0.5647
A32 0.0669 0.6242 0.0842 0.6553 0.0783 0.6686
A33 0.0617 0.5839 0.0739 0.632 0.0717 0.6114
A34 0.0617 0.5917 0.0842 0.6462 0.0717 0.5971
A41 0.0659 0.6583 0.0541 0.6553 0.0614 0.5810
A42 0.0659 0.6658 0.0558 0.6732 0.0666 0.6226
A43 0.0659 0.6394 0.0541 0.6479 0.0614 0.5897
A44 0.0544 0.575 0.0505 0.6030 0.0562 0.5733
B11 0.0782 0.6343 0.0729 0.6879 0.0889 0.6414
B12 0.0782 0.6457 0.0729 0.6768 0.0889 0.6367
B13 0.0716 0.6164 0.0673 0.6364 0.0709 0.59
B14 0.0716 0.6235 0.0562 0.6135 0.0709 0.5869
B15 0.0782 0.6831 0.0729 0.6865 0.0889 0.65
B21 0.0768 0.5941 0.0736 0.6329 0.0848 0.6310
B22 0.0768 0.6 0.0663 0.632 0.0952 0.6381
B23 0.0768 0.620 0.0809 0.6754 0.0952 0.6433
B24 0.0688 0.5940 0.0736 0.6441 0.0848 0.6068
B31 0.0618 0.5882 0.0549 0.6107 0.0539 0.5516
B32 0.0566 0.5581 0.0595 0.6192 0.0539 0.5559
B33 0.0671 0.6539 0.0641 0.6494 0.0576 0.5788
B34 0.0513 0.4899 0.0502 0.5260 0.0502 0.5238
B35 0.0513 0.5175 0.0549 0.6 0.0502 0.5212
B41 0.0554 0.5778 0.0668 0.6632 0.0595 0.5911
B42 0.0527 0.5594 0.0668 0.6727 0.0563 0.5815
B43 0.05 0.5508 0.05 0.5730 0.05 0.5302
B44 0.05 0.528 0.05 0.5816 0.05 0.5188
B45 0.05 0.5129 0.05 0.5432 0.05 0.4939
C1 0.0564 0.5467 0.0566 0.5714 0.0933 0.5815
C2 0.0564 0.5206 0.0566 0.5811 0.0543 0.5516
C3 0.0993 0.582 0.1372 0.6448 0.1128 0.6035
C4 0.0779 0.5647 0.1103 0.6139 0.1128 0.6033
C5 0.0993 0.5913 0.1103 0.6343 0.0933 0.5759
C6 0.0993 0.5864 0.0835 0.6118 0.0738 0.5746
D1 0.0586 0.575 0.05 0.5842 0.05 0.5365
D2 0.0586 0.5544 0.05 0.5672 0.0609 0.5536
D3 0.0843 0.7273 0.1045 0.7781 0.0937 0.7576
D4 0.05 0.54 0.05 0.56 0.05 0.5508
D5 0.05 0.5970 0.05 0.6328 0.05 0.6167
D6 0.05 0.6781 0.5336 0.7371 0.5850 0.6730
Tab.7  Severity and frequency occurrence of the attributes of schedule delay factors
Pre-construction Construction Post-construction
Sub-criteria Risk Rank Matrix Risk Rank Matrix Risk Rank Matrix
A1 0.3841 4 H 0.5159 3 H 0.3427 3 H
A2 0.2811 5 H 0.5097 4 H 0.339 4 H
A3 0.1881 6 H 0.5083 5 H 0.2246 5 H
A4 0.1839 7 H 0.0303 8 L 0.1105 6 H
B1 0.5125 1 H 0.5282 1 H 0.5034 1 H
B2 0.4817 2 H 0.5169 2 H 0.4968 2 H
B3 0.4492 3 H 0.1008 7 M 0.0273 7 L
B4 0.0273 8 L 0.1347 6 H 0.0272 8 L
Tab.8  Risk and risk matrix of the sub-criteria of the schedule delay factors
Pre-construction Construction Post-construction
Attribute Risk Rank Matrix Risk Rank Matrix Risk Rank Matrix
A11 0.1472 4 H 0.2639 2 H 0.2413 3 H
A12 0.2055 3 H 0.1889 4 H 0.156 5 H
A13 0.1016 5 M 0.1159 5 M 0.0618 9 M
A14 0.2061 2 H 0.1897 3 H 0.2586 2 H
A15 0.284 1 H 0.1158 6 M 0.1602 4 H
A16 0.0321 36 M 0.0318 43 M 0.0291 45 M
A21 0.0327 34 M 0.0434 26 L 0.0466 21 M
A22 0.0423 23 M 0.0493 17 M 0.0482 20 M
A23 0.0521 11 M 0.0392 30 M 0.0411 28 M
A24 0.0319 38 L 0.0437 25 M 0.0313 40 M
A25 0.0285 45 L 0.0336 38 M 0.0314 39 M
A26 0.033 33 M 0.0446 23 M 0.041 30 M
A27 0.0267 48 L 0.0339 37 M 0.041 29 M
A31 0.0355 30 M 0.0386 31 M 0.033 36 M
A32 0.0418 25 M 0.0552 11 M 0.0524 18 M
A33 0.036 29 M 0.0467 20 M 0.0438 22 M
A34 0.0365 27 M 0.0544 13 M 0.0428 23 M
A41 0.0434 22 M 0.0354 34 L 0.0357 32 M
A42 0.0439 21 M 0.0376 32 M 0.0414 27 M
A43 0.0421 24 M 0.035 35 L 0.0362 31 M
A44 0.0313 40 M 0.0305 45 L 0.0322 38 M
B11 0.0496 13 M 0.0501 15 M 0.057 13 M
B12 0.0505 12 M 0.0493 18 M 0.0566 14 M
B13 0.0441 18 M 0.0429 27 M 0.0418 25 M
B14 0.0447 17 M 0.0345 36 M 0.0416 26 M
B15 0.0534 10 M 0.05 16 M 0.0578 12 M
B21 0.0457 16 M 0.0466 21 M 0.0533 17 M
B22 0.0461 15 M 0.0419 28 M 0.0607 11 M
B23 0.0476 14 M 0.0546 12 M 0.0612 10 M
B24 0.0408 26 M 0.0474 19 M 0.0515 19 M
B31 0.0364 28 M 0.0335 39 L 0.0297 44 L
B32 0.0316 39 M 0.0368 33 M 0.03 42 L
B33 0.0439 20 M 0.0416 29 M 0.0333 35 M
B34 0.0251 52 L 0.0264 52 L 0.0263 49 L
B35 0.0265 49 L 0.0329 40 L 0.0262 50 L
B41 0.032 37 L 0.0443 24 M 0.0352 33 M
B42 0.0295 43 L 0.045 22 M 0.0328 37 M
B43 0.0275 46 L 0.0287 48 L 0.0265 48 L
B44 0.0264 50 L 0.0291 47 L 0.0259 51 L
B45 0.0256 51 L 0.0272 51 L 0.0247 52 L
C1 0.0309 41 M 0.0324 42 M 0.0542 15 M
C2 0.0294 44 M 0.0329 41 M 0.0299 43 L
C3 0.0578 9 M 0.0884 7 M 0.0681 7 M
C4 0.044 19 M 0.0677 10 M 0.068 8 M
C5 0.0587 7 M 0.07 9 M 0.0537 16 M
C6 0.0582 8 M 0.0511 14 M 0.0424 24 M
D1 0.0337 32 M 0.0292 46 L 0.0268 47 L
D2 0.0325 35 M 0.0284 49 L 0.0337 34 M
D3 0.0613 6 M 0.0813 8 H 0.071 6 M
D4 0.027 47 L 0.028 50 L 0.0275 46 L
D5 0.0299 42 L 0.0316 44 L 0.0308 41 L
D6 0.0339 31 L 0.3933 1 H 0.3937 1 H
Tab.9  Risk rank and risk matrix of the attributes of the schedule delay factors
Pre-construction Construction Post-construction
Criteria Risk Rank Matrix Risk Rank Matrix Risk Rank Matrix
A 0.4837 1 H 0.5045 1 H 0.4730 1 H
B 0.4700 2 H 0.5028 2 H 0.0293 3 L
C 0.4522 3 H 0.4876 3 H 0.0291 4 L
D 0.0306 4 L 0.0322 4 L 0.0307 2 L
Tab.10  Risk rank and risk matrix of the criteria of the schedule delay factors
Construction lifecycle Likelihood Risk occurrence
0.1 0.2 0.3 0.4 0.5
Pre-construction 0.1102 0.2544 0.2871 0.1891 0.1593 0.3033
Construction 0.0829 0.2182 0.2621 0.2519 0.1849 0.3238
Post-construction 0.0995 0.2480 0.2871 0.1970 0.1684 0.3087
Overall construction 0.0978 0.2411 0.2797 0.2108 0.1705 0.3115
Tab.11  Occurrence probability of the risk in alternative and Ethiopian construction projects
Fig.2  Comparison of severity and frequency occurrence of attributes at each stage of construction

(the severity was determined through linear interpolation from the global weight and risk matrix;

the frequency occurrence was computed via the RII to prioritize the delay risk factors)

Fig.3  Comparison of severity and frequency occurrence of sub-criteria at each stage of construction

(the severity was determined through linear interpolation from the global weight and risk matrix;

The frequency occurrence was computed via the RII to prioritize the delay risk factors)

1 Abd El-Karim M S B A, Mosa El Nawawy O A, Abdel-Alim A M (2017). Identification and assessment of risk factors affecting construction projects. HBRC Journal, 13(2): 202–216
https://doi.org/10.1016/j.hbrcj.2015.05.001
2 Abd El-Razek M E, Bassioni H A, Mobarak A M (2008). Causes of delay in building construction projects in Egypt. Journal of Construction Engineering and Management, 134(11): 831–841
https://doi.org/10.1061/(ASCE)0733-9364(2008)134:11(831)
3 Adeleke A Q, Bahaudin A Y, Kamaruddeen A M, Khan M W A, Yao L, Sorooshian S, Salimon M G (2017). The influence of organizational external factors on construction risk management in Nigerian construction companies. Safety and Health at Work, 8(2)
https://doi.org/10.1016/j.shaw.2017.05.004
4 Aminbakhsh S, Gunduz M, Sonmez R (2013). Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects. Journal of Safety Research, 46(Supplement C): 99–105
https://doi.org/10.1016/j.jsr.2013.05.003 pmid: 23932691
5 Assaf S A, Al-Hejji S (2006). Causes of delay in large construction projects. International Journal of Project Management, 24(4): 349–357
https://doi.org/10.1016/j.ijproman.2005.11.010
6 Ayalew T, Dakhli Z, Lafhaj Z (2016). Assessment on performance and challenges of Ethiopian construction industry. Journal of Architecture and Civil Engineering, 2(11): 1–11
7 Dziadosz A, Rejment M (2015). Risk analysis in construction project—Chosen methods. Procedia Engineering, 122(Supplement C): 258–265
https://doi.org/10.1016/j.proeng.2015.10.034
8 El-Sayegh S M (2008). Risk assessment and allocation in the UAE construction industry. International Journal of Project Management, 26(4): 431–438
https://doi.org/10.1016/j.ijproman.2007.07.004
9 El-Sayegh S M, Mansour M H (2015). Risk assessment and allocation in highway construction projects in the UAE. Journal of Management Engineering, 31(6): 04015004
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000365
10 Fallahnejad M H (2013). Delay causes in Iran gas pipeline projects. International Journal of Project Management, 31(1): 136–146
https://doi.org/10.1016/j.ijproman.2012.06.003
11 Forteza F J, Carretero-Gómez J M, Sesé A (2017). Effects of organizational complexity and resources on construction site risk. Journal of Safety Research, 62(Supplement C): 185–198
https://doi.org/10.1016/j.jsr.2017.06.015 pmid: 28882266
12 Gibson G, Walewski J, Dudley G (2003). Life-cycle considerations to optimize risk assessment and management for international projects. In: Proceedings of ASCE Construction Research Congress. Hawaii
13 Gładysz B, Skorupka D, Kuchta D, Duchaczek A (2015). Project risk time management – A proposed model and a case study in the construction industry. Procedia Computer Science, 64(Supplement C): 24–31
https://doi.org/10.1016/j.procs.2015.08.459
14 González P, González V, Molenaar K, Orozco F (2014). Analysis of causes of delay and time performance in construction projects. Journal of Construction Engineering and Management, 140(1): 04013027
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000721
15 Hossen M M, Kang S, Kim J (2015). Construction schedule delay risk assessment by using combined AHP-RII methodology for an international NPP project. Nuclear Engineering and Technology, 47(3): 362–379
https://doi.org/10.1016/j.net.2014.12.019
16 Ibrahim M (2011). Risk matrix for factors affecting time delay in road construction projects: Owners’ perspective. Engineering, Construction, and Architectural Management, 18(6): 609–617
https://doi.org/10.1108/09699981111180917
17 Koushki P A, Al-Rashid K, Kartam N (2005). Delays and cost increases in the construction of private residential projects in Kuwait. Construction Management and Economics, 23(3): 285–294
https://doi.org/10.1080/0144619042000326710
18 Kuo Y C, Lu S T (2013). Using fuzzy multiple criteria decision making approach to enhance risk assessment for metropolitan construction projects. International Journal of Project Management, 31(4): 602–614
https://doi.org/10.1016/j.ijproman.2012.10.003
19 Lee M C (2014). Information security risk analysis method and research trends: AHP and fuzzy comprehensive method. International Journal of Computer Science & Information Technology, 6(1): 29–45
https://doi.org/10.5121/ijcsit.2014.6103
20 Li D, Yang Q, Yu D (2013). On enterprise social responsibility comprehensive evaluation based on two-step fuzzy evaluation method. Modern Economy, 4(1): 66–72
https://doi.org/10.4236/me.2013.41008
21 Liu H Y, Guo J, He W T (2014). The research on subject behavioral risk of whole life-cycle water conservation projects. Frontiers of Engineering Management, 1(4): 348
https://doi.org/10.15302/J-FEM-2014048
22 Luu V T, Kim S Y, Tuan N V, Ogunlana S O (2009). Quantifying schedule risk in construction projects using Bayesian belief networks. International Journal of Project Management, 27(1): 39–50
https://doi.org/10.1016/j.ijproman.2008.03.003
23 Mahamid I, Bruland A, Dmaidi N (2012). Causes of delay in road construction projects. Journal of Management Engineering, 28(3): 300–310
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000096
24 Mojtahedi S M H, Mousavi S M, Makui A (2010). Project risk identification and assessment simultaneously using multi-attribute group decision making technique. Safety Science, 48(4): 499–507
https://doi.org/10.1016/j.ssci.2009.12.016
25 Nguyen A T, Nguyen L D, Long L H, Dang C N (2015). Quantifying the complexity of transportation projects using the fuzzy analytic hierarchy process. International Journal of Project Management, 33(6): 1364–1376
https://doi.org/10.1016/j.ijproman.2015.02.007
26 Rao G S S, Raghavan S V (2014). Construction risk identification and assessment. Indian Journal of Applied Research, 4(5): 388–391
27 Saaty T L (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. New York: McGraw-Hill International Book Co
28 Samantra C, Datta S, Mahapatra S S (2017). Fuzzy based risk assessment module for metropolitan construction project: An empirical study. Engineering Applications of Artificial Intelligence, 65(Supplement C): 449–464
https://doi.org/10.1016/j.engappai.2017.04.019
29 Toth T, Sebestyen Z (2015). Time-varying risks of construction projects. Procedia Engineering, 123(Supplement C): 565–573
https://doi.org/10.1016/j.proeng.2015.10.109
30 Wang J, Yuan H (2017). System dynamics approach for investigating the risk effects on schedule delay in infrastructure projects. Journal of Management Engineering, 33(1): 04016029
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000472
31 Wu Z D, Chen M, Xu H J (2010). Risk assessment of oil and gas drilling engineering cooperation project based on fuzzy comprehensive evaluation. In: Proceedings of the 7th International Conference on Innovation & Management
32 Zeng J, An M, Smith N J (2007). Application of a fuzzy based decision making methodology to construction project risk assessment. International Journal of Project Management, 25(6): 589–600
https://doi.org/10.1016/j.ijproman.2007.02.006
33 Zhu J W, Zhou L N, Zhai Z, Wang C (2016). Financing model decision of inter-basin water transfer projects. Frontiers of Engineering Management, 3(4): 396–403
https://doi.org/10.15302/J-FEM-2016060
34 Zou P X W, Zhang G, Wang J (2007). Understanding the key risks in construction projects in China. International Journal of Project Management, 25(6): 601–614
https://doi.org/10.1016/j.ijproman.2007.03.001
[1] Hongtao ZHOU, Hongwei WANG, Wei ZENG. Smart construction site in mega construction projects: A case study on island tunneling project of Hong Kong-Zhuhai-Macao Bridge[J]. Front. Eng, 2018, 5(1): 78-87.
[2] Dongping CAO, Heng LI, Guangbin WANG. Impacts of building information modeling (BIM) implementation on design and construction performance: a resource dependence theory perspective[J]. Front. Eng, 2017, 4(1): 20-34.
[3] Guang-she Jia,Song-yu Yan,Wen-jun Wang,Ralf Müller,Chen Lin. An Empirical Study on the Generation Mechanism of NIMBY Conflicts of Construction Projects[J]. Front. Eng, 2016, 3(1): 39-49.
[4] Ji-ming Wang. A Study of the Functional Mechanism of Petrochemical Engineering Construction Project Management[J]. Front. Eng, 2014, 1(2): 129-139.
[5] Ru-gui Chen,Jia-meng Chen. Research and Practice of Meta-synthesis Management for the Government-led Urban Complex Construction Project[J]. Front. Eng, 2014, 1(1): 52-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed