Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2017, Vol. 4 Issue (3) : 338-347    https://doi.org/10.15302/J-FEM-2017032
RESEARCH ARTICLE
A case study on sample average approximation method for stochastic supply chain network design problem
Yuan WANG(), Ruyan SHOU, Loo Hay LEE, Ek Peng CHEW
Department of Industrial Systems Engineering & Management, National University of Singapore, Singapore 117576, Singapore
 Download: PDF(373 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study aims to solve a typical long-term strategic decision problem on supply chain network design with consideration to uncertain demands. Existing methods for these problems are either deterministic or limited in scale. We analyze the impact of uncertainty on demand based on actual large data from industrial companies. Deterministic equivalent model with nonanticipativity constraints, branch-and-fix coordination, sample average approximation (SAA) with Bayesian bootstrap, and Latin hypercube sampling were adopted to analyze stochastic demands. A computational study of supply chain network with front-ends in Europe and back-ends in Asia is presented to highlight the importance of stochastic factors in these problems and the efficiency of our proposed solution approach.

Keywords supply chain network      stochastic demand      sampling average approximation      Bayesian bootstrap      Latin hypercube sampling     
Corresponding Author(s): Yuan WANG   
Just Accepted Date: 29 August 2017   Online First Date: 28 September 2017    Issue Date: 30 October 2017
 Cite this article:   
Yuan WANG,Ruyan SHOU,Loo Hay LEE, et al. A case study on sample average approximation method for stochastic supply chain network design problem[J]. Front. Eng, 2017, 4(3): 338-347.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2017032
https://academic.hep.com.cn/fem/EN/Y2017/V4/I3/338
Fig.1  Company SCN design
Fig.2  Supply chain strategies of the company
Decision variablesDescription
XijcsNo. of type c products shipped from FE i to DB j by shipment level s
YjkcsNo. of type c products shipped from DB j to BE k by shipment level s
αijcs1 if type c products are shipped from FE i to DB j by shipment level s, 0 otherwise
βjkcs1 if type c products are shipped from DB j to BE k by shipment level s, 0 otherwise
γj1 if DB j is selected, 0 otherwise
δ1 if the route between Batam and U is selected (as it is a monthly fixed cost), 0 otherwise
ζikcLs1 if demand dikc is larger than or equal to the lower bound of shipment level s, 0 otherwise
ζikcUs1 if demand dikc is smaller than the upper bound of shipment level s, 0 otherwise
ηikcs1 if shipment level s is used for demanddikc, 0 otherwise
θc1 if demand of type c products is nonzero, 0 otherwise.
Tab.1  Decision variables
ParametersDescription
dikcDemand of type c products from BE k, which is supposed to be produced at designated FE i
LsLower bound of shipment level s
UsUpper bound of shipment level s
cijsαTransportation cost from FE i to DB j per carton by shipment level s in EURO
cjksβTransportation cost from DB j to BE k per carton by shipment level s in EURO
cγTransportation cost between B and U per trip in SGD
fjStorage cost of DB j per month in EURO
rEuroSGDExchange rate from EURO to SGD (based on the exchange rate on 27/10/16)
(rEuroSGD = 1.52)
MNo. of months per year (M= 12)
WNo. of weeks per year (W= 52)
TNo. of trips between B and U per week (t = 7)
KA large integer (K= 100000)
Tab.2  Parameters used in the model
Fig.3  BFC on DB decision variables
MonthBatamSingaporePhilippinesShanghaiObjective (S$)
Jul-161011110689.6
Aug-161011121579.5
Sep-161011124029.2
Oct-161011121665.8
Nov-160111128591.7
Dec-161011121233.4
Jan-170111124160.3
Feb-171011111106.9
Mar-171011102843
Apr-17101191406.94
May–17101178181.76
Jun-17101164648.94
Tab.3  DB decisions obtained based on 12-month demands
MonthBatam= 0
Singapore= 0
Batam= 0
Singapore= 1
Batam= 1
Singapore= 0
Batam= 1
Singapore= 1
Jul-169539.409559.519224.1310009.09
Aug-1610589.7710277.7510131.6210722.50
Sep-1610,702.5410,544.2110,335.7610,961.02
Oct-1610,660.8010,363.0310,138.8210,717.72
Nov-1611,509.5810,715.9710,764.6011,107.57
Dec-1610,579.9510,374.6210,102.7810,779.61
Jan-1711,026.9510,346.6910,353.6510,713.01
Feb-179,590.839,463.519,258.919,884.18
Mar-178,972.409,073.508,570.259,480.6
Apr-177,941.568,246.827,671.258,718.36
May–176,755.487,171.926,515.157,646.97
Jun-175,549.946,238.715,387.416,726.34
Annual cost (S$)113,419.2112,376.24108,400.32117,467.97
Tab.4  Objectives obtained based on 12-month demands for four cases defined by BFC
DB Decision ValuesLarge sample results and gaps (S$)
BatamSingaporePhilippinesShanghaiBayesian BootstrapBayesian Bootstrap GapLHSLHS Gap
1011101726.6265.68115654.376.44
1010104274.9117.33120050.9829.62
1001107798.5968.84122940.8018.74
Tab.5  Top 3 SAA Solution values and Gaps
Deterministic resultDEM result (S$)SAA result (S$)
Shanghai+ PhilippinesBatam+ Shanghai+ PhilippinesBatam+ Shanghai+ Philippines
198846.04108400.32101726.62
Tab.6  Comparative results between stochastic and deterministic demand
1 Acar Y, Kadipasaoglu S, Schipperijn P (2010). A decision support framework for global supply chain modelling: An assessment of the impact of demand, supply and lead-time uncertainties on performance. International Journal of Production Research, 48(11): 3245–3268
https://doi.org/10.1080/00207540902791769
2 Alonso-Ayuso A, Escudero L F, Teresa Ortuño M (2003). BFC, a branchand-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0–1 programs. European Journal of Operational Research, 151(3): 503–519
https://doi.org/10.1016/S0377-2217(02)00628-8
3 Altiparmak F, Gen M, Lin L, Paksoy T (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & Industrial Engineering, 51(1): 196–215
https://doi.org/10.1016/j.cie.2006.07.011
4 Averbakh I, Berman O (1997). Minimax regret p-center location on a network with demand uncertainty. Location Science, 5(4): 247– 254
https://doi.org/10.1016/S0966-8349(98)00033-3
5 Badri B A (1999). Combining the analytic hierarchy process and goal programming for global facility location-allocation problem. International Journal of Production Economics, 62(3): 237–248
https://doi.org/10.1016/S0925-5273(98)00249-7
6 Ballou R H (2001). Unresolved issues in supply chain network design. Information Systems Frontiers, 3(4): 417–426
https://doi.org/10.1023/A:1012872704057
7 Bender T, Hennes H, Kalcsics J, Melo T, Nickel S (2002). Location software and interface with gis and supply chain management. Applications and Theory, 233–274
8 Canel C, Khumawala B M (1997). Multi-period international facilities location: An algorithm and application. International Journal of Production Research, 35(7): 1891–1910
https://doi.org/10.1080/002075497194976
9 Chakravarty A K (2005). Global plant capacity and product allocation with pricing decisions. European Journal of Operational Research, 165(1): 157–181
https://doi.org/10.1016/j.ejor.2003.12.022
10 Christian S, Thomas P (2014). Supply chain integration and practical problems in semiconductor manufacturing. Research Gate
11 Cordeau J F, Pasin F, Solomon M M (2006). An integrated model for logistics network design. Annals of Operations Research, 144(1): 59–82
https://doi.org/10.1007/s10479-006-0001-3
12 Dinesh (2010). Semiconductor industry planning process simplified.fied
13 Erlebacher S J, Meller R D (2000). The interaction of location and inventory in designing distribution systems. IIE Transactions, 32(2): 155–166
https://doi.org/10.1080/07408170008963888
14 Eskigun E, Uzsoy R, Preckel P V, Beaujon G, Krishnan S, Tew J D (2005). Outbound supply chain network design with mode selection, lead times and capacitated vehicle distribution centers. European Journal of Operational Research, 165(1): 182–206
https://doi.org/10.1016/j.ejor.2003.11.029
15 Frank R (2002). Natural site selection for distribution center site selection. Operations and Fulfillment
16 Geoffrion A M, Graves G W (1974). Multicommodity distribution system design by benders decomposition. Management Science, 20(5): 822–844
https://doi.org/10.1287/mnsc.20.5.822
17 Gregg S, Mulvey J, Wolpert J (1988). A stochastic planning system for siting and closing public service facilities. Environment & Planning A, 20(1): 83–98
https://doi.org/10.1068/a200083
18 Guillén  G, Mele F, Bagajewicz M, Espuña A, Puigjaner L (2005). Multiobjective supply chain design under uncertainty. Chemical Engineering Science, 60(6): 1535–1553
https://doi.org/10.1016/j.ces.2004.10.023
19 Kim S, Pasupathy R, Henderson S G (2015). A guide to sample average approximation. In: Handbook of Simulation Optimization. Springer, 207–243
20 Klose A, Drexl A (2005). Facility location models for distribution system design. European Journal of Operational Research, 162(1): 4–29
https://doi.org/10.1016/j.ejor.2003.10.031
21 Kouvelis P, Rosenblatt M J (2002). A mathematical programming model for global supply chain management: Conceptual approach and managerial insights. In: Supply Chain Management: Models, Applications, and Research Directions. Springer, 245–277
22 Kouvelis P, Yu G (2013). Robust discrete optimization and its applications. Springer Science & Business Media, 14
23 Laval C, Feyhl M, Kakouros S (2005). Hewlett-packard combined or and expert knowledge to design its supply chains. Interfaces, 35(3): 238–247
https://doi.org/10.1287/inte.1050.0143
24 MirHassani S, Lucas C, Mitra G, Messina E, Poojari C A (2000). Computational solution of capacity planning models under uncertainty. Parallel Computing, 26(5): 511–538
25 Owen S H, Daskin M S (1998). Strategic facility location: A review. European Journal of Operational Research, 111(3): 423–447
https://doi.org/10.1016/S0377-2217(98)00186-6
26 Petridis K (2015). Optimal design of multi-echelon supply chain networks under normally distributed demand. Annals of Operations Research, 227(1): 63–91
https://doi.org/10.1007/s10479-013-1420-6
27 Rubin D B (1981). The bayesian bootstrap. Annals of Statistics, 9(1): 130–134
https://doi.org/10.1214/aos/1176345338
28 Sabri E H, Beamon B M (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28(5): 581–598
https://doi.org/10.1016/S0305-0483(99)00080-8
29 Shen Z J M, Qi L (2007). Incorporating inventory and routing costs in strategic location models. European Journal of Operational Research, 179(2): 372–389
https://doi.org/10.1016/j.ejor.2006.03.032
30 Stein M (1987). Large sample properties of simulations using latin hypercube sampling. Technometrics, 29(2): 143–151
https://doi.org/10.1080/00401706.1987.10488205
31 Sule D R (2001). Logistics of Facility Location and Allocation.America: CRC Press
32 T siakis P, Shah N, Pantelides C C (2001). Design of multi-echelon supply chain networks under demand uncertainty. Industrial & Engineering Chemistry Research, 40(16): 3585–3604
https://doi.org/10.1021/ie0100030
33 Wilhelm W, Liang D, Rao B, Warrier D, Zhu X, Bulusu S (2005). Design of international assembly systems and their supply chains under nafta. Transportation Research Part E, Logistics and Transportation Review, 41(6): 467–493
https://doi.org/10.1016/j.tre.2005.06.002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed