Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    0, Vol. Issue () : 458-464    https://doi.org/10.1007/s11707-008-0057-2
Seasonal variability of deep ocean particle fluxes and particle composition in the north open sea of Prydz Bay
HU Chuanyu1, XUE Bin2, LIU Xiaoya2, PAN Jianming2
1.Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration;China University of Geosciences; 2.Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration;
 Download: PDF(287 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Time-series Mark VII sediment trap was deployed at 72°58.55′E, 62°28.63′S (north of the Prydz Bay, Antarctica) during the cruise of CHINARE-15 in cooperation with University of Marine of America. Seasonal variability of deep ocean particle fluxes and biogenic components were investigated in order to reveal the fluxes and biogeochemistry of sinking particles in the deep ocean. The results show that the total mass flux of sinking particles at a water depth of 1000 m ranges from 13.00 to 334.59 mg·d-1·m-2). A marked seasonal variability exists in the fluxes of all particle components reflecting the seasonal changes in upper water productivity. Biogenic material was a significant component and biogenic silica represented more than 80% of the biogenic matter, reflecting a diatom dominated system, but a lithogenic fraction is always present. The fact that the POC dominated over particulate inorganic carbon (as CaCO3) and Cinorg/Corg was always greater than 1, indicate a net removal of CO2 from surface water by biological activity.
Issue Date: 05 December 2008
 Cite this article:   
HU Chuanyu,XUE Bin,LIU Xiaoya, et al. Seasonal variability of deep ocean particle fluxes and particle composition in the north open sea of Prydz Bay[J]. Front. Earth Sci., 0, (): 458-464.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-008-0057-2
https://academic.hep.com.cn/fesci/EN/Y0/V/I/458
1 Antia A N, Bodungen B V, Peinert R (1999). Particle flux across the mid-Europeancontinental margin. Deep-Sea Research I, 46: 1999–2024.
doi:10.1016/S0967-0637(99)00041-2
2 Arrigo K R, Worthen D, Schell A, et al. (1998). Primary productionin SouthernOceanwaters. Journal of Geophysical Research, 103: 15587–15600.
doi:10.1029/98JC00930
3 Brzezinski M A (1985). The Si:C:N ratio of marine diatoms: interspecific variabilityand the effect of some environmental variables. Journal of Phycology, 21: 347–357
4 Brzezinski M A, Dickson M L, Nelson D M (2003). Ratios of Si, C and N uptake by microplanktonin the Southern Ocean. Deep-Sea ResearchII, 50: 619–633.
doi:10.1016/S0967-0645(02)00587-8
5 Brzezinski M A, Nelson D M, Franck V M (2001). Silicon dynamics within the intenseopen-ocean diatom bloom inthe Pacific sector of the Southern Ocean. Deep-Sea Research II, 48 (19–20): 3997–4018.
doi:10.1016/S0967-0645(01)00078-9
6 Buat-Menard P, Davies J, Remoudaki E, et al. (1989). Non-steady-state biologicalremoval of atmospheric particles from Mediterranean surface waters. Nature, 340: 131–134.
doi:10.1038/340131a0
7 Buesseler K O, Ball L, Andrews J, et al. (2001). Upper ocean export of particulateorganic carbon and biogenic silica in the Southern Ocean along 170°W. Deep-Sea Research II, 48: 4275–4297.
doi:10.1016/S0967-0645(01)00089-3
8 Collier R, Dymond J, Honjo S, et al. (2000). The vertical flux of biogenicand lithogenic material in the Ross Sea: moored sediment trap observations1996–1998. Deep-Sea Research II, 47: 3491–3520.
doi:10.1016/S0967-0645(00)00076-X
9 Conte M H, Ralph N, Ross E H (2001). Seasonal and interannual variabilityin deep ocean particle fluxes at the Oceanic Flux Program (OFP)/BermudaAtlantic Time Series (BATS) site in the western Sargasso Sea nearBermuda. Deep-Sea Research II, 48: 1471–1505.
doi:10.1016/S0967-0645(00)00150-8
10 Honjo S (1997). The Northwestern Pacific Ocean, a Crucial Ocean Regionto Understand Global Change: Rationale for New International CollaborativeInvestigations. In: Tsumagai S, ed. Biogeochemical Processes in the North Pacific:Proceedings of the International Marine Science Symposium held on12–14 November 1996 at Mutsu, Aomori, Japan, Japan Marine ScienceFoundation, Tokyo, 233–244, 418
11 Honjo S , Dymond J , Collier R , et al. (1995). Export production of particlesto the interior of the equatorial Pacific Ocean during the 1992 EqPacexperiment. Deep-Sea Research II 42, 831–870.
doi:10.1016/0967-0645(95)00034-N
12 Honjo S, Francois R, Manganini S, et al. (2000). Particle fluxes to the interiorof the Southern Ocean in the Western Pacific sector along 170°W. Deep-Sea Research II, 47: 3521–3548.
doi:10.1016/S0967-0645(00)00077-1
13 Ittekkot V, Nair R R, Honjo S, et al. (1991). Enhanced particle fluxesin the Bay of Bengal induced by injection of fresh water. Nature, 351: 385–387.
doi:10.1038/351385a0
14 Jacka T H (1983). A computer data base for Antarctic sea ice extent. ANARE Res Notes, 13: 54
15 Kerherve P, Heussner S, Charriere B, et al. (1999). Biogeochemistry and dynamicsof settling particle fluxes at the Antikythira Strait (Eastern Mediterranean). Progress in Oceanography, 44: 651–675.
doi:10.1016/S0079-6611(99)00040-3
16 Lampitt R S, Antia A N (1997). Particleflux in deep seas: regional characteristics and temporal variability. Deep-Sea Research I, 44: 1377–1403.
doi:10.1016/S0967-0637(97)00020-4
17 Langone L, Frignani M, Ravaioli M, et al. (2000). Particle fluxes and biogeochemicalprocesses in an area influenced by seasonal retreat of the ice margin(northwestern Ross Sea, Antarctic). Journalof Marine Systems, 27: 221–234.
doi:10.1016/S0924-7963(00)00069-5
18 Liu Z L, Cai Y M, Chen Z Y, et al. (2002), The distribution featureof chlorophyll a and primary productivity in Prydz Bay and its northsea area during the austral summer of 1999/2000. Chinese Journal of Polar Research, 14(1): 12–21 (in Chinese)
19 Mortlock R A, Froelich P N (1989). A simplemethod for the rapid determination of biogenic BioSiO2 in pelagic marine sediments. Deep-SeaResearch, 36(9): 1415–1426.
doi:10.1016/0198-0149(89)90092-7
20 Nelson D M, Anderson R F, Barber R T, et al. (2002). Vertical budgets for organiccarbon and biogenic silica in the Pacific sector of the Southern Ocean,1996–1998. Deep-Sea Research II, 49(9–10): 1645–1674.
doi:10.1016/S0967-0645(02)00005-X
21 Neuer S, Ratmeyer V, Davenport R, et al. (1997). Deep water particle fluxin the Canary Island region: seasonal trends in relation to long-termsatellite derived pigment data and lateral sources. Deep-Sea Research I, 44(8): 1451–1466.
doi:10.1016/S0967-0637(97)00034-4
22 Pilskaln C H, Paduan J B, Chavez F P, et al. (1996). Carbon export and regenerationin the coastal upwelling system of Monterey Bay, central California. Journal of Marine Research, 54: 1149–1178.
doi:10.1357/0022240963213772
23 Pussceddu A, Cattaneo-Vietti R, Albertelli G, et al. (1999). Origin, biochemical compositionand vertical flux of particulate organic matter under the pack icein Terra Nova Bay (Ross Sea, Antarctica) during late summer 1995. Polar Biol, 22: 124–132.
doi:10.1007/s003000050399
24 Ragueneau O, Dittert N, Pondaven P, et al. (2002). Si/C decoupling in the worldocean: is the Southern Ocean different? Deep-Sea Research II, 49(16): 3127–3154.
doi:10.1016/S0967-0645(02)00075-9
25 Ramaswamy V, Nair R R, Manganini S, et al. (1991). Lithogenic fluxes to thedeep Arabian and Portugal from 1981 to 1991. Journal of Geophysical Research, 99: 14197–14207
26 Rubin S I, Takahashi T, Chipman D W, et al. (1998). Primary productivity andnutrient utilization ratios in the Pacific sector of the SouthernOcean based on seasonal changes in seawater chemistry. Deep-Sea Research, 45: 1211–1234.
doi:10.1016/S0967-0637(98)00021-1
27 Sarmiento J L, Hughes T M C, Stouffer R J, et al. (1998). Simulated response of theocean carbon cycle to anthropogenic climate warming. Nature, 393: 245–249.
doi:10.1038/30455
28 Siegel D A, Deuser W G (1997). Trajectoriesof sinking particles in the Sargasso Sea: modeling of statisticalfunnels above deep-ocean sediment traps. Deep-Sea Research I, 44: 1519–1541.
doi:10.1016/S0967-0637(97)00028-9
29 Smith N, Treguer P (1994). Physicaland Chemical Oceanography in the Vicinity of Prydz Bay, Antarctica. In: El-Sayed S Z, ed. Southern Ocean Ecology: The BIOMASS Perspective. Cambridge: Cambridge Univ Press, 25–45
30 Smith N R, Dong Z, Kerry K R, et al. (1984). Water masses and circulationin the region of Prydz Bay, Antarctica. Deep-Sea Research, 3(9): 1121–1147.
doi:10.1016/0198-0149(84)90016-5
31 Sun J, Liu D Y, Ning X R, et al. (2003). Phytoplankton in the PrydzBay and the adjacent Indian sector of the Southern Ocean during theaustral summer 2001/2002. Oceanologia etLimnologia Sinica, 34(5): 519–532 (in Chinese)
32 Tsunogai S, Noriki S (1991). Particulatefluxes of carbonate and organic carbon in the ocean. Is the marinebiological activity working as a sink of the atmospheric carbon? Tellus, 43: 256–266.
doi:10.1034/j.1600-0889.1991.00018.x
33 Zhu G H, Ning X R, Liu Z L, et al. (2006). A study on phytoplanktonin the Prydz Bay and its adjacent sea area, Antarctica during theaustral summer of 2000. Acta OceanologicaSinica, 28(1): 118–126 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed