Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci Chin    2009, Vol. 3 Issue (1) : 118-128    https://doi.org/10.1007/s11707-009-0012-x
RESEARCH ARTICLE
Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions
Yansong BAO1,2,3(), Wei GAO2,3, Zhiqiang GAO2,3,4
1. School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO80521, USA; 3. Key Lab of Geographic Information Science, East China Normal University, Shanghai 200062, China; 4. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(523 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biomass can indicate plant growth status, so it is an important index for plant growth monitoring. This paper focused on the methodology of estimating the winter wheat biomass based on hyperspectral field data, including the LANDSAT TM and EOS MODIS images. In order to develop the method of retrieving the wheat biomass from remote sensed data, routine field measurements were initiated during periods when the LANDSAT satellite passed over the study region. In the course of the experiment, five LANDSAT TM images were acquired respectively at early erecting stage, jointing stage, earring stage, flowering stage and grain-filling stage of the winter wheat, and the wheat biomass was measured at each stage. Based on the TM and MODIS images, spectral indices such as NDVI, RDVI, EVI, MSAVI, SIPI and NDWI were calculated. At the same time, the hyperspectral field data was used to compute the normalized difference in spectral indices, red-edge parameters, spectral absorption, and reflection feature parameters. Then the correlation coefficients between the wheat biomass and spectral parameters of the experiment sites were computed. According to the correlation coefficients, the optimal spectral parameters for estimating the wheat biomass were determined. The best-fitting method was employed to build the relationship models between the wheat biomass and the optimal spectral parameters. Finally, the models were used to estimate the wheat biomass based on the TM and MODIS data. The maximum RMSE of estimated biomass was 66.403 g/m2.

Keywords LANDSAT TM      EOS MODIS      biomass retrieval      spectral indices     
Corresponding Author(s): BAO Yansong,Email:ysbao@hotmail.com   
Issue Date: 05 March 2009
 Cite this article:   
Yansong BAO,Wei GAO,Zhiqiang GAO. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions[J]. Front Earth Sci Chin, 2009, 3(1): 118-128.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0012-x
https://academic.hep.com.cn/fesci/EN/Y2009/V3/I1/118
Fig.1  Experimental plots of Beijing in 2004 and 2005
index1234567
B1/nm560670890920857820820
B2 /nm670890980980121016502200
Tab.1  Wavelengths of B1 and B2
Fig.2  Inverted Gaussian reflectance model and red-edge parameters
reflectanceand spectral parameters4/3/20054/15/20044/21/20055/8/20055/18/20045/22/20056/2/2004
455-0.627-0.706-0.741-0.350.198-0.239-0.144
550-0.566-0.731-0.665-0.2540.205-0.29-0.001
680-0.753-0.765-0.796-0.5150.038-0.296-0.527
9800.6270.3640.3850.2140.2460.1320.389
10900.6440.4590.430.3190.2680.1950.388
12000.375-0.0540.095-0.0680.169-0.0630.156
12850.38-0.0480.095-0.0380.141-0.0550.135
1468-0.686-0.717-0.748-0.6110.004-0.34-0.598
1685-0.468-0.629-0.581-0.4540.015-0.313-0.461
2200-0.649-0.713-0.741-0.6190.045-0.334-0.602
[670,890]0.850.7990.7970.6240.0910.3080.538
[890,980]0.8370.9060.8230.7250.5350.4890.679
[920,980]0.8440.9090.8180.7220.4860.490.647
[857,1210]0.8250.8840.8230.7430.4590.4650.692
[820,1650]0.8260.8490.7990.7460.3330.3960.657
[820,2200]0.810.7990.7850.7330.1610.3580.643
REP0.710.8940.6860.575-0.0120.3920.291
Lo0.8150.820.760.4670.250.3350.481
Lwidth-0.775-0.493-0.70.557-0.5220.015-0.615
depth 6720.8490.7850.7880.6220.1220.2980.563
area 6720.8550.8280.7980.5680.0990.3330.552
ND 672-0.821-0.855-0.772-0.518-0.052-0.363-0.409
depth 9800.8620.9120.8030.7360.4610.4920.631
area 9800.8610.9120.8020.7430.4110.5040.64
ND 9800.2860.433-0.311-0.6490.293-0.240.122
depth 11900.8710.8920.7880.7690.2520.4440.571
area 11900.8680.8940.790.7680.2530.4430.587
ND 1190-0.536-0.777-0.808-0.698-0.117-0.393-0.571
depth 14500.7920.7610.7610.7060.1090.3130.578
area 1450-0.767-0.786-0.3330.052-0.4640.165-0.554
ND 1450-0.1070.4830.5010.4010.1670.3650.493
P_depth 560-0.401-0.472-0.742-0.63-0.063-0.126-0.349
PND 5600.7970.7180.8230.5120.0990.1450.63
P_area 5600.7920.7040.8260.560.0980.1410.622
P_depth 9200.7380.7280.7380.410.4880.2590.652
PND 9200.8420.8830.7960.7210.3810.5150.503
P_area 9200.8460.8650.790.7280.3020.5420.436
P_depth 11000.499-0.672-0.071-0.025-0.297-0.033-0.486
PND 11000.8620.8960.7890.770.240.4750.585
P_area 11000.8640.8970.7870.7650.2770.4620.591
P_depth 1280-0.557-0.718-0.764-0.6390.216-0.172-0.288
PND 12800.8170.7860.750.749-0.0660.340.522
P_area 12800.780.7660.7770.662-0.3080.1890.441
P_depth 1690-0.08-0.488-0.659-0.411-0.227-0.399-0.545
PND 16900.7340.7470.7510.5460.1120.2270.65
P_area 16900.7190.740.7610.5480.1620.2480.658
P_depth 2230-0.562-0.301-0.469-0.5440.512-0.27-0.351
PND 22300.5190.6350.7480.3140.4490.0310.369
P_area 22300.540.6620.7620.3850.3790.0660.433
Tab.2  Correlation coefficients between the biomass and hyperspectral parameters
growth stagemodelpptimal spectral parameterR2
late erecting stagey= 884.96x+9.868depth 11900.759
jointing stagey=43.571x-42.686area 9800.833
booting stagey=604.11x+85.259P_area 5600.682
earring stagey=3257.8x-159.16PND 11000.593
flowering stagey=6611.9x+125.26[890,980]0.286
grain-filling stagey=105.88x-322.48P_area 9200.294
maturing stagey=2608.2x+234.3[857,1210]0.479
Tab.3  Biomass retrieval model based on the hyperspectral parameters at different growth stages
acronymindexequationreference
NDVInormalized difference vegetation indexNDVI=(TM4—TM3)/(TM4+TM3)Rouse et al., 1974
RDVIrenormalized difference vegetation indexRDVI=(TM4—TM3)/SQRT(TM4+TM3)Rougean & Breon, 1995
MSAVImodified soil-adjusted vegetation index(2TM4+1—SQRT((2TM4+1)^2–8(TM4—TM3)))/2Qi et al., 1994
EVIenhanced vegetation index2.5(TM4—TM3)/(1+TM4+6TM3–7.5TM1)Huete et al., 1996
SIPIstructure insensitive pigment indexSIPI=(TM4—TM1)/(TM4—TM3)Pe?uelas et al., 1995
NDWInormalized difference water indexNDWI=(TM4—TM5)/(TM4+TM5)Gao, 1996
Tab.4  Spectral indices used in this paper
Date4/1/20044/3/20054/15/20044/21/20055/8/20055/18/20045/22/20056/2/2004
phenophaseearly erecting stagelate erecting stagejointing stagebooting stageearring stageflowering stagegrain-filling stagematuring stage
NDVI0.8880.8520.8060.7960.6060.0910.3120.551
RDVI0.8880.8690.7920.7390.5180.3050.2940.593
EVI0.8880.8580.7800.7310.4910.3320.2920.621
MSAVI0.8910.8680.7840.7310.4920.3250.2890.606
SIPI-0.782-0.816-0.734-0.729-0.577-0.192-0.287-0.500
NDWI0.8830.8280.8420.7970.7450.3170.3900.693
Tab.5  The correlation coefficients of wheat biomass and spectral indices based on the simulated data
date4/1/20044/15/20045/6/20055/19/20045/22/2005
phenophaseearly erecting stagejointing stageearring stageflowering stagegrain-filling stage
NDVI0.8470.6140.7820.3120.342
RDVI0.8140.6290.7480.4920.389
EVI0.8290.7870.7060.6410.330
MSAVI0.8040.6220.7520.4960.390
SIPI-0.762-0.757-0.638-0.637-0.252
NDWI0.8420.8030.8330.5790.544
Tab.6  Correlation coefficients of wheat biomass and spectral indices based on TM data
Fig.3  Relation between NDVI and biomass on April 1, 2004 (early erecting stage)
Fig.4  Relation between NDVI and biomass on April 17, 2004 (jointing stage)
Fig.5  Relation between NDVI and biomass on May 6, 2005 (earring stage)
Fig.6  Relation between NDVI and biomass on May 19, 2004 (flowing stage)
Fig.7  The relation between NDVI and biomass on May 22, 2004 (grain-filling stage)
Fig.8  The relation between NDVI and biomass on vegetative stage
date4/1/20044/3/20054/15/20044/21/20055/8/20055/18/20045/22/20056/2/2004vegetative stage
phenophaseearly erecting stagelate erecting stagejointing stagebooting stageearring stageflowering stagegrain-filling stagematuring stage
MODIS1-0.349-0.794-0.708-0.452-0.667-0.049-0.444-0.410-0.523
MODSI20.5290.5460.7130.6810.8460.3330.576-0.3510.909
MODIS3-0.409-0.620-0.519-0.369-0.6920.015-0.412-0.610-0.417
MODIS50.0250.3290.3540.6710.4910.3580.122-0.6410.627
NDVI0.7690.8210.7530.5500.7290.2880.5050.3010.795
RDVI0.8280.7970.7660.5800.7660.3180.5350.2180.864
EVI0.8270.7760.7640.6050.7610.3130.5500.0620.869
MSAVI0.8420.7810.7580.5810.7760.3240.5460.1930.877
SIPI-0.748-0.832-0.833-0.605-0.629-0.243-0.4750.090-0.693
Tab.7  Correlation coefficient between biomass and MODIS spectral indices
Fig.9  Relation between biomass and MODIS shortwave infrared reflectance during vegetative stage
Fig.10  Biomass map on April 1, 2004
Fig.11  Biomass map on April 17, 2004
Fig.12  Biomass map on May 6, 2005
Fig.13  Biomass map on March 29, 2004
Fig.14  Biomass map on April 14, 2004
Fig.15  Biomass map on May 8, 2005
1 Bao Y S (2006). Research of monitoring winter wheat growth using multi-source remote sensing data. Dissertation . Beijing: Bejing Normal University (in Chinese)
2 Baret F, Jacquemoud S, Guyot G, Leprieur C (1992). Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sensing of Environment , 41(2—3): 133—142
3 Bonham-Carter G F (1988). Numerical procedures and computer program for fitting an inverted-Gaussian model to vegetation reflectance data. Computers and Geosciences , 14: 339—356
doi: 10.1016/0098-3004(88)90065-9
4 Buschmann C, Nagel E (1993). In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing , 14: 711—722
doi: 10.1080/01431169308904370
5 Cho M A, Skidmore A K, Atzberger C (2008). Towards red-edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data. International Journal of Remote Sensing , 29(8): 2241—2255
doi: 10.1080/01431160701395328
6 Clevers J G P W, De Jong S M, Epema G F, Van Der Meer F D, Bakker W H,Skidmore A K,Scholte K H (2002). Derivation of the red edge index using the MERIS standard band setting. International Journal of Remote Sensing , 23(16): 3169–3184
doi: 10.1080/01431160110104647
7 Collins W, Raines G L, Canney F C (1977, November 7—9). Airborne spectroradiometer discrimination of vegetation anomalies over sulphide mineralisation—a remote sensing technique. In: Abstract with Programmes. Seattle , Washington: Geological Society of America, 932—933
8 Colombo R, Meroni M, Marchesi A, Busetto L, Rossini M, Giardino C, Panigada C (2008). Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sensing of Environment , 112(4): 1820—1834
doi: 10.1016/j.rse.2007.09.005
9 Curran P J (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment , 30: 271—278
doi: 10.1016/0034-4257(89)90069-2
10 Curran P J, Windham W R, Gholz H L (1995). Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiology , 15: 203—206
11 Dawson T P, Curran P J (1998). A new technique for interpolating red edge position. International Journal of Remote Sensing , 19: 2133—2139
doi: 10.1080/014311698214910
12 Del Frate F., Wang L F (2001). Sunflower biomass estimation using a scattering model and a neural network algorithm. International journal of remote sensing , 22(7): 1235–1244
doi: 10.1080/01431160151144323
13 Gao B C (1996). NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ . 58: 257—266
doi: 10.1016/S0034-4257(96)00067-3
14 Gates D M , Keegan H J, Schleter J C, Weidner V R (1965). Spectral properties of plants. Applied Optics , 4(1): 11—20
doi: 10.1364/AO.4.000011
15 Ge S K, Xu M, Anderson G L, Carruthers R I (2007). Estimating Yellow Starthistle (Centaurea solstitialis) leaf area index and aboveground biomass with the use of hyperspectral data. Weed Scince ,55(6): 671—678
doi: 10.1614/WS-06-212.1
16 Gitelson A A, Vina A, Arkebauer T J, Rundquist D C, Keydan G, Leavitt B (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters , 30(5): 1248,
doi:10.1029/2002GL016450, 52–1—52–4
17 Horler D N H, Dockray M, Barber J (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing , 4: 273—288
doi: 10.1080/01431168308948546
18 Huang W J, Wang J H, Wang Z J, Jiang Z C, Liu L Y, Wang J D (2004). Inversion of foliar biochemical parameters at various physiological stages and grain quality indicators of winter wheat with canopy reflectance. International Journal of Remote Sensing , 25(12): 2409—2419
doi: 10.1080/01431160310001618095
19 Huete A R, Liu H Q, Batchily K, van Leeuwen W (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS, Remote Sensing of Environment 59: 440—451
doi: 10.1016/S0034-4257(96)00112-5
20 Jensen A, Lorenzen B, Spelling-Ostergaard H, Kloster-Hvelplund E (1990). Radiometric estimation of biomass and N content of barley grown at different N levels. International Journal of Remote Sensing ,11: 1809—1820
doi: 10.1080/01431169008955131
21 Jin Y Q, Liu C (1997). Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks. International journal of remote sensing , 18(4): 971—979
doi: 10.1080/014311697218863
22 van Keulen H, Goudriaan J, Seligman N G (1989). Modelling the effects of nitrogen canopy development and crop growth. In: Russell G, Marshall B, Jarvis P G, eds. Plant Canopies: Their Growth Form and Function . Cambridge: Cambridge University Press, 83—104
23 Liu L Y (2002). Hyperspectral Remote Sensing Application in Precision Agriculture.Postdoctoral Report , 42—45
24 Liu L Y, Wang J H, Huang W J, Zhao C J, Zhang B (2004). Estimating winter wheat plant water content using red edge parameters. International Journal of Remote Sensing , 25(17): 3331—3342
doi: 10.1080/01431160310001654365
25 Liu S F, Liou Y, Wang W J (2002). Retrieval of crop biomass and soil moisture from measure 1.4 and 10.65 GHz brightness temperatures. IEEE Transactions on Geoscience and Remote Sensing , 40(6): 1260—1268
doi: 10.1109/TGRS.2002.800277
26 Miller J R, Hare E W, WU J (1990). Quantitative characterization of vegetation red edge reflectance 1. An inverted-Gaussian reflectance model. International Journal of Remote Sensing , 11: 1755—1773
doi: 10.1080/01431169008955128
27 Penuelas J, Baret F, Filella I (1995). Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31: 221–230
28 Qi J, Chehbouni A, Huete A R, Keer Y H, Sorooshian S (1994). A modified soil vegetation adjusted index. Remote Sens. Environ . 48: 119—126
doi: 10.1016/0034-4257(94)90134-1
29 Railyan V Y, Korobov R M (1993). Red edge structure of canopy reflectance spectra of triticale. Remote Sensing of Environment , 46: 173—182
doi: 10.1016/0034-4257(93)90093-D
30 Rougean J L, Breon F M (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ . 51: 375—384
doi: 10.1016/0034-4257(94)00114-3
31 Rouse J W, Haas R H, Schell J A, Deering D W, Harlan J C (1974). Monitoring the vernal advancements and retrogradation of natural vegetation. NASA/GSFC, Greenbelt ,
32 Starks P J, Zhao D, Brown M A (2008). Estimation of nitrogen concentration and in vitro dry matter digestibility of herbage of warm-season grass pastures from canopy hyperspectral reflectance measurements. Grass and Forage Science , 63: 168—178
doi: 10.1111/j.1365-2494.2007.00619.x
33 Svoray T (2002). SAR-based estimation of areal above ground biomass (AAB) of herbaceous vegetation in the semi-arid zone: a modification of the water-cloud model. International Journal of Remote Sensing , 23(19): 4089—4100
doi: 10.1080/01431160110115924
34 Tilling A K, O’Learyb G J, Ferwerdaa J G, Jonesa S D , Fitzgeraldb G J, Rodriguezc D, Belford R (2007). Remote sensing of nitrogen and water stress in wheat. Field Crops Research , 104(1—3): 77—85
doi: 10.1016/j.fcr.2007.03.023
35 Vuolo F, Dini L, D’Urso G (2008). Retrieval of leaf area index from CHRIS/PROBA data: an analysis of the directional and spectral information content. International Journal of Remote Sensing , 26(17—18): 5063—5072
doi: 10.1080/01431160802036490
36 Wu C Y, Niu Z, Tang Q, Huang W J (2008). Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agricultural and Forest Meteorology , 148(8—9): 1230—1241
doi: 10.1016/j.agrformet.2008.03.005
37 Zarco-Tejada P J, Berjon A, Lopez-Lozano R, Miller J R, Martin P, Cachorro V, Gonzalez M R, De Frutos A (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment , 99(3): 271—287
doi: 10.1016/j.rse.2005.09.002
[1] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed