Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci Chin    2009, Vol. 3 Issue (2) : 231-236    https://doi.org/10.1007/s11707-009-0024-6
RESEARCH ARTICLE
Simulation experiments on the variation of leaf n-alkanes in aquatic environments
Chengling JIA1,2, Anwen ZHOU2, Xiangru MA2, Jingjing LI1, Shucheng XIE2()
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China; 2. Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
 Download: PDF(144 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The leaves of six plant species and the corresponding leaf residues collected in water from the two-year simulation experiments were analyzed in n-alkane distributions by gas chromatography (GC) and gas chromatography-mas spectrometry (GC/MS). The leaf n-alkanes keep unchanged in the dominant homologues when soaked in tap water for two years. The most significant change was observed in carbon preference index (CPI), with enhanced values being found in leaf residues collected from water. This is contradictory with the previous reports showing the lower CPI values during sinking and burial processes in natural aquatic environments. The elevated CPI values from leaf residues might be related to the low amount of microorganisms in the water used in the simulation experiment, and the enhanced solubility of even-carbon-numbered n-alkanes via van der Waals attraction. In contrast with herbaceous plants, the woody plants appear to show relatively great variations in both the CPI and the average chain length (ACL) values of n-alkanes after submerged in water for two years. Our data clearly show the differentiated decomposition between woody and herbaceous leaves, with the woody leaves suffered from much stronger decomposition. This observation suggests that in comparison with the grassland, the forest vegetation might result in relatively low authentic signals to be preserved in the n-alkane distributions in aquatic sediments.

Keywords leaf wax      n-alkanes      aquatic environment      woody plants     
Corresponding Author(s): XIE Shucheng,Email:xiecug@163.com   
Issue Date: 05 June 2009
 Cite this article:   
Chengling JIA,Anwen ZHOU,Xiangru MA, et al. Simulation experiments on the variation of leaf n-alkanes in aquatic environments[J]. Front Earth Sci Chin, 2009, 3(2): 231-236.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0024-6
https://academic.hep.com.cn/fesci/EN/Y2009/V3/I2/231
Plant genera and speciesecotypelocationchain length rangeACLCmaxCmax/∑oddCCPI
beforeafterbeforeafterbeforeafterbeforeafterbeforeafter
Cryptocarya chinensis HemslwoodyJianfengling21-3521—3328.627.427270.610.769.840.0
Musa basjoo SiebherbJianfengling21-3321—3328.028.229290.460.5221.014.5
Miscanthus floridulus WarbherbYujia hill21-3523—3530.630.731310.290.3011.915.3
Setaria viridis BeauvherbYujia hill21-3521—3530.030.931310.320.3914.722.2
Pteris multifida PoirherbYujia hill19-3523—3531.131.031310.620.6620.021.8
Castanea seguinii DodewoodyYujia hill19-3523—3328.329.831310.310.455.918.3
Tab.1  Plants species and -alkane parameters
Fig.1  Comparison of -alkane distributions from natural leaves of plant species (before) and the leaf residues after soaked in water for two years (after). I.S.=internal standard; and , , etc. refer to the carbon numbers of -alkanes
1 Baker E A (1982). Chemistry and morphology of plant epicuticular waxes. In: Cutler D F, Alvin K L, Price C E, eds. The Plant Cuticle . London: Academic Press, 139-166
2 Cranwell P A (1973). Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology , 3: 259-265
doi: 10.1111/j.1365-2427.1973.tb00921.x
3 Eglinton G, Hamilton R J (1967). Leaf epicuticular waxes. Science , 156: 1322-1335
doi: 10.1126/science.156.3780.1322
4 Feitkenhauer H, Müller R, M?rkl H (2003). Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60°C–70°C by Thermus and Badillus spp. Biodegradation , 14: 367-372
doi: 10.1023/A:1027357615649
5 Ficken K J, Li B, Swain D L, Eglinton G (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry , 31: 745-749
doi: 10.1016/S0146-6380(00)00081-4
6 Freeman K H, Colarusso L A (2001). Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochimica et Cosmochimica Acta , 65: 1439-1454
doi: 10.1016/S0016-7037(00)00573-1
7 Grimalt J Q, Torras E, Albaiges J (1987). Bacterial reworking of sedimentary lipids during sample storage. Organic Geochemistry , 13: 741-746
doi: 10.1016/0146-6380(88)90096-4
8 Heider J, Spormann A M, Beller H R, Widdel F (1999). Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiology Reviews , 22: 459-473
doi: 10.1111/j.1574-6976.1998.tb00381.x
9 Jeng W L (2006). Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Marine Chemistry , 102: 242-251
doi: 10.1016/j.marchem.2006.05.001
10 Kato T, Haruki M, Imanaka T, Monkawa M, Kanaya S (2001). Isolation and Characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. Journal of Bioscience and Bioengineering , 91: 64-70
doi: 10.1263/jbb.91.64
11 Kazunari S, Yoshiro S, Kazuhiro M, Hideaki M, Tetsuro K (2003). Monitoring of alkane-degrading bacteria in a sea-water microcosm during crude oil degradation by polymerase chain reaction based on alkane-catabolic genes. Environmental Microbiology , 5: 517-522
doi: 10.1046/j.1462-2920.2003.00447.x
12 Labinger J A, Bercaw J E (2002). Understanding and exploiting C-H bond activation. Nature , 417: 507-514
doi: 10.1038/417507a
13 Maeng J H, Sakai Y, Tani Y, Kato N (1996). Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. Strain M-1. Journal of Bacteriology , 178: 3695-3700
14 Meyers P A (2003). Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry , 34: 261-289
doi: 10.1016/S0146-6380(02)00168-7
15 Meyers P A, Ishiwatari R (1995). Organic matter accumulation records in lake sediments. In: Lerman A, Imboden D M, Gar J R. Physics and Chemistry of Lakes . Berlin: Springer, 279-328
16 Miller R M, Bartha R (1989). Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Applied and Environmental Microbiology , 55: 269-274
17 Pirnik M P, Atlas R M, Bartha R (1974). Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. Journal of Bacteriology , 119: 868-878
18 Poynter J G, Eglinton G (1990). Molecular composition of three sediments from hole 717C: the Bengal Fan. Proceedings of the Ocean Drilling Program Scientific Results , 116: 155-161
19 Ramos I, Fuentes M, Mederos R, Grimalt J O, Albaiges J (1989). Dissimilar microbial hydrocarbon transformation processes in the sediment and water column of a tropical bay (Havana Bay, Cuba). Marine Pollution Bulletin , 20: 262-268
doi: 10.1016/0025-326X(89)90297-X
20 Schwab V F, Spangenberg J E (2007). Molecular and isotopic characterization of biomarkers in the Frick Swiss Jura sediments: a palaeoenvironmental reconstruction on the northern Tethys margin. Organic Geochemistry , 38: 419-439
doi: 10.1016/j.orggeochem.2006.06.013
21 Schwark L, Zink K, Lechterbeck J (2002). Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology , 30: 463-466
doi: 10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2
22 Silliman J E, Schelske C L (2003). Saturated hydrocarbons in the sediments of Lake Apoka, Florida. Organic Geochemistry , 34: 253-260
doi: 10.1016/S0146-6380(02)00169-9
23 Tissot B P, Welte D H (1984). Petroleum Formation and Occurrence. Berlin: Springer-Verlag Telos, 101
24 van Beilen J B, Funhoff E G (2007). Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology , 74: 13-21
doi: 10.1007/s00253-006-0748-0
25 van Beilen J B, Li Z, Duetz W A, Smits T H M, Witholt B (2003). Diversity of alkane hydroxylase systems in the environment. Oil and Gas Science and Technology , 58: 427-440
doi: 10.2516/ogst:2003026
26 Watkinson R J, Morgan P (1990). Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation , 1: 79-92
doi: 10.1007/BF00058828
27 Whyte L G, Slagman S J, Pietrantonio F, Bourbonnire L, Koval S F, Lawrence J R, Inniss W E, Greer C W (1999). Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. Strain Q15. Applied and Environmental Microbiology , 65: 2961-2968
28 Xie S C, Yi Y, Huang J H, Hu C Y, Cai Y J, Collins M, Baker A (2003). Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleoclimate change. Quaternary Research , 60: 340-347
doi: 10.1016/j.yqres.2003.07.010
[1] Zhiguo RAO, Zhaoyu ZHU, Suping WANG, Guodong JIA, Mingrui QIANG, Yi WU. CPI values of terrestrial higher plant-derived long-chain n-alkanes: a potential paleoclimatic proxy[J]. Front Earth Sci Chin, 2009, 3(3): 266-272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed