Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci Chin    0, Vol. Issue () : 154-163    https://doi.org/10.1007/s11707-009-0025-5
RESEARCH ARTICLE
Extreme value analysis of annual maximum water levels in the Pearl River Delta, China
Qiang ZHANG1,2(), Chong-Yu XU3, Yongqin David CHEN4, Chun-ling LIU4
1. Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China; 2. Department of Water Resources and Environment, Sun Yat-Sen University, GuangZhou 510275, China; 3. Department of Geosciences, University of Oslo, Norway; 4. Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
 Download: PDF(458 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We analyzed the statistical properties of water level extremes in the Pearl River Delta using five probability distribution functions. Estimation of parameters was performed using the L-moment technique. Goodness-of-fit was done based on Kolmogorov-Smirnov’s statistic D (K-S D). The research results indicate that Wakeby distribution is the best statistical model for description of statistical behaviors of water level extremes in the study region. Statistical analysis indicates that water levels corresponding to different return periods and associated variability tend to be larger in the landward side of the Pearl River Delta and vice versa. A ridge characterized by higher water level can be identified expanding along the West River and the Modaomen channel, showing the impacts of the hydrologic process of the West River basin. Trough and higher grades of water level changes can be detected in the region drained by Xi’nanyong channel, Dongping channel, and mainstream of Pearl River. The Pearl River Delta region is characterized by low-lying topography and a highly-advanced socio-economy, and is heavily populated, being prone to flood hazards and flood inundation due to rising sea level and typhoons. Therefore, sound and effective countermeasures should be made for human mitigation to natural hazards such as floods and typhoons.

Keywords extreme values      probability distribution functions      annual maximum water level      extreme value analysis      Pearl River estuary     
Corresponding Author(s): ZHANG Qiang,Email:zhangqnj@gmail.com   
Issue Date: 05 June 2009
 Cite this article:   
Qiang ZHANG,Chong-Yu XU,Yongqin David CHEN, et al. Extreme value analysis of annual maximum water levels in the Pearl River Delta, China[J]. Front Earth Sci Chin, 0, (): 154-163.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0025-5
https://academic.hep.com.cn/fesci/EN/Y0/V/I/154
Fig.1  Location of the study region and gauging stations
station namelongitudelatitudetime intervalperiods with missing data
Dasheng113°32′23°03′1958-2005Jun.-Dec. 1963
Denglongshan113°24′22°14′1959-2005Jan.-Sep. 1958
Hengmen113°31′22°35′1959-2005
Huangchong113°04′22°18′1961-20052000-2005
Huangjin113°17′22°08′1965-2005
Huangpu113°28′23°06′1958-2005
Jiangmen113°07′22°36′1958-20052000
Laoyagang113°12′23°14′1958-2005Dec. 1959
Makou112°48′23°07′1958-2006Sep.-Dec. 1959; 1966; 1968; Oct.-Dec. 1969
Nanhua113°05′22°48′1958-2005
Nansha113°34′22°45′1963-2005
Rongqi113°16′22°47′1958-2005
Sanduo112°59′22°59′1958-2005
Sanshakou113°30′22°54′1958-20051959
Sanshui112°50′23°10′1958-2005Sep.-Dec. 1959; 1960
Shizui112°54′22°28′1959-2005Nov.-Dec. 1968; 2000
Sishengwei113°36′22°55′1958-20051964
Tianhe113°04′22°44′1958-1988
Xiaolan113°14′22°41′1975-2005Sep.-Dec. 1981
Xipaotai113°07′22°13′1958-20051968-73
Zhuyin113°17′22°22′1959-2005
Tab.1  Dataset of the water levels in the Pearl Delta
stationNmeanminmedianIQRL-skewmax
Dasheng481.941.581.900.280.582.44
Denglongshan481.661.291.570.321.462.65
Hengmen481.861.521.780.321.242.62
Huangchong481.791.451.700.241.322.51
Huangpu481.971.601.930.320.402.48
Jiangmen483.472.003.381.270.185.09
Laoyagang482.121.522.100.340.372.85
Makou487.203.047.222.36-0.4110.00
Nanhua484.232.314.231.51-0.026.05
Rongqi482.711.992.610.740.683.99
Sanduo484.862.374.792.03-0.027.10
Sanshakou481.811.441.790.350.402.34
Sanshui487.232.987.182.40-0.3110.30
Shizui481.841.531.840.300.672.48
Sishengwei481.861.211.830.270.112.55
Tianhe484.342.334.351.480.026.32
Xiaolan483.361.993.271.060.345.05
Xipaotai481.781.491.710.251.292.46
Zhuyin481.901.511.870.340.542.50
Huangjin411.631.221.550.310.912.38
Nansha431.911.641.820.261.462.68
Tab.2  Sample size (N), mean, minimum, median, interquantile range (IQR), sample L-skewness, and maximum of annual maximum water levels (unit, m) for individual station
stationLog normal(3)GEV (3)Pearson (3)Wakeby (5)General Pareto (3)
Dasheng0.0890.0860.1190.0670.066
Denglongshan0.0680.0540.0850.0540.080
Hengmen0.0740.0660.0850.0570.065
Huangchong0.0900.0750.1030.0520.059
Huangpu0.1020.0980.0960.0710.059
Jiangmen0.0740.0640.0720.0530.063
Laoyagang0.0790.0820.0790.0590.111
Makou0.0840.0670.0830.0540.104
Nanhua0.0870.0670.0970.0500.069
Rongqi0.0680.0590.0710.0420.051
Sanduo0.0770.0660.0740.0470.059
Sanshakou0.0690.0680.0670.0590.066
Sanshui0.0480.0600.0610.0460.080
Shizui0.0790.0610.0880.0580.066
Sishengwei0.1230.1060.1140.0710.141
Tianhe0.0910.0730.0920.0560.069
Xiaolan0.0730.0630.0710.0520.081
Xipaotai0.0640.0640.0800.0510.064
Zhuyin0.0670.0600.0600.0470.071
Huangjin0.0900.0920.0960.1100.130
Nansha0.0680.0890.0770.0600.060
total4 (19%)9 (42.9%)2 (9.5%)20 (95%)11 (52.4%)
Tab.3  K-S’s statistic D computed from annual maximum water level series of individual gauging stations for five candidate probability functions
Fig.2  Statistical properties of annual maximum water level (m) of the Pearl River Delta. (a) mean, (b) minimum, (c) interquantile range, (d) maximum
Fig.3  Cumulative and probability distribution functions (Log normal, Generalized extreme value distribution, Pearson type III distribution, Wakeby distribution and Generalized Pareto distribution) of annual maximum water level series of Dasheng station
stationξΑβγΔK-S D
Dasheng1.571.8214.480.34-0.350.07
Denglongshan0.00736.21536.020.290.010.05
Hengmen0.00757.62475.000.29-0.100.06
Huangchong0.001012.40657.990.26-0.040.05
Huangpu1.581.8516.950.44-0.500.07
Jiangmen2.121.433.941.74-0.630.05
Laoyagang1.463.468.190.32-0.140.06
Makou1.37136.8338.514.53-0.910.05
Nanhua2.453.113.841.86-0.640.05
Rongqi1.940.661.790.65-0.220.04
Sanduo2.2711.4417.103.62-0.850.05
Sanshakou1.365.0628.580.43-0.500.06
Sanshui1.6999.0128.673.83-0.740.05
Shizui1.500.551.090.050.290.06
Sishengwei0.4161.5749.950.30-0.190.07
Tianhe2.473.673.591.62-0.520.06
Xiaolan2.092.292.990.88-0.270.05
Xipaotai0.001327.10863.850.26-0.030.05
Zhuyin1.500.885.250.33-0.270.05
Huangjin0.5363.4778.600.35-0.130.11
Nansha0.005.8294E+53.5283E+50.26-0.020.06
Tab.4  Parameter estimates (L-ME) of WAD and K-S’s statistic D computed from the annual maximum water level series of individual stations
stationT=10T=30T=50T=70T=90T=100
Dasheng2.232.372.422.452.472.47
Denglongshan2.042.372.522.622.702.73
Hengmen2.202.442.542.612.652.67
Huangchong2.112.372.482.562.612.64
Huangpu2.282.402.432.452.472.47
Jiangmen4.594.925.005.055.085.09
Laoyagang2.512.752.852.912.952.97
Makou9.279.659.739.779.799.80
Nanhua5.515.855.945.996.016.02
Rongqi3.483.874.024.114.174.20
Sanduo6.596.957.037.077.097.10
Sanshakou2.122.242.272.292.302.31
Sanshui9.399.9210.0510.1110.1510.16
Shizui2.132.292.372.422.472.49
Sishengwei2.202.392.462.512.542.55
Tianhe5.676.096.216.286.326.34
Xiaolan4.364.824.985.085.155.18
Xipaotai2.112.372.492.562.622.64
Zhuyin2.242.412.472.512.532.54
Huangjin2.032.292.402.472.522.54
Nansha2.242.522.642.732.792.81
Tab.5  Design values (unit: m) corresponding to various return periods (T=10, 30, 50, 70, 90 and 100 years) computed from the annual maximum water level series of individual stations
Fig.4  Spatial distribution of the estimated design values (unit: m) corresponding to various periods: (a)10-year period; (b)30-year period; (c)50-year period; (d)70-year period; (e)90-year period; and (f)100-year period
1 Beniston M, Stephenson D B (2004). Extreme climatic events and their evolution under changing climatic conditions. Global and Planetary Change , 44: 1-9
doi: 10.1016/j.gloplacha.2004.06.001
2 Butler A, Heffernan J E, Tawn J A, Flather R A and Horsburgh K J (2007). Extreme value analysis of decadal variations in storm surge elevations. Journal of Marine Systems , 67: 189-200
doi: 10.1016/j.jmarsys.2006.10.006
3 Chen J H, Huang D J, Wu C P, Xu Y S, Song J and Liang G Z (2001). A preliminary study of frequency analysis method for water level of tidal rivers in the Pearl River Delta. Tropical Geography , 21(4): 342-345 (in Chinese with English abstract)
4 Chen X H, Chen Y Q (2002). Hydrological change and its causes in the river network of the Pearl River Delta. Acta Geographica Sinica , 57(4): 430-436 (in Chinese)
5 Chen X H, Zhang L, Shi Z (2004). Study on spatial variability of water levels in river net of Pearl River Delta. SHUILI XUEBAO , 10: 36-42 (in Chinese)
6 Chen Y D, Zhang Q, Xu C Y, Yang T (2008). Change-point alterations of extreme water levels and underlying causes in Pearl River Delta, China. River Research and Application ,
doi: 10.1002/rra.1212
doi: 10.1002/rra.1212
7 D’Onofrio E E, Fiore M M E, Romero S I (1999). Return periods of extreme water levels estimated for some vulnerable areas of Buenos Aires. Continental Shelf Research , 19: 1681-1693
doi: 10.1016/S0278-4343(98)00115-0
8 Goovaerts P (1999). Performance Comparison of Geostatistical Algorithms for Incorporating Elevation into the Mapping of Precipitation. The IV International Conference on GeoComputation was hosted by Mary Washington College in Fredericksburg, VA, USA , on 25-28 July 1999.
9 Graff J (1981). An investigation of the frequency distributions of annual sea level maxima at ports around Great Britain. Estuarine, Coastal and Shelf Science , 12: 389-449
doi: 10.1016/S0302-3524(81)80003-5
10 Griffiths G A (1989). A theoretically based Wakeby distribution for annual flood series. Hydrological Sciences Journal , 34: 231-248
11 Hosking J R M (1990). L-moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society (Series B) , 52: 105-124
12 Huang Z G, Zhang W Q, Wu H S, Fan J C, Jiang P L, Chen T G, Li Z H, Huang B S (2000). Prediction of the increasing magnitude of the sea level in the Pearl River Delta in 2030 and possible mitigation measures. Science in China (Series D) , 30(2): 202-208 (in Chinese)
13 Li P R, Fang G X and Huang G Q (1993). Impacts on sea level rising on the economic development of Zhujiang Delta and countermeasures. Acta Geographica Sinica , 48(6): 527-534 (in Chinese with English abstract)
14 Liu Y H, Chen X H, Chen Y Q, Zeng C H (2003). Correlation analysis on abnormal change of flood level in the central area of the Pearl River Delta. Tropical Geography , 23(3): 204-208 (in Chinese)
15 Lu X X, Zhang S R, Xie S P, Ma P K (2007). Rapid channel incision of the lower Pearl River (China) since the 1990s. Hydrol Earth Syst Sci Discuss , 4: 2205-2227
16 Mao Q W, Shi P, Yin K D, Gan J P, Qi Y Q (2004). Tides and tidal currents in the Pearl River Estuary. Continental Shelf Research , 24: 1797-1808
doi: 10.1016/j.csr.2004.06.008
17 Park J S. Jung H S, Kim R S, Oh J H (2001). Modeling summer extreme rainfall over the Korean Peninsula using Wakeby distribution. International Journal of Climatology , 21: 1371-1384
doi: 10.1002/joc.701
18 Sobey R J (2005). Extreme low and high water levels. Coastal Engineering , 52: 63-77
doi: 10.1016/j.coastaleng.2004.09.003
19 Wang L X (1986). Frequency analysis of extreme low water level series of Modaoment river channel and associated computation method. Renmin Zhujing , 4: 18-21 (in Chinese)
20 Wigley T (1985). Impact of extreme events. Nature , 316: 106-107
21 Wilks D S, McKay M (1996). Extreme-value statistics for snowpack water equivalent in the northeastern United States using the cooperative observer network. Journal of Applied Meteorology , 35: 706-713
doi: 10.1175/1520-0450(1996)035<0706:EVSFSW>2.0.CO;2
22 Xu H L (1998). The preliminary study on environmental change of estuary and its hydrological modeling: a case study of Zhujiang Estuary. Tropical Geography , 18(2): 162-167 (in Chinese)
23 Zeng Z X, Liu N W, Qiu S J, Wu N and Huang S (1992). The tendency of sea level variation in Pearl River Estuary. Tropic Oceanology , 11(4): 56-62 (in Chinese)
24 Zhang Q, Gemmer M, Chen J Q (2006a). Flood/drought variation and flood risk in the Yangtze Delta, China. Quaternary International ,
doi:10.1016/j.quaint. 2006.11. 004
doi: 10.1016/j.quaint
25 Zhang Q, Liu C L, Xu C Y(2006b). Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. Journal of Hydrology , 324: 255-265
doi: 10.1016/j.jhydrol.2005.09.023
26 Zhang Q, Xu C Y, Gemmer M, Chen Y D, Liu C L (2008). Changing properties of precipitation concentration in the Pearl River basin, China. Stochastic Environmental Research and Risk Assessment .
doi:10.1007/s00477-008-0225-7
doi: 10.1007/s00477-008-0225-7
[1] Xia LEI, Jiayi PAN, Adam DEVLIN. An ultraviolet to visible scheme to estimate chromophoric dissolved organic matter absorption in a Case-2 water from remote sensing reflectance[J]. Front. Earth Sci., 2020, 14(2): 384-400.
[2] Meilin WU, Youshao WANG, Junde DONG, Fulin SUN, Yutu WANG, Yiguo HONG. Spatial assessment of water quality using chemometrics in the Pearl River Estuary, China[J]. Front. Earth Sci., 2017, 11(1): 114-126.
[3] Xianbin LIU, Deliang LI, Guisheng SONG. Assessment of heavy metal levels in surface sediments of estuaries and adjacent coastal areas in China[J]. Front. Earth Sci., 2017, 11(1): 85-94.
[4] Man-Chung CHIM, Jiayi PAN, Wenfeng LAI. Modified optical remote sensing algorithms for the Pearl River Estuary[J]. Front. Earth Sci., 2015, 9(4): 732-741.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed