Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci Chin    0, Vol. Issue () : 417-426    https://doi.org/10.1007/s11707-010-0125-2
RESEARCH ARTICLE
Analysis of current directions in the bends of an ephemeral river and its geological implications
Barendra PURKAIT()
Department of Geology, University of Calcutta, Kolkata 700019, India
 Download: PDF(686 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sediment transport directions in four point bars of an ephemeral meandering river Usri, India, were measured from sedimentary structures and compared with the flow directions of the adjacent river-channel flow. As the bars were crescentic in shape, each bar has been divided into several sectors along with the adjacent river-channel bend. Vector means of sediment transport directions in each sector were computed and compared with the vector means of the flow directions of the corresponding river-channel sector. The relationship between the sediment transport direction in the bar and the water flow direction of the adjacent river-channel is sometimes divergent and sometimes convergent. However, the difference between the vector means of the sediment transport direction in the bar and the flow direction of the adjacent river-channel water is subtle. Hence, it can be concluded that the sediment transport direction in the bar is parallel to the flow direction of the adjacent river-channel water. Therefore, the result of the present study implies reconstructing the paleo-river channel course.

Keywords Usri River      ephemeral      meandering      point bar      directional data      vector means     
Corresponding Author(s): PURKAIT Barendra,Email:baren.purkait@gmail.com; baren_purkait@yahoo.co.in   
Issue Date: 05 December 2010
 Cite this article:   
Barendra PURKAIT. Analysis of current directions in the bends of an ephemeral river and its geological implications[J]. Front Earth Sci Chin, 0, (): 417-426.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-010-0125-2
https://academic.hep.com.cn/fesci/EN/Y0/V/I/417
SectionWa)/mDb)/mQc)/(m3·s-1)Qad)/(m3·s-1)SinuositySe)/(cm·100m-1)
Kharagdiha6041.30351.90536.631.3812.5
Damargarha853.02210.418.301.4823.1
Raotgadi982.40287.6427.901.4027.5
Palkia751.75258.90324.21.3418.8
Tab.1  Hydrodynamic parameters of the Usri as measured at four sections
Fig.1  Location map of study area
SectorWater flow (adjacent channel)Sand transport (within point bar)Directional difference (Vw- Vs)Directional relationship
1Vw= 237.881Rw= 28.03Lw= 93.434%Nw= 30Vs= 238.119Rs= 7.626Ls= 95.332%Ns= 8- 0.238Parallel
2Vw= 194.369Rw= 27.974Lw= 96.462Nw= 29Vs= 195.458Rs= 8.731Ls= 97.009%Ns= 9- 1.089Almost parallel
3Vw= 178.973Rw= 29.022Lw= 96.739%Nw= 30Vs= 166.546Rs= 4.921Ls= 98.422%Ns= 512.427Divergent (sand transport outward directed, i.e., toward channel water)
4Vw= 112.957Rw= 29.058Lw= 96.862%Nw= 30Vs= 123.308Rs= 7.579Ls= 94.738%Ns= 8- 10.351Convergent (sand transport inward directed, i.e., toward inner bank)
5Vw= 103.004Rw= 29.549Lw= 98.496%Nw= 30Vs= 99.406Rs= 8.554Ls= 95.044%Ns= 93.598Almost parallel
1-5Vw= 164.08Rw= 92.552Lw = 62.115%Nw= 149Vs= 162.661Rs= 23.874Ls= 61.215%Ns= 391.419Almost parallel
Tab.2  Current directions (in degree) at Kharagdiha section
Fig.2  Kharagdiha point bar of directional data
SectorWater flow (adjacent channel)Sand transport (within point bar)Directional difference (Vw-Vs)Directional relationship
1Vw= 74.946Rw= 29.723Lw= 95.881%Nw= 31Vs= 62.424Rs= 11.401Ls= 95.01%Ns= 1212.522Divergent (sand transport outward directed, i.e., toward channel water)
2Vw= 357.761Rw= 28.364Lw= 94.546%Nw= 30Vs= 6.021Rs= 8.999Ls= 89.996%Ns= 108.26Divergent (toward channel water)
3Vw= 334.466Rw= 26.603Lw= 95.012%Nw= 28Vs= 342.735Rs= 13.524Ls= 96.603%Ns= 14- 8.269Convergent (sand transport inward directed, i.e., toward inner bank)
4Vw= 348.527Rw= 29.45Lw= 98.168%Nw= 30Vs= 351.278Rs= 3.831Ls= 95.783%Ns= 4- 2.751Almost parallel
1-5Vw= 6.588Rw= 89.52Lw= 75.227%Nw= 119Vs= 11.788Rs= 31.596Ls= 78.991%Ns= 40- 5.20Convergent (sand transport inward directed, i.e., toward inner bank)
Tab.3  Current directions (in degree) at Damargarha section
Fig.3  Damargarha point bar of directional data
SectorWater flow (adjacent channel)Sand transport (within point bar)Directional difference (Vw-Vs)Directional relationship
1Vw= 53.557Rw= 28.531Lw= 5.104%Nw= 30Vs= 47.61Rs= 7.267Ls= 90.835%Ns= 85.947Divergent (sand transport outward directed, i.e., toward channel water)
2Vw= 3.099Rw= 27.951Lw= 93.170%Nw= 30Vs= 359.404Rs= 8.267Ls= 91.86%Ns= 93.695Almost parallel
3Vw= 351.67Rw= 28.936Lw= 96.454%Nw= 30Vs= 1.814Rs= 5.908Ls= 98.466%Ns= 610.144Divergent (sand transport outward directed, i.e., toward channel water)
4Vw= 10.879Rw= 28.136Lw= 93.785%Nw= 30Vs= 5.928Rs= 14.242Ls= 94.948%Ns= 154.951Almost parallel
1-5Vw= 14.197Rw= 104.304Lw= 86.92%%Nw= 120Vs= 11.792Rs= 33.954Ls= 89.352%Ns= 382.405Almost parallel
Tab.4  Current directions (in degree) at Raotgadi section
Fig.4  Raotgadi point bar of directional data
SectorWater flow (adjacent channel)Sand transport (within point bar)Directional difference (Vw-Vs)Directional relationship
1Vw= 106.212Rw= 28.547Lw= 95.156%Nw= 30Vs= 108.354Rs= 10.749Ls= 97.718%Ns= 11- 2.142Almost parallel
2Vw= 131.182Rw= 31.076Lw= 97.112%Nw= 32Vs= 112.111Rs= 16.204Ls= 95.319%Ns= 1719.071Divergent (sand transport outward directed, i.e., toward channel water)
Vw= 124.555Rw= 28.181Lw= 93.936%Nw= 30Vs= 124.621Rs= 3.786Ls= 94.641%Ns= 4- 0.066Parallel
4Vw= 158.251Rw= 27.778Lw= 95.786%Nw= 29Vs= 146.006Rs= 4.933Ls= 98.669%Ns= 512.245Divergent (sand transport outward directed, i.e., toward channel water)
5Vw= 157.552Rw= 30.762Lw= 99.231%Nw= 31Vs= 144.062Rs= 9.674Ls= 94.575%Ns= 613.489Divergent (sand transport outward directed, i.e., toward channel water)
6Vw= 180.449Rw= 27.412Lw= 91.372%Nw= 30Vs= 164.409Rs= 3.774Ls= 94.359%Ns= 416.039Divergent (sand transport outward directed, i.e., toward channel water)
7Vw= 195.737Rw= 28.066Lw= 93.553%Nw= 30Vs= 183.805Rs= 3.900Ls= 97.498%Ns= 411.932Divergent (sand transport outward directed, i.e., toward channel water)
1-7Vw= 150.044Rw= 176.676Lw= 83.338%Nw= 212Vs= 128.368Rs= 44.863Ls= 87.966%Ns= 5121.676Divergent (sand transport outward directed, i.e., toward channel water)
Tab.5  Current directions (in degree) at Palkia section
Fig.5  Palkia point bar of directional data
1 Allen J R L (1966). On bed forms and palaeocurrents. Sedimentology , 6(3): 153-190
doi: 10.1111/j.1365-3091.1966.tb01576.x
2 Bathurst J C, Thorne C R, Hey R D (1977). Direct measurements of secondary currents in river bends. Nature , 269(5628): 504-506
doi: 10.1038/269504a0
3 Bluck B J (1971). Sedimentation in the meandering river Endrick. Scott J Geol , 7(2): 93-138
doi: 10.1144/sjg07020093
4 Bluck B J (1974). Structure and directional properties of some valley sandur deposits in southern Iceland. Sedimentology , 21(4): 533-554
doi: 10.1111/j.1365-3091.1974.tb01789.x
5 Chayes F (1954). Discussion: effect of change of origin on mean and variance of two-dimensional fabrics. Am J Sci , 252: 567-570
doi: 10.2475/ajs.252.9.567
6 Coleman J M (1969). Brahmaputra River: Channel processes and sedimentation. Sediment Geol , 3(2-3): 129-239
doi: 10.1016/0037-0738(69)90010-4
7 Curray J R (1956). The analysis of two dimensional data. J Geol , 64(2): 117-131
doi: 10.1086/626329
8 Dey S, Ghosh P (2008). GRDM — A digital field-mapping tool for management and analysis of field geological data. Comput Geosci , 34(5): 464-478
doi: 10.1016/j.cageo.2007.05.014
9 Dietrich W E, Smith J D, Dunne T (1979). Flow and sediment transport in a sand-bedded meander. J Geol , 87(3): 305-315
doi: 10.1086/628419
10 Ghosh P (2000). Estimation of channel sinuosity from paleocurrent data: a method using fractal geometry. J Sediment Res , 70(3): 449-455
doi: 10.1306/2DC4091D-0E47-11D7-8643000102C1865D
11 Gustavson T C (1978). Bedforms and stratification types of modern gravel meander lobes, Nueces River, Texas. Sedimentology , 25(3): 401-426
doi: 10.1111/j.1365-3091.1978.tb00319.x
12 Jackson R G (1978). Preliminary evaluation of lithofacies models for meandering alluvial streams. In: Miall A D, ed. Fluvial Sedimentology . Calgary: Canadian Society of Petroleum Geologists, Memoir 5, 543-576
13 Jizba Z V (1953). Mean and standard deviation of certain geologic data — a discussion. Am J Sci , 251: 899-906
14 Jorgensen P J, Fielding C R (1996). Facies architecture of alluvial flood basin deposits: Three-dimensional data from the Upper Triassic Callide coal measures of East-Central Queenland, Autralia. Sedimentology , 43(3): 479-495
doi: 10.1046/j.1365-3091.1996.d01-25.x
15 Khan I A, Bridge J S, Kappelman J, Wilson R (1997). Evolution of Miocene Fluvial environments, eastern Potwar plateau, northern Pakistan. Sedimentology , 44(2): 221-251
doi: 10.1111/j.1365-3091.1997.tb01522.x
16 Le Roux J P (1992). Determining the channel sinuosity of ancient fluvial systems from paleocurrent data. J Sediment Petrol , 62: 283-291
17 Mardia K V, Jupp P E (2000). Directional Statistics. Chichester: Wiley
18 Miall A D (1994). Reconstructing fluvial macroform architecture from two-dimensional outcrops: Examples from Castlegate sandstone, Book cliffs, Utah. J Sediment Res , 64b: 146-158
19 Nanson G C (1980). Point bar and flood plain formation of the meandering Beaton River, northeastern British Columbia, Canada. Sedimentology, 27(1): 3-29
doi: 10.1111/j.1365-3091.1980.tb01155.x
20 Peterson F (1984). Fluvial sedimentation on a quivering craton: Influence of slight crustal movements on fluvial processes, upper Jurassic Morrison formation, Western Colorado Plateau. Sediment Geol , 38(1-4): 21-49
doi: 10.1016/0037-0738(84)90073-3
21 Pincus H J (1953). The analysis of aggregates of orientation data in the earth sciences. J Geol , 61(6): 482-509
doi: 10.1086/626124
22 Pincus H J (1956). Some vector and arithmetic operations on two-dimensional orientation variates, with applications to geological data. J Geol , 64(6): 533-557
doi: 10.1086/626391
23 Potter P E, Olson J S (1954). Variance components of cross-bedding direction in some basal Pennsylvanian sandstones of the Eastern Interior Basin: Geological application. J Geol , 62(1): 50-73
doi: 10.1086/626133
24 Potter P E, Pettijohn F J (1977). Paleocurrents and Basin Analysis, New York: Springer-Verlag, 425
25 Purkait B (1981). Morphology and growth pattern of the Pathri river point bar, Bihar, India. In: Proceedings of Second International Fluvial Conference: Modern and Ancient Fluvial Systems, Sedimentology and Processes 1981 . Keele: University of Keele, 98
26 Purkait B (1983). Current directions in the Usri river point bar, Bihar. Indian J Earth Sci , 10(2): 170-184
27 Purkait B (1985). Morphology and growth pattern of the Pathri river point bar, Bihar. Indian J Earth Sci , 11(3-4): 239-249
28 Purkait B (2000). Morphology and growth pattern of the Usri River point bars. Int J Sediment Res , 15: 445-457
29 Purkait B (2002). Current dispersion pattern in an ephemeral river bend, India. Journal of Combinatorics. Information and System Sciences , 27(1-4): 135-153
30 Reiche P (1938). An analysis of cross-lamination: The Coconino sandstone. J Geol , 46(7): 905-932
doi: 10.1086/624709
31 Rubey W W, Bass N W (1925). The Geology of Russell Country, Kansas, Part-I. Kansas: Kansas Geological Survey Bulletin, 104pp.
32 Rust B R (1972). Structure and process in a braided river. Sedimentology , 18(3-4): 221-245
doi: 10.1111/j.1365-3091.1972.tb00013.x
33 Sakalowsky P P Jr (1974). Theories of stream meander causation: review and analysis. Earth Sci Rev , 10(2): 121-138
doi: 10.1016/0012-8252(74)90083-X
34 Schwartz D E (1978). Hydrology and current orientation analysis of a braided-to-meandering transition: the Red River in Oklahoma and Texas, USA. In: Miall A D, ed. Fluvial Sedimentology . Calgary: Canadian Society of Petroleum Geologists, Memoir5, 105-127
35 Shukla U K, Singh I B, Srivastava P, Singh D S (1999). Paleocurrent patterns in braid-bar and point-bar deposits: Examples from the Ganga River, India. J Sediment Res , 69(5): 992-1002
36 Smith N D (1974). Sedimentology and bar formation in the Upper Kicking Horse River, a braided outwash stream. J Geol , 82(2): 205-223
doi: 10.1086/627959
37 Sorby H C (1849). On the oscillation of the currents drifting sandstone beds of the southeast of Northumberland and on the general direction in the coal field in the neighborhood of Edinburgh. Proceedings of the Yorkshire Geological Society , 3(0): 232-240
doi: 10.1144/pygs.3.232
38 Willis B J (1993). Interpretation of bedding geometry within ancient point bar deposits. In: Marzo M, Puigdefábregas C, eds. Alluvial Sedimentation . Oxford: Blackwell Scientific Publications, 101-114
doi: 10.1002/9781444303995.ch9
39 Willis B J (1997). Architecture of fluvial-dominated valley-fill deposits in the cretaceous Fall River Formation. Sedimentology , 44(4): 735-757
doi: 10.1046/j.1365-3091.1997.d01-48.x
40 Wright M D (1959). The formation of cross-bedding by a meandering or braided stream. J Sediment Petrol , 29: 610-615
41 Zaleha M J (1997). Intra- and extrabasinal controls on fluvial deposition in the Miocene Indo-Gangetic foreland basin, northern Pakistan. Sedimentology , 44(2): 369-390
doi: 10.1111/j.1365-3091.1997.tb01530.x
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed