Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2011, Vol. 5 Issue (2) : 120-129    https://doi.org/10.1007/s11707-011-0154-5
RESEARCH ARTICLE
A habitat overlap analysis derived from Maxent for Tamarisk and the South-western Willow Flycatcher
Patricia YORK1(), Paul EVANGELISTA1, Sunil KUMAR1, James GRAHAM1, Curtis FLATHER2, Thomas STOHLGREN3
1. Natural Resource Ecology Lab, Colorado State University, 1499 Campus Delivery, Fort Collins, CO 80523, USA; 2. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO 80526, USA; 3. Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
 Download: PDF(307 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biologic control of the introduced and invasive, woody plant tamarisk (Tamarix spp, saltcedar) in south-western states is controversial because it affects habitat of the federally endangered South-western Willow Flycatcher (Empidonax traillii extimus). These songbirds sometimes nest in tamarisk where floodplain-level invasion replaces native habitats. Biologic control, with the saltcedar leaf beetle (Diorhabda elongate), began along the Virgin River, Utah, in 2006, enhancing the need for comprehensive understanding of the tamarisk-flycatcher relationship. We used maximum entropy (Maxent) modeling to separately quantify the current extent of dense tamarisk habitat (>50% cover) and the potential extent of habitat available for E. traillii extimus within the studied watersheds. We used transformations of 2008 Landsat Thematic Mapper images and a digital elevation model as environmental input variables. Maxent models performed well for the flycatcher and tamarisk with Area Under the ROC Curve (AUC) values of 0.960 and 0.982, respectively. Classification of thresholds and comparison of the two Maxent outputs indicated moderate spatial overlap between predicted suitable habitat for E. traillii extimus and predicted locations with dense tamarisk stands, where flycatcher habitat will potentially change flycatcher habitats. Dense tamarisk habitat comprised 500 km2 within the study area, of which 11.4% was also modeled as potential habitat for E. traillii extimus. Potential habitat modeled for the flycatcher constituted 190 km2, of which 30.7% also contained dense tamarisk habitat. Results showed that both native vegetation and dense tamarisk habitats exist in the study area and that most tamarisk infestations do not contain characteristics that satisfy the habitat requirements of E. traillii extimus. Based on this study, effective biologic control of Tamarix spp. may, in the short term, reduce suitable habitat available to E. traillii extimus, but also has the potential in the long term to increase suitable habitat if appropriate mixes of native woody vegetation replace tamarisk in biocontrol areas.

Keywords Niche modeling      species interactions      Tamarisk      South-western Willow Flycatcher      habitat overlap analysis     
Corresponding Author(s): YORK Patricia,Email:pmyork0714@gmail.com   
Issue Date: 05 June 2011
 Cite this article:   
Patricia YORK,Paul EVANGELISTA,Sunil KUMAR, et al. A habitat overlap analysis derived from Maxent for Tamarisk and the South-western Willow Flycatcher[J]. Front Earth Sci, 2011, 5(2): 120-129.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-011-0154-5
https://academic.hep.com.cn/fesci/EN/Y2011/V5/I2/120
Fig.1  Study area map
Environmental variableContribution/%
June tasselled cap wetness28.3
October band 315.7
October tasselled cap wetness13.2
September tasselled cap brightness12
September NDVI11.8
August NDVI8.4
November band 35.6
October NDVI2
August tasselled cap greenness1.9
March NDVI1.1
Tab.1  Contributions of variables for the Maxent model predicting habitat dominated by tamarisk
Environmental variableContribution/%
May NDVI standard deviation (r = 120 m)a)44.3
Distance to water19.7
October NDVI cell variety (r = 30 m)a)15.8
Slope standard deviation (r = 30 m)a)10.8
Slope sum (r = 60 m)a)9.4
Tab.2  Contributions of variables for Maxent model predicting highly suitable habitat for the flycatcher
Fig.2  Maxent prediction response curve
Fig.3  Habitat overlap analysis map
Fig.4  Habitat overlap analysis
Fig.5  Recommended management strategies
1 Bateman H L, Dudley T L, Bean D W, Ostoja S M, Hultine K R, Kuehn M J (2010). A river system to watch: Documenting the effects of saltcedar (Tamarix spp.) biocontrol in the Virgin River Valley. Ecol Res , 28(4): 405–410
doi: 10.3368/er.28.4.405
2 Chapin F S III, Zavaleta E S, Eviner V T, Naylor R L, Vitousek P M, Reynolds H L, Hooper D U, Lavorel S, Sala O E, Hobbie S E, Mack M C, Díaz S (2000). Consequences of changing biodiversity. Nature , 405(6783): 234–242
doi: 10.1038/35012241 pmid:10821284
3 Cory J S, Myers J H (2000). Direct and indirect ecological effects of biological control. Trends Ecol Evol , 15(4): 137–139
doi: 10.1016/S0169-5347(99)01807-8
4 Deloach C J, Carruthers R, Dudley T, Eberts D, Kazmer D (2004). First results for control of saltcedar (Tamarix spp.) in the open field in the Western United States. In: Cullen, J M, Briese D T, Kriticos D J, Lonsdale W M, Morin L, Scott J K, eds. Proceedings of the XI International Symposium on Biological Control Weeds. Canberra , Australia: CSIRO Entomology, 505–513
5 Di Tomaso J M (1998). Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol , 12: 326–336
6 Dudley T L, DeLoach C J (2004). Saltcedar (Tamarix spp.), endangered species, and biological weed control – can they mix? Weed Technol , 18(sp1): 1542–1551
doi: 10.1614/0890-037X(2004)018[1542:STSESA]2.0.CO;2
7 Durst S L, Sogge M K, Stump S D, Williams S O, Kus B E, Sferra S J (2007). Southwestern Willow Flycatcher breeding site and territory summary – 2006. USGS Open File Report 2007–1391
8 Elith J, Graham C H (2009). Do they / How do they / Why do they differ? – On finding reasons for differing performances of species distribution models. Ecography , 32(1): 66–77
doi: 10.1111/j.1600-0587.2008.05505.x
9 Elith J, Graham C H, Anderson R P, Dudík M, Ferrier S, Guisan A, Hijmans R J, Huettmann F, Leathwick J R, Lehmann A (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography , 29: 129–151
doi: 10.1111/j.2006.0906-7590.04596.x
10 ESRI ArcGIS 9.2 (2006). Redlands, CA, USA, available online: www.esri.com
11 Evangelista P H, Stohlgren T J, Morisette J T, Kumar S (2009). Mapping invasive tamarisk (Tamarix): A comparison of single-scene and time-series analyses of remotely sensed data. Remote Sens , 1(3): 519–533
doi: 10.3390/rs1030519
12 Everitt B L (1980). Ecology of saltcedar – a plea for research. Environmental Geology , 3(2): 77–84
doi: 10.1007/BF02473474
13 Everitt J H, Deloach C J (1990). Remote sensing of Chinese tamarisk (Tamarix chinensis) and associated vegetation. Weed Sci , 38: 273–278
14 Fielding A H, Bell J F (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv , 24(1): 38–49
doi: 10.1017/S0376892997000088
15 Finch D M, Stoleson S H (2000). Status, ecology, and conservation of the South-western Willow Flycatcher. General Technical Report RMRS-GTR-60 . Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station
16 Hatten J R, Paradzick C E (2003). A multiscaled model of South-western Willow Flycatcher breeding habitat. J Wildl Manage , 67(4): 774–788
doi: 10.2307/3802685
17 Hatten J R, Paxton E H, Sogge M K (2010). Modeling the dynamic habitat and breeding population of Southwestern Willow Flycatcher. Ecol Modell , 221(13–14): 1674–1686
doi: 10.1016/j.ecolmodel.2010.03.026
18 Hultine K R, Belnap J, van Riper C III, Ehleringer J R, Dennison P E, Lee M E, Nagler P L, Snyder K A, Uselman S M, West J B (2009). Tamarisk biocontrol in the western United States: Ecological and societal implications. Front Ecol Environ , 8(9): 467–474
doi: 10.1890/090031
19 Innes J, Barker G (1999). Ecological consequences of toxin use for mammalian pest control in New Zealand: An overview. N Z J Ecol , 23: 111–127
20 Jiménez-Valverde A, Lobo J M (2007). Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol , 31(3): 361–369
doi: 10.1016/j.actao.2007.02.001
21 Kauth R J, Thomas G S (1976). The tasseled cap – a graphic description of the spectral-temporal development of agricultural crops as seen in Landsat. In: Proceedings of the Symposium on Machine Processing of Remotely Sensed Data; LARS , Purdue University: West Lafayette, IN, USA, 41–51
22 Kumar S, Spaulding S A, Stohlgren T J, Hermann K A, Schmidt T S, Bahls L L (2008). Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Front Ecol Environ , 7(8): 415–420
doi: 10.1890/080054
23 Kumar S, Stohlgren T J (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment , 1: 94–98
24 Leica ERDAS Imagine 9.1 (2009). Leica Geosystems Geospatial Imaging, LLC: Atlanta G A , USA, 1991–2005; available online: http://www.erdas.com
25 Lite S J, Stromberg J C (2005). Surface water and ground-water thresholds for maintaining Populus-Salix forests, San Pedro River, Arizona. Biol Conserv , 125(2): 153–167
doi: 10.1016/j.biocon.2005.01.020
26 Liu C, Berry P M, Dawson T P, Pearson R G (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography , 28(3): 385–393
doi: 10.1111/j.0906-7590.2005.03957.x
27 Lytle D A, Merritt D M (2004). Hydrologic regimes and riparian forests: A structured population model for cottonwood. Ecology , 85(9): 2493–2503
doi: 10.1890/04-0282
28 Matarczyk J A, Willis A J, Vranjic J A, Ash J E (2002). Herbicides, weeds and endangered species: Management of bitou bush (Chrysanthemoides monilifera spp. rotundata) with glyphosate and impacts on the endangered shrub, Pimelea spicata. Biol Conserv , 108(2): 133–141
doi: 10.1016/S0006-3207(02)00062-9
29 Merritt D M, Poff N L R (2010). Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers. Ecol Appl , 20(1): 135–152
doi: 10.1890/08-2251.1 pmid:20349836
30 Morisette J T, Jarnevich C S, Ullah A, Cai W, Pedelty J A, Gentle J E, Stohlgren T J, Schnase J L (2006). A tamarisk habitat suitability map for the continental United States. Front Ecol Environ , 4(1): 11–17
doi: 10.1890/1540-9295(2006)004[0012:ATHSMF]2.0.CO;2
31 Nagler P L, Glenn E P, Huete A R (2001). Assessment of spectral vegetation indices for riparian vegetation in the Colorado River delta, Mexico. J Arid Environ , 49(1): 91–110
doi: 10.1006/jare.2001.0844
32 Naiman R J, Décamps H (1997). The ecology of interfaces: Riparian zones. Annu Rev Ecol Syst , 28(1): 621–658
doi: 10.1146/annurev.ecolsys.28.1.621
33 Naiman R J, Décamps H, Pollock M (1993). The role of riparian corridors in maintaining regional biodiversity. Ecol Appl , 3(2): 209–212
doi: 10.2307/1941822
34 Patten D T (1998). Riparian ecosystems of semi-arid North America: Diversity and human impacts. Wetlands , 18(4): 498–512
doi: 10.1007/BF03161668
35 Paxton E H, Sogge M K, Durst S L, Theimer T C, Hatten J R (2007). The ecology of the Southwestern Willow Flycatcher in central Arizona – a 10-year synthesis report: U.S. Geological Survey Open-File Report 2007–1381
36 Pearce J, Ferrier S (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell , 133(3): 225–245
doi: 10.1016/S0304-3800(00)00322-7
37 Phillips S J, Anderson R P, Schapire R E (2006). Maximum entropy modeling of species geographic distributions. Ecol Modell , 190(3–4): 231–259
doi: 10.1016/j.ecolmodel.2005.03.026
38 Robinson T W (1965). Introduction, spread, and areal extent of saltcedar (Tamarix) in the western states. US Geological Survey, Washington D C, USA
39 Shafroth P B, Briggs M K (2008). Restoration ecology and invasive riparian plants: An introduction to the special section on Tamarix spp. in western North America. Restor Ecol , 16(1): 94–96
doi: 10.1111/j.1526-100X.2007.00362.x
40 Sogge M K, Marshall R M (2000). A survey of current breeding habitats. In: Finch D M, Stoleson S H, eds. Status, ecology, and conservation of the South-western Willow Flycatcher. USDA Forest Service General Technical Report RMRS-GTR-60. USDA Forest Service Rocky Mountain Research Station, Ogden, UT , 43–56
41 Sogge M K, Marshall R M, Sferra S J, Tibbitts T J (1997). A South-western Willow Flycatcher natural history summary and survey protocol. USGS Biological Resources Division, Colorado Plateau Research Station, Northern Arizona University
42 Sogge M K, Sferra S J, Paxton E H (2008). Tamarix as habitat for birds: Implications for riparian restoration in the southwestern United States. Restor Ecol , 16(1): 146–154
doi: 10.1111/j.1526-100X.2008.00357.x
43 Song C, Woodcock C E, Seto K C, Lenney M P, Macomber S A (2001). Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens Environ , 75(2): 230–244
doi: 10.1016/S0034-4257(00)00169-3
44 Song C H, Woodcock C E (2003). Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE Trans Geosci Rem Sens , 41(11): 2557–2567
doi: 10.1109/TGRS.2003.818367
45 Stohlgren T J, Bull K A, Otsuki Y, Villa C, Lee M (1998). Riparian zones as havens for exotic plant species in the central grasslands. Plant Ecol , 138(1): 113–125
doi: 10.1023/A:1009764909413
46 Stromberg J C, Beauchamp V B, Dixon M D, Lite S J, Paradzick C (2007a). Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid south-western United States. Freshw Biol , 52(4): 651–679
doi: 10.1111/j.1365-2427.2006.01713.x
47 Stromberg J C, Lite S J, Marler R, Paradzick C, Shafroth P B, Shorrock D, White J M, White M S (2007). Altered stream-flow regimes and invasive plant species: the Tamarix case. Glob Ecol Biogeogr , 16(3): 381–393
doi: 10.1111/j.1466-8238.2007.00297.x
48 Szaro R C, Rinne J N (1988). Ecosystem approach to management of southwestern riparian communities. Transactions of the 53rd North American Wildlife and Natural Resources Conference , 53: 502–511
49 Taylor J P, McDaniel K C (1998). Restoration of saltcedar (Tamarix sp.)-infested floodplains on the Bosque del Apache National Wildlife Refuge. Weed Technol , 12: 345–352
50 Unitt P (1987). Empidonax traillii extimus: an endangered subspecies. West Birds , 18: 137–162
51 United States Fish and Wildlife Service (1995). Final rule determining endangered status for the Southwestern Willow Flycatcher. Fed Regist , 60: 10694–10715
52 Vitousek P M, DAntonio C M, Loope L L, Rejmanek M, Westbrooks R. (1997). Introduced species: A significant component of human-caused global change. N Z J Ecol , 21: 1–16
53 Zavaleta E S (2000). The economic value of controlling an invasive shrub. AMBIO: A Journal of the Human Environment , 29: 462–467
54 Zavaleta E S, Hobbs R J, Mooney H A (2001). Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol , 16(8): 454–459
doi: 10.1016/S0169-5347(01)02194-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed