Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    0, Vol. Issue () : 197-206    https://doi.org/10.1007/s11707-011-0170-5
RESEARCH ARTICLE
Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region, India
S Chidambaram1(), M.V Prasanna2, U Karmegam1, C Singaraja1, S Pethaperumal3, R Manivannan1, P Anandhan1, K Tirumalesh4
1. Department of Earth Sciences, Annamalai University, Annamalai, Nagar-608002, India; 2. Department of Applied Geology, School of Engineering and Science, Curtin University, Sarawak, Miri-98009, Malaysia; 3. State Groundwater Unit and Soil Conservation, Department of Agriculture, Pondicherry-605009, India; 4. Scientist D, Isotope Hydrology Division, BARC, Mumbai–400094, India
 Download: PDF(734 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The partial pressure of Carbon-Di-oxide plays a significant role in the water chemistry. It reflects the geochemical process and relates to the saturation index (SI) of the Carbonate minerals. A total number of 98 samples were collected from layered sequential aquifers like Alluvium, Upper Cuddalore sandstone, Lower Cuddalore Sandstone and Cretaceous formations, during Pre-Monsoon and Post-Monsoon seasons. Chemical parameters of groundwater such as pH, EC, TDS, Na+, K+, Ca2+, Mg2+, Cl-, HCO3-, SO42-,PO43- and H4SiO4 were determined. The study shows that an increase in the log pCO2 values during water-rock interaction which influences the process of mineral dissolution. Saturation index of the carbonate minerals like Calcite, Aragonite, Dolomite and Magnesite were derived and compared with the log pCO2 values. In both the seasons the decreasing log pCO2 increases the saturation index of most of the carbonate minerals studied. The saturation index of almost all carbonate minerals during both the seasons showed negative correlation irrespective of the formation. Log pCO2 also develops a negative correlation with pH in groundwater of the study area.

Keywords hydrogeochemistry      log pCO2      saturation index(SI)      geochemical modeling      coastal aquifers     
Corresponding Author(s): Chidambaram S,Email:geoprasanna@rediffmail.com   
Issue Date: 05 June 2011
 Cite this article:   
S Chidambaram,M.V Prasanna,U Karmegam, et al. Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region, India[J]. Front Earth Sci, 0, (): 197-206.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-011-0170-5
https://academic.hep.com.cn/fesci/EN/Y0/V/I/197
Fig.1  Location map of the study area
Fig.2  Sample locations indicated on the geology map
Fig.3  Geology map with cross section along AB line
LithologypHECCaMgNaKClHCO3SO4PO4NO3BrITDS
AlluviumMin6.66309.0024.002.40116.203.1053.1773.203.500.900.601.280.0556395.00
Max8.822360.0056.00106.00892.306.30497.00390.4018.0012.4023.3010.90.7111780.00
Avg7.551020.5040.5028.80550.703.60171.79263.837.138.057.644.170.29829.18
Upper Cuddalore SandstoneMin5.89209.0016.000.0045.703.0053.1748.802.500.053.120.00890.0897106.50
Max7.501530.0048.0026.40795.504.70336.77219.6010.5012.9039.907.010.5181154.00
Avg6.50547.6628.886.66270.303.35122.10107.085.385.9513.192.680.23428.60
Lower Cuddalore SandstoneMin6.64349.0016.002.40161.303.1035.4597.603.000.100.281.010.042228.00
Max7.841440.0056.0055.20706.404.40248.15366.0011.5010.7022.805.70.5611175.00
Avg7.30666.0030.5020.97411.803.3196.08214.465.507.234.272.450.25511.57
CretaceousMin7.14699.0032.007.20130.603.1070.900.004.000.051.761.950.0641543.00
Max8.582020.0084.0081.60883.0011.50531.75786.8015.009.6072.6012.72.081760.00
Avg7.671109.2050.8029.28552.224.22207.38299.508.306.9017.185.210.55950.30
Tab.1  Chemical concentration of groundwater samples during pre-monsoon of the max, min, and average (all values are in mg/L except, EC in μS/cm and pH)
LithologypHECCaMgNaKClHCO3SO4PO4H4SiO4NO3BrITDS
AlluviumMin6.76641.4324.000.0039.0813.1088.63207.4040.500.0553.250.7960.03240.172449.00
Max7.501942.8688.0067.20344.8318.20389.95500.2072.050.80124.006.251.061.881360.00
Avg7.111494.0344.0017.02216.7216.39215.92379.3148.350.3288.732.870.430.701045.82
Upper Cuddalore SandstoneMin5.74144.008.000.00114.9413.1088.6361.0043.500.0571.000.000.01270.156100.80
Max7.611241.4344.0019.20275.8617.90319.04573.4081.650.70170.0018.96.591.49869.00
Avg6.91704.4126.228.00185.3915.98198.91222.3150.040.3899.315.951.310.58493.09
Lower Cuddalore SandstoneMin6.46324.298.000.0068.9711.5053.18146.4012.000.003.000.290.004680.155227.00
Max7.921157.1444.0048.00218.3918.80248.14317.20224.000.90171.755.040.9821.16810.00
Avg7.11582.2921.8710.24144.8316.68132.43206.5961.290.4161.800.890.220.40407.60
CretaceousMin6.62531.4312.000.0068.9711.8053.75170.8041.000.0548.000.920.01350.093372.00
Max8.021505.7160.0038.40229.8918.60248.14414.8049.000.80101.7518.70.2753.211054.00
Avg7.241200.7936.0013.87149.6515.61143.83310.4245.420.3981.364.570.141.04840.56
Tab.2  Chemical concentration of groundwater samples during post-monsoon of the max, min, and average (all values are in mg/L except, EC in μS/cm and pH)
Fig.4  Range of pCO in different for mation during pre and post monsoon. (a) Pre-monsoon; (b) post-mmsoon
Fig.5  Relationship of log pCO to ionic strength during post-monsoon (*) and pre-monsoon
Fig.6  Saturation index of Carbonate minerals during pre-monsoon to pCO in different aquifers
Fig.7  Saturation index of Carbonate minerals during post-monsoon to pCO in different aquifers
Fig.8  Relationship of log pCO to pH of groundwater samples during pre-monsoon
Fig.9  Relationship of log pCO to Cl/HCO in groundwater samples during pre-monsoon
Fig.10  Relationship of log pCO to pH of groundwater samples during post-monsoon
Fig.11  Relationship of log pCO to Cl/HCO ratio in groundwater samples during post-monsoon
MineralsAlluviumCretaceousLower CuddaloreUpper Cuddalore
PRMMagnesite-0.18-0.83-0.80-0.36
Dolomite-0.24-0.80-0.84-0.37
Calcite-0.39-0.67-0.81-0.38
Aragonite-0.47-0.67-0.81-0.38
POMMagnesite0.00-0.66-0.66-0.78
Dolomite-0.10-0.65-0.71-0.73
Calcite0.03-0.51-0.67-0.66
Aragonite0.03-0.51-0.67-0.66
Tab.3  Correlation of the log pCO values with the saturation index of different carbonate minerals
1 APHA (1995). Standard methods for the examination of water and waste water. 19th ed, APHA, Washington D C, USASS
2 Aruga R, Gastaldi D, Negro G, Ostacoli G (1995). Pollution of a river basin and its evolution with time studied by multivariate statistical analysis. Anal Chim Acta , 310(1): 15–25
doi: 10.1016/0003-2670(95)00101-5
3 Ashley R P, Lloyd J W (1978). An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. J Hydrol (Amst) , 39(3-4): 355–364
doi: 10.1016/0022-1694(78)90011-2
4 Barak P, Chen Y (1992). Equivalentradii of humic macro molecules from acid base titration. Soil Sci , 154(3): 184–195
doi: 10.1097/00010694-199209000-00002
5 Bartschat B M, Cabaniss S E, Morel F M M (1992). Oligo eletrolyte model for cation binding by humic substances. Environ Sci Technol , 26(2): 284–294
doi: 10.1021/es00026a007
6 Benedetti M F, van Riemsdijk W H, Koopal L K (1996). Humic substances considered as a heterogeneous Donnan gel phase. Environ Sci Technol , 30(6): 1805–1813
doi: 10.1021/es950012y
7 Brook G A (1983). A world model of soil carbon dioxide. Earth surface processes and landfoems , 8: 79–88
8 Charlet L, Wersin P, Srumm W (1990). Surface charge of MnCO3 and FeCO3. Geochim Cosmochim Acta , 54(8): 2329–2336
doi: 10.1016/0016-7037(90)90059-T
9 Chidambaram S, Prasanna M V, Ramanathan A L, Anandhan P, Srinivasamoorthy K, Loganathan D, Senthil kumar G (2006). Impact of Tsunami in coastal ground water- A case study from Portnova to Pumpuhar, Tamilnadu. An International Quarterly Journal of Environment and Social Sciences , 1(2): 73–78
10 Chidambaram S, Ramanathan A L, Prasanna M V, Loganathan D, Badrinarayanan T S, Srinivasamoorthy K, Anandhan P (2008). Study on the impact of tsunami on shallow ground water from portnova to pumpuhar, using geoelectrical technique-south east coast of India. Indian J Mar Sci , 37(20): 121–131
11 Chidambaram S, Senthil Kumar G, Prasanna M V, John Peter A, Ramanathan A L, Srinivasamoorthy K (2009). A study on the hydrogeology and hydrogeochemistry of groundwater from different depths in a coastal aquifer: Annamalai Nagar, Tamilnadu, India. Environ Geol , 57(1): 59–73
doi: 10.1007/s00254-008-1282-4
12 Chidambaram S, Vijayakumar V, Srinivasamoorthy K, Anandhan P, Prasanna M V, Vasudevan S (2007). A study on variation in ionic composition of aqueous system in different lithounits around Perambalur region, Tamil Nadu. J Geol Soc India , 70(6): 1061–1069
13 de Wit J C M, van Riemsdijk W H, Koopal L (1993). Proton binding to humic substances. 1. Electrostatic effects. Environ Sci Technol , 27(10): 2005–2014
doi: 10.1021/es00047a004
14 de Wit J C M, van Riemsdijk W H, Nederlof L K, Kinniburgh D G, Koopal L K (1990). Analysis of ion binding on humic substances and the determination of intrinsic affinity distributions. Analytica Chemica Acta , 198–207
15 Engebretson R R, Amos T, vonWandruszka R (1996). Quantitative approach to humic acid associations. Environ Sci Technol , 30(3): 990–997
doi: 10.1021/es950478g
16 Giammanco S, Ottaviani M, Valenza M, Veschetti E, Principio E, Giammanco G, Pignato S (1998). Major and trace elements geochemistry in the ground- waters of a volcanic area: Mount Etna (Sicily, Italy). Water Res , 32(1): 19–30
doi: 10.1016/S0043-1354(97)00198-X
17 Herman J S, Back W, Pomar L (1985). Geochemistry of groundwater in the mixing zone along the east coast of Mallorca, Spain. Karst Water Resources (Proceedings of the Ankara – Antalya Symposium, July 1985) , 161: 467–479
18 Holland H D (1978). The chemistry of the atmosphere and oceans. New York: Wiley Inter Sciences, 351
19 Kim J O, Mueller C W (1987). Introduction to Factor Analysis: What It is and How to Do It? Quantitative Applications in the Social Sciences Series . Newbury Park: Sage University Press
20 Korea Water Resources Cooperation (1993). Groundwater Resources of Korea-Preliminary Survey and Evaluation, KWRC-93-GR-1, KWRC, 342
21 Marinsky J A, Ephraim J (1986). Aunified physicochemical description of the proto nation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 1.analysis of the influence of polyelectrolyte properties on protonation equilibria in ionic media: fundamental concepts. Environ Sci Technol , 20(4): 349–354
doi: 10.1021/es00146a006
22 Milne C J, Kinniburgh D, de Wit J C M, van Reimsdijk W H, Koopal K (1995). Analysis of proton binding by a peat humic acid using a simple electrostatic model. Geochim Cosmochim Acta , 59(6): 1101–1112
doi: 10.1016/0016-7037(95)00027-W
23 Murphy E M, Zachara J M (1995). The role of Sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater. Geoderma , 67(1-2): 103–124
doi: 10.1016/0016-7061(94)00055-F
24 Plummer LN, Jones BF, Truesdell AH (1976). WATEQF – A Fortran IV Version Of WATEQ, A Computer Program For Calculating Chemical Equilibrium Of Natural Waters. US Geol Surv Water Resources Investigations Report , 76–13
25 Prasanna M V, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K (2010). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environ Monit Assess , 168(1-4): 63–90
doi: 10.1007/s10661-009-1092-5 pmid:19609693
26 Prasanna M V, Chidambaram S, Srinivasamoorthy K, Anandhan P, John P A (2006). A study on hydrogeochemistry along the ground water flow path in different litho units in Gadilam river basin, Tamilnadu (India).International journal of Chemical sciences , 2(2): 157–172
27 Raymahashay B C (1986). Geochemistry of bicarbonate in river water. J Geol Soc India , 27: 114–118
28 Stumm W, Morgan J J (1996). Aquatic Chemistry. New York: John Wiley and Sons Inc, 1022
29 Tipping E, Hurley M.A (1992). A unifying model of cation binding by humic substances. Geochim Cosmochim Acta , 56(10): 3627–3641
doi: 10.1016/0016-7037(92)90158-F
30 Toscani L, Venturelli G, Boschetti T (2001). Sulphide-bearing waters in Northern Apennines, Italy: general features and water rock interaction. Aquat Geochem , 7(3): 195–216
doi: 10.1023/A:1012941328028
31 Venturelli G, Boschetti T, Vittorio D (2003). Na-carbonate waters of extreme composition: Possible origin and evolution. Geochem J , 37: 351–366
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed