Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    0, Vol. Issue () : 122-139    https://doi.org/10.1007/s11707-012-0314-2
RESEARCH ARTICLE
Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years
Prasanth MEIYAPPAN, Atul K. JAIN()
Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801, USA
 Download: PDF(655 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Earth’s land cover has been extensively transformed over time due to both human activities and natural causes. Previous global studies have focused on developing spatial and temporal patterns of dominant human land-use activities (e.g., cropland, pastureland, urban land, wood harvest). Process-based modeling studies adopt different strategies to estimate the changes in land cover by using these land-use data sets in combination with a potential vegetation map, and subsequently use this information for impact assessments. However, due to unaccounted changes in land cover (resulting from both indirect anthropogenic and natural causes), heterogeneity in land-use/cover (LUC) conversions among grid cells, even for the same land use activity, and uncertainty associated with potential vegetation mapping and historical estimates of human land use result in land cover estimates that are substantially different compared to results acquired from remote sensing observations. Here, we present a method to implicitly account for the differences arising from these uncertainties in order to provide historical estimates of land cover that are consistent with satellite estimates for recent years. Due to uncertainty in historical agricultural land use, we use three widely accepted global estimates of cropland and pastureland in combination with common wood harvest and urban land data sets to generate three distinct estimates of historical land-cover change and underlying LUC conversions. Hence, these distinct historical reconstructions offer a wide range of plausible regional estimates of uncertainty and the extent to which different ecosystems have undergone changes. The annual land cover maps and LUC conversion maps are reported at 0.5°×0.5° resolution and describe the area of 28 land-cover types and respective underlying land-use transitions. The reconstructed data sets are relevant for studies addressing the impact of land-cover change on biogeophysics, biogeochemistry, water cycle, and global climate.

Keywords historical land use      land-cover change      land-use conversions      deforestation      HYDE      Moderate Resolution Imaging Spectroradiometer (MODIS)     
Corresponding Author(s): JAIN Atul K.,Email:jain1@illinois.edu   
Issue Date: 05 June 2012
 Cite this article:   
Prasanth MEIYAPPAN,Atul K. JAIN. Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years[J]. Front Earth Sci, 0, (): 122-139.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-012-0314-2
https://academic.hep.com.cn/fesci/EN/Y0/V/I/122
Fig.1  Global distribution of forest area during 2005 based on (a) MODIS-IGBP data, and (b) estimates by Hurtt et al. () (Unit: % per grid cell area)
No.Land-cover typeSymbolNo.Land-cover typeSymbol
1*Tropical evergreen broadleaf forestTrpEBF15*Polar desert/rock/icePdRI
2*Tropical deciduous broadleaf forestTrpDBF16Secondary tropical evergreen broadleaf forestSecTrpEBF
3*Temperate evergreen broadleaf forestTmpEBF17Secondary tropical deciduous broadleaf forestSecTrpDBF
4*Temperate evergreen needleleaf forestTmpENF18Secondary temperate evergreen broadleaf forestSecTmpEBF
5*Temperate deciduous broadleaf forestTmpDBF19Secondary temperate evergreen needleleaf forestSecTmpENF
6*Boreal evergreen needleleaf forestBorENF20Secondary temperate deciduous broadleaf forestSecTmpDBF
7*Boreal deciduous needleleaf forestBorDNF21Secondary boreal evergreen needleleaf forestSecBorENF
8*SavannaSavanna22Secondary boreal deciduous needleleaf forestSecBorDNF
9*C3 grassland/steppeC3grass23*Water/RiversWater
10*C4 grassland/steppeC4grass24C3 croplandC3crop
11*Dense shrublandDenseshrub25C4 croplandC4crop
12*Open shrublandOpenshrub26C3 pasturelandC3past
13*TundraTundra27C4 pasturelandC4past
14*DesertDesert28Urban landUrban
Tab.1  Land-cover classifications used in this study
Fig.2  Schematic diagram showing the process involved in Step 3 to estimate LUCC and LUC conversions. Step 4 involves modification of priority factors estimated from Step 3 using forest area estimated from MODIS-IGBP data. ‘’ denotes year, which increases from 1765 to 2005/2007/2010 (ISAM-HH/ISAM-RF/ISAM-HYDE) in annual time steps. The priority factors shown here are just an example, and they vary for each land cover type from year to year between each grid cell
Fig.3  Estimated global forest area for the year 2005 based on ISAM-RF, (a) Without calibration (b) after calibration using MODIS-IGBP data (Unit: % per grid cell area)
RegionsCroplandPastureland
RFHYDEHHRangeRFHYDEHHRange
North America2.12.31.91.9 – 2.32.42.50.00.0 – 2.5
Latin America1.61.51.41.4 – 1.64.85.42.82.8 – 5.4
Europe1.21.20.10.1 – 1.20.60.70.00.0 – 0.7
North Africa and Middle East0.80.90.30.3 – 0.91.83.00.00.0 – 3.0
Tropical Africa2.02.01.91.9 – 2.07.08.00.00.0 – 8.0
Former USSR2.02.20.40.4 – 2.23.33.60.00.0 – 3.6
China1.31.60.70.7 – 1.63.55.20.00.0 – 5.2
South & South-East Asia3.02.91.51.5 – 3.00.30.40.00.0 – 0.4
Pacific Developed Region0.40.60.20.2 – 0.62.64.10.00.0 – 4.1
World14.315.37.67.6 – 15.326.333.02.82.8 – 33.0
Tab.2  Regional areas of cropland and pastureland averaged for the period 2001–2005 estimated directly from RF (Updated estimates based on ), HYDE () and HH () data sets across nine regions covering the world. The nine regions are based on Houghton et al. (). Units are in million km. All values are rounded to one decimal place
Land-cover type1765190020002005
ISAM-RF/ISAM-HYDE/ISAM-HHISAM-RFISAM-HYDEISAM-HHISAM-RFISAM-HYDEISAM-HHISAM-RFISAM-HYDEISAM-HH
Primary forest45.434.934.833.522.122.520.821.722.220.3
Secondary forest0.02.92.93.17.97.07.58.37.27.8
C3 cropland2.95.96.24.210.011.45.510.011.65.6
C4 cropland0.61.71.81.22.93.41.52.93.41.5
C3 pastureland3.09.19.13.318.024.44.218.024.64.3
C4 pastureland1.23.03.61.75.97.72.65.57.32.6
C3 grassland14.615.615.420.216.513.826.017.214.126.4
C4 grassland4.94.13.75.82.71.84.52.71.74.2
Savanna14.213.012.514.29.17.214.28.87.114.2
Shrubland16.914.114.616.810.18.016.810.18.016.8
Others26.125.725.426.124.422.526.124.422.526.1
Urban land0.0<0.1<0.1<0.10.40.40.40.50.50.5
Tab.3  Global area of various land cover types for 4 time slices based on ISAM-RF, ISAM-HYDE, and ISAM-HH estimates. ‘Primary forest’ includes TrpEBF, TrpDBF, TmpEBF, TmpENF, TmpDBF, BorENF, and BorDNF. ‘Secondary forest’ includes SecTrpEBF, SecTrpDBF, SecTmpEBF, SecTmpENF, SecTmpDBF, SecBorENF, and SecBorDNF. Shrubland is a combination of Denseshrub and Openshrub. ‘Others’ category includes Tundra, Desert, and PdRI. The estimates of cropland and pastureland area are slightly lower than the original estimates (Table 2) due to a difference in land mask used and other minor adjustments made in Step 3 (Sect. 2.3) for consistency purposes (Unit: million km)
RegionsForest area in 1765Total deforested areaTotal forest regrowthEstimated forest area in 2005
ISAM-RFISAM-HYDEISAM-HHISAM-RFISAM-HYDEISAM-HH
North America9.63.33.53.32.42.02.25.8–6.2
Latin America10.53.12.44.51.00.61.28.4–8.8
Europe2.52.01.61.31.51.01. 11.2–1.4
North Africa and Middle East0.20.10.10.1<0.1<0.1<0.1~0.1
Tropical Africa5.31.21.20.90.40.30.52.7–3.0
Former USSR8.11.41.80.90.81.10.75.9–6.0
China2.31.11.10.70.80.30.71.1–1.4
South & South-East Asia5.82.02.12.40.70.41.22.0–3.1
Pacific Developed Region1.20.40.40.40.30.20.3~1.1
World45.514.714.414.58.06.08.028.3–30.0
Tab.4  Area of forest cleared and forest regrown during the period 1765–2005 across nine regions covering the world, based on ISAM-RF, ISAM-HYDE, and ISAM-HH estimates. Total deforested and forest regrowth estimates are based on four land-use activities only. However, changes in forest area effected due to calibration with satellite data (Step 4; Sect. 2.4) are reflected in year 2005 forest estimates (Unit: million km)
Fig.4  Estimated (a) primary and (b) secondary forest area for the year 2005 based on ISAM-RF (Unit: % per grid cell area)
Fig.5  Regional comparisons of various natural land-cover types during 2005 based on ISAM-RF, ISAM-HYDE, and ISAM-HH. ‘Primary forest’ includes TrpEBF, TrpDBF, TmpEBF, TmpENF, TmpDBF, BorENF, and BorDNF. ‘Secondary forest’ includes SecTrpEBF, SecTrpDBF, SecTmpEBF, SecTmpENF, SecTmpDBF, SecBorENF, and SecBorDNF. Shrubland is a combination of Denseshrub and Openshrub. Grassland is a combination of C grass and C grass. ‘Others’ category includes Tundra, Desert and PdRI
RegionsYang et al. (2010)Klein Goldewijk(2001)Hurtt et al. (2006)IPCC AR5aThis studyTest case
FAObThis study (UMD scheme)
North America9.58.79.39.35.8–6.05.14.1–4.5
Latin America9.09.29.08.67.4–8.310.29.8–10.1
Europe2.12.21.61.51.3–1.41.71.5
North Africa and Middle East0.1<0.1<0.1<0.1<0.10.10.4
Tropical Africa4.33.34.44.02.8–3.156.97.0–9.8
Former USSR11.011.99.710.05.9–6.08.16.3–6.5
China1.01.32.52.01.2–1.351.71.8–2.0
South & South-EastAsia4.13.33.33.43.1–3.23.63.3–3.4
Pacific Developed Region1.21.41.11.11.12.22.4–3.7
World42.341.540.939.929.0–30.139.637.2–41.3
Tab.5  Comparison of regional forest area estimated in this study with other published studies for the year 1990. The results from this study are provided as a range of forest area estimated from ISAM-RF, ISAM-HYDE, and ISAM-HH. An additional ‘test case’ was performed (following UMD land classification scheme) to facilitate direct comparisons with FAO estimates (Unit: million km)
1 Arora V K, Boer G J (2006). Simulating competition and coexistence between plant functional types in a dynamic vegetation model. Earth Interactions , 10 (10): 1–30
2 Bala G, Caldeira K, Wickett M, Phillips T J, Lobell D B, Delire C, Mirin A (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA , 104(16): 6550–6555
doi: 10.1073/pnas.0608998104 pmid:17420463
3 Bonan G B (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science , 320(5882): 1444–1449
doi: 10.1126/science.1155121 pmid:18556546
4 Bonan G B, Pollard D, Thompson S L (1992). Effects of boreal forest vegetation on global climate. Nature , 359(6397): 716–718
doi: 10.1038/359716a0
5 Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D, Loutre M F, Matthews H D, Ramankutty N, Schaeffer M, Sokolov A (2006). Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim Dyn , 26(6): 587–600
doi: 10.1007/s00382-005-0092-6
6 Canadell J G (2002). Land use effects on terrestrial carbon sources and sinks. Science in China (Series C) , 45(Sl): 1–9
pmid:18763058
7 Canadell J G, Le Quéré C, Raupach M R, Field C B, Buitenhuis E T, Ciais P, Conway T J, Gillett N P, Houghton R A, Marland G (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA , 104(47): 18866–18870
doi: 10.1073/pnas.0702737104 pmid:17962418
8 Collatz G J, Berry J A, Clark J S (1998). Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia , 114(4): 441–454
doi: 10.1007/s004420050468
9 Ellis E C, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr , 19: 589–606
doi: 10.1111/j.1466-8238.2010.00540.x
10 FAO (2001). Global Forest Resources Assessment 2000. Main Report, FAO Forestry Paper 140, Rome, Italy . Available at http://www.fao.org/forestry/fra/2000/report/en/
11 FAO (2006). Global Forest Resources Assessment 2005. Main Report, FAO Forestry Paper 147, Rome, Italy . Available at http://www.fao.org/forestry/fra/fra2005/en/
12 FAO (2008). FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy. Available at: http://www.fao.org
13 FAO (2010). Global Forest Resources Assessment 2010, Main Report, FAO Forestry Paper 163, Rome, Italy. Available at http://www.fao.org/forestry/fra/fra2010/en/
14 Feddema J J, Oleson K W, Bonan G B, Mearns L O, Buja L E, Meehl G A, Washington W M (2005). The importance of land cover change in simulating future climates. Science , 310(5754): 1674–1678
doi: 10.1126/science.1118160 pmid:16339443
15 Findell K L, Pitman A J, England M H, Pegion P J (2009). Regional and global impacts of land cover change and sea surface temperature anomalies. J Clim , 22(12): 3248–3269
doi: 10.1175/2008JCLI2580.1
16 Foley J A, Costa M H, Delire C, Ramankutty N, Snyder P (2003). Green surprise? How terrestrial ecosystems could affect Earth’s climate. Front Ecol Environ , 1(1): 38–44
17 Foley J A, Defries R, Asner G P, Barford C, Bonan G, Carpenter S R, Chapin F S, Coe M T, Daily G C, Gibbs H K, Helkowski J H, Holloway T, Howard E A, Kucharik C J, Monfreda C, Patz J A, Prentice I C, Ramankutty N, Snyder P K (2005). Global consequences of land use. Science , 309(5734): 570–574
doi: 10.1126/science.1111772 pmid:16040698
18 Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockstr?m J, Sheehan J, Siebert S, Tilman D, Zaks D P (2011). Solutions for a cultivated planet. Nature , 478(7369): 337–342
doi: 10.1038/nature10452 pmid:21993620
19 Friedl M A, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010). MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ , 114(1): 168–182
doi: 10.1016/j.rse.2009.08.016
20 Giglio L, Randerson J T, van der Werf G R, Kasibhatla P S, Collatz G J, Morton D C, DeFries R S (2010). Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences , 7(3): 1171–1186
doi: 10.5194/bg-7-1171-2010
21 Hansen M C, DeFries R S, Townshend J G R, Sohlberg R (2000). Global land cover classification at 1?km spatial resolution using a classification tree approach. Int J Remote Sens , 21(6–7): 1331–1364
doi: 10.1080/014311600210209
22 Houghton R A (1999). The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B Chem Phys Meterol , 51(2): 298–313
doi: 10.1034/j.1600-0889.1999.00013.x
23 Houghton R A (2005). Aboveground forest biomass and the global carbon balance. Glob Change Biol , 11(6): 945–958
doi: 10.1111/j.1365-2486.2005.00955.x
24 Houghton R A (2008). Carbon flux to the atmosphere from land use changes: 1850–2005. In: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, USA
25 Houghton R A, Hobbie J E, Melillo J M, Moore B, Peterson B J, Shaver G R, Woodwell G M (1983). Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr , 53(3): 235–262
doi: 10.2307/1942531
26 Houghton R A, van der Werf G R, DeFries R S, Hansen M C, House J I, Le Quéré C, Pongratz J, Ramankutty N (2012). Chapter G2 carbon emissions from land use and land cover change. Biogeosciences Discuss , 9(1): 835–878
doi: 10.5194/bgd-9-835-2012
27 Hurtt G C, Chini L P, Frolking S, Betts R A, Feddema J, Fischer G, Hibbard K, Houghton R, Janetos A, Jones C D, Kindermann G, Kinoshita T, Klein Goldewijk K, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thorton P, Vuuren D P, Wang Y (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Change , 109(1–2): 117–161
doi: 10.1007/s10584-011-0153-2
28 Hurtt G C, Frolking S, Fearon M G, Moore B III, Shevliakova E, Malyshev S, Pacala S W, Houghton R A (2006). The underpinnings of land use history: three centuries of global gridded land use transitions, wood harvest activity, and resulting secondary lands. Glob Change Biol , 12(7): 1208–1229
doi: 10.1111/j.1365-2486.2006.01150.x
29 Jain A K, Yang X (2005). Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change. Global Biogeochem Cycles , 19(2): GB2015
doi: 10.1029/2004GB002349
30 Jain A K, Yang X, Kheshgi H, McGuire A D, Post W P, Kicklighter D (2009). Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Global Biogeochem Cycles , 23(4): GB4028
doi: 10.1029/2009GB003519
31 Jung M, Henkel K, Herold M, Churkina G (2006). Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens Environ , 101(4): 534–553
doi: 10.1016/j.rse.2006.01.020
32 Klein Goldewijk K (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochem Cycles , 15(2): 417–433
doi: 10.1029/1999GB001232
33 Klein Goldewijk K, Beusen A, van Drecht G, De Vos M (2011). The HYDE 3.1 spatially explicit database of human-induced land-use change over the past 12,000 years. Glob Ecol Biogeogr , 20(1): 73–86
doi: 10.1111/j.1466-8238.2010.00587.x
34 Klein Goldewijk K, Beusen A, Janssen P (2010). Long term dynamic modeling of global population and built-up area in a spatially explicit way, HYDE 3.1. Holocene , 20(4): 565–573
doi: 10.1177/0959683609356587
35 Klein Goldewijk K, Ramankutty N (2004). Land cover change over the last three centuries due to human activities: the availability of new global data sets. GeoJournal , 61(4): 335–344
doi: 10.1007/s10708-004-5050-z
36 Klein Goldewijk K, van Drecht G, Bouwman A F (2007). Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution. Journal of Land Use Science , 2(3): 167–190
doi: 10.1080/17474230701622940
37 Lambin E F, Geist H J (2003). Regional differences in tropical deforestation. Environment , 45(6): 22–36
38 Lambin E F, Geist H J, Lepers E (2003). Dynamics of land use and land cover change in tropical regions. Annu Rev Environ Resour , 28(1): 205–241
doi: 10.1146/annurev.energy.28.050302.105459
39 Lawrence P J, Feddema J J, Bonan G B, Meehl G A, O’Neill B C, Oleson K W, Levis S, Lawrence D M, Kluzek E, Lindsay K, Thornton P E (2012). Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J Clim: 120208141321006
doi: 10.1175/JCLI-D-11-00256.1
40 Leite C C, Costa M H, de Lima C A, Ribeiro C A A S, Sediyama G C (2011). Historical reconstruction of land use in the Brazilian Amazon (1940–1995). Journal of Land Use Science , 6(1): 33–52
doi: 10.1080/1747423X.2010.501157
41 Li B B, Fang X Q, Ye Y, Zhang X (2010). Accuracy assessment of global historical cropland datasets based on regional reconstructed historical data—a case study in Northeast China. Science in China (D): Earth Sciences , 53(11): 1689–1699
doi: 10.1007/s11430-010-4053-5
42 Liu M, Tian H (2010). China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives. Global Biogeochem Cycles , 24(3): GB3003
doi: 10.1029/2009GB003687
43 Loveland T R, Belward A S (1997). The IGBP-DIS global 1 km land cover data set, DISCover first results. Int J Remote Sens , 18(15): 3289–3295
doi: 10.1080/014311697217099
44 McGuire A D, Sitch S, Clein J S, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter D W, Meier R A, Melillo J M, Moore B III, Prentice I C, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams L J, Wittenberg U (2001). Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem Cycles , 15(1): 183–206
doi: 10.1029/2000GB001298
45 Meinshausen M, Smith S J, Calvin K V, Daniel J S, Kainuma M L T, Lamarque J F, Matsumoto K, Montzka S A, Raper S C B, Riahi K, Thomson A, Velders G J M, Vuuren D P P (2011). The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Clim Change , 109(1–2): 213–241
doi: 10.1007/s10584-011-0156-z
46 Mitchell T D, Jones P D (2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol , 25(6): 693–712
doi: 10.1002/joc.1181
47 Monfreda C, Ramankutty N, Foley J A (2008). Farming the Planet: 2.Geographic distribution of crop areas, yields, physiological types, and net primary prodution in the year 2000. Global Biogeochem Cycles , 22: GB1022
doi: 10.1029/2007GB002947
48 Moss R H, Edmonds J A, Hibbard K A, Manning M R, Rose S K, van Vuuren D P, Carter T R, Emori S, Kainuma M, Kram T, Meehl G A, Mitchell J F B, Nakicenovic N, Riahi K, Smith S J, Stouffer R J, Thomson A M, Weyant J P, Wilbanks T J (2010). The next generation of scenarios for climate change research and assessment. Nature , 463(7282): 747–756
doi: 10.1038/nature08823 pmid:20148028
49 Olofsson J, Hickler T (2008). Effects of human land use on the global carbon cycle during the last 6000 years. Vegetation History and Archaeobotany , 17(5): 605–615
doi: 10.1007/s00334-007-0126-6
50 Parry M L, Canziani O F, Palutikof J P, van der Linden P J, Hanson C E (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge: Cambridge University Press, 211–272
51 Pielke R A, Marland G, Betts R A, Chase T N, Eastman J L, Niles J O, Niyogi D D S, Running S W (2002). The influence of land use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans R Soc Lond A , 360(1797): 1705–1719
doi: 10.1098/rsta.2002.1027
52 Pielke R A Sr, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Klein Goldewijk K, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011). Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Clim Change , 2(6): 828–850
doi: 10.1002/wcc.144
53 Pitman A J, Avila F B, Abramowitz G, Wang Y P, Phipps S J, de Noblet-Ducoudré N (2011). Importance of background climate in determining impact of land cover change on regional climate. Nature Climate Change , 1(9): 472–475
doi: 10.1038/nclimate1294
54 Pitman A J, de Noblet-Ducoudré N, Cruz F T, Davin E, Bonan G B, Brovkin V, Claussen M, Delire C, Gayler V, van den Hurk B J J M, Lawrence P J, van der Molen M K, Müller C, Reick C H, Seneviratne S I, Strengers B J, Voldoire A (2009). Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophysical Research Letters , 36; L14814
doi: 10.1029/ 2009GL039076
55 Pongratz J, Reick C, Raddatz T, Claussen M (2008). A reconstruction of global agricultural areas and land cover for the Last Millennium. Global Biogeochem Cycles , 22(3): GB3018
doi: 10.1029/2007GB003153
56 Pongratz J, Reick C H, Raddatz T, Claussen M (2009). Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Global Biogeochem Cycles , 23(4): GB4001
doi: 10.1029/2009GB003488
57 Ramankutty N, Evan A, Monfreda C, Foley J A (2008). Farming the Planet: 1. The geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles , 22(1): GB1003
doi: 10.1029/2007GB002952
58 Ramankutty N, Foley J (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles , 13(4): 997–1028
doi: 10.1029/1999GB900046
59 Reick C, Raddatz T, Pongratz J, Claussen M (2010). Contribution of anthropogenic land cover change emissions to pre-industrial atmospheric CO2. Tellus B Chem Phys Meterol , 62(5): 329–336
doi: 10.1111/j.1600-0889.2010.00479.x
60 Shevliakova E, Pacala S W, Malyshev S, Hurtt G C, Milly P C D, Caspersen J P, Sentman L T, Fisk J P, Wirth C, Crevoisier C (2009). Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Global Biogeochem Cycles , 23(2): GB2022
doi: 10.1029/2007GB003176
61 Still C J, Berry J A, Collatz G J, DeFries R S (2003). Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem Cycles , 17(1): 1006–1020
doi: 10.1029/2001GB001807
62 van der Werf G R, Randerson J T, Giglio L, Collatz G J, Mu M, Kasibhatla P S, Morton D C, DeFries R S, Jin Y, van Leeuwen T T (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys , 10(23): 11707–11735
doi: 10.5194/acp-10-11707-2010
63 Yang X, Richardson T K, Jain A K (2010). Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake. Biogeosciences Discuss , 7(2): 2739–2765
doi: 10.5194/bgd-7-2739-2010
64 Yang X, Wittig V, Jain A K, Post W (2009). Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change. Global Biogeochem Cycles , 23(4): GB4029
doi: 10.1029/2009GB003474
65 Ye Y, Fang X Q (2011). Spatial pattern of land cover changes across Northeast China over the past 300 years. J Hist Geogr , 37(4): 408–417
doi: 10.1016/j.jhg.2011.08.018
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed