Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2013, Vol. 7 Issue (3) : 375-383    https://doi.org/10.1007/s11707-013-0379-6
RESEARCH ARTICLE
Zinc phosphate dissolution by bacteria isolated from an oligotrophic karst cave in central China
Hongmei WANG(), Qiang DONG, Jianping ZHOU, Xing XIANG
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
 Download: PDF(463 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biogeochemical processes are fundamental to sustain the ecosystem in subsurface caves, but to date they are still far from well understood. To investigate microbially mediated phosphorus and zinc cycles, we isolated three bacterial strains from the dripping water in Heshang cave, central China, identified as Exiguobacterium aurantiacum E11, Pseudomonas fluorescens P35, and Pseudomonas poae P41, respectively. Microbial capabilities in the dissolution of phosphorus-containing minerals were tested with zinc phosphate (Zn3(PO4)2) in batch culture at 30°C. A spectrophotometer, atomic absorption spectrum, and scanning electronic microscopy were used to measure the microbial growth, soluble Zn(II) concentration, and to observe the morphology of Zn3(PO4)2 before and after microbial dissolution. P. fluorescens and P. poae, the well-known phosphorus solubilizing bacteria (PSB), are observed to solubilize Zn3(PO4)2 with an efficiency of 16.7% and 17.6%, respectively. To our knowledge, E. aurantiacum is firstly reported in this study to dissolve phosphorous-containing minerals with a higher efficiency of 39.7%, expanding our understanding about the ubiquitous occurrence of PSB in natural environments. Aqueous Zn(II) concentration positively correlates with H+ activity, confirming the presence of acidification mechanisms widely exploited by PSB. Few itching pits were observed on the surface of Zn3(PO4)2 after microbial dissolution, inferring that microbial dissolution is not always associated with the direct contact with minerals. Even though the soluble Zn(II) concentration reached up to 370 mg/L in the system inoculated with E. aurantiacum E11, inhibition of microbial growth was not detected by spectrophotometer. Our laboratory data revealed the importance of microbially-mediated P and Zn cycles in the subsurface ecosystem.

Keywords karst cave      phosphate solubilizing bacteria (PSB)      zinc toxicity      biogeochemical process      subsurface biosphere     
Corresponding Author(s): WANG Hongmei,Email:wanghmei04@163.com   
Issue Date: 05 September 2013
 Cite this article:   
Qiang DONG,Jianping ZHOU,Xing XIANG, et al. Zinc phosphate dissolution by bacteria isolated from an oligotrophic karst cave in central China[J]. Front Earth Sci, 2013, 7(3): 375-383.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0379-6
https://academic.hep.com.cn/fesci/EN/Y2013/V7/I3/375
Fig.1  Neighbor-joining phylogenetic analysis of the three bacterial isolates from the dripping water in Heshang Cave, Hubei central China. The isolates were bolded in the figure. A. E11; B. P35; C. P41.
Fig.2  Growth curves (A), variations in pH (B) and aqueous Zn(II) concentration (C) in microbial inoculated systems in MSM amended with Zn(PO).
Fig.3  The relationship between H activity and soluble Zn(II) concentration in the inoculated systems with E11, P35, P41 in MSM amended with Zn(PO) A correlation between pH values and H activity was also showed in the abiotic system in which the pH was adjusted with diluted HCl.
Fig.4  SEM images of zinc phosphate in the abiotic and biotic systems collected at the end of experiments. A. Zinc phosphate particle in abiotic system; B. Bacteria assemblage and cells attached to the surface of zinc phosphate particles (indicated by the red arrow); C. The attached cells and itching pitches on the surface of zinc phosphate particles (indicated by the red arrow).
1 Atmaca S, Gül K, Cicek R (1998). The effect of zinc on microbial growth. Tr J of Medical Sciences , 28: 595–597
2 Bidle K D, Lee S, Marchant D R, Falkowski P G (2007). Fossil genes and microbes in the oldest ice on Earth. PNAS , 104(33):13455–13460
3 Bong C W, Malfatti F, Azam F, Obayashi Y, Suzuk S (2010). The effect of zinc exposure on the bacteria abundance and proteolytic activity in seawater. In: Hamamura N, Suzuki S, Mendo S, Barroso C M, Iwata H, Tanabe S, eds. Interdisciplinary Studies on Environmental Chemistry — Biological Responses to Contaminants . Tokyo: Terrapub, 57–63
4 Chelius M K, Beresford G, Horton H, Quirk M, Selby G, Simpson R T, Horrocks R, Moore J C (2009). Impacts of alterations of organic inputs on the bacterial community within the sediments of Wind Cave, South Dakota, USA. Int J Speleol , 38(1): 1–10
doi: 10.5038/1827-806X.38.1.1
5 Chen Z X, Ma S W, Liu L L (2008). Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour Technol , 99(14): 6702–6707
doi: 10.1016/j.biortech.2007.03.064 pmid:18407495
6 Cunninghum J E, Kuiack C (1992). Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol , 58(5): 1451–1458
pmid:1622211 (Please See page 2 line 8).
7 Di Simine C D, Sayer J A, Gadd G M (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils , 28(1): 87–94
doi: 10.1007/s003740050467
8 Engel A S (2010). Microbial diversity of cave ecosystems. In: Alexander L, Martin M, Barton L L, eds. Geomicrobiology: Molecular and Environmental Perspective . Dordrecht Heidelberg London New York: Springer, 219–238
9 Fasim F, Ahmed N, Parsons R, Gadd G M (2002). Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett , 213(1): 1–6
doi: 10.1111/j.1574-6968.2002.tb11277.x pmid:12127480
10 Feng K, Lu H M, Sheng H J, Wang X L, Mao J (2004). Effect of organic ligands on biological availability of inorganic phosphorus in Soils. Pedosphere , 14(1): 85–92
11 Gaskins M H, Albrecht S L, Hubbell D H (1985). Rhizosphere bacteria and their use to increase plant productivity. Agr Ecosyst Environ , 12(2): 99–116
12 Govindan S, Piyush J, Preeti S (2011). Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol , 27(5): 1129–1135
doi: 10.1007/s11274-010-0559-4
13 Hu C, Henderson G M, Huang J, Chen Z H, Johnson K R (2008). Report of a three-year monitoring programme at Heshang cave, central China. Int J Speleol , 37: 143–151
14 Hu X J, Li Z J, Cao Y C, Zhang J, Gong Y X, Yang Y F (2010). Isolation and identi?cation of a phosphate-solubilizing bacterium Pantoea stewartii subsp.stewartii g6, and effects of temperature, salinity, and pH on its growth under indoor culture conditions. Aquacult Int , 18(6): 1079–1091
doi: 10.1007/s10499-010-9325-8
15 Hughes M N, Poole R K (1989). Metals and microorganisms. London: Chapman and Hall
16 Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biolol Biochem , 24: 389–395
17 Jha B K, Gandhi Pragash M, Cletus J, Raman G, Sakthivel N(2009). Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonas strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol , 25(4): 573–581
doi: 10.1007/s11274-008-9925-x
18 Kang S C, Ha C G, Lee T G, Maheshwari D K (2002). Solubilisation of insoluble inorganic phosphates by soil-inhabiting fungus Fomitopsis sp. PS 102. Curr Sci , 82(4): 439–442
19 Khan M S, Zaidi A, Wani P A (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron sustaine Dev, 27(1): 29–43
doi: 10.1051/agro:2006011
20 Kim K Y, Jordan D, McDonald G A (1998). Enterobacter agglomerans, phosphate solubilizing bacteria and microbial activity in soil: effect of carbon sources. Soil Biol Biochem , 30(8-9): 995–1003
doi: 10.1016/S0038-0717(98)00007-8
21 Landeweert R, Hoffland E, Finlay R D, Kuyper T W, van Breemen N (2001). Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol , 16(5): 248–254
doi: 10.1016/S0169-5347(01)02122-X pmid:11301154
22 Lee N M, Meisinger D B, Aubrecht R, Kovacik? L, Porter M L, Engel A S (2012). Caves and Karst Environments. In: Bell E ed. Life at Extremes: in Environments, Organisms and Strategies for Survival, CABI , 320–344
23 Li X T, Dong C X, Yang X M, Zhong Z T, Shen Q R, Xu Y C (2010). Labeling of phosphate-solubilizing bacteria K3 with GFP and its phosphate solulilization ability. Soils , 42(4): 548–553 (in Chinese)
24 Lin T F, Huang H I, Shen F T, Young C C (2006). The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74. Bioresour Technol , 97: 957–960
25 Liu D, Wang H M, Dong H L, Qiu X, Dong X Z, Cravotta C A III (2011). Mineral transformations associated with goethite reduction by Methanosarcina barkeri. Chem Geol , 288(1-2): 53–60
doi: 10.1016/j.chemgeo.2011.06.013
26 Liu Q Y, Wang H M, Zhao R, Gong L F (2010). Bacteria isolated from dripping water in the oligotrophic Heshang cave in central China. J Earth Sci , 21(S1): 325–328
doi: 10.1007/s12583-010-0250-6
27 López-Bucio J, de La Vega O M, Guevara-García A, Herrera-Estrella L (2000). Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotechnol , 18(4): 450–453
doi: 10.1038/74531 pmid:10748530
28 Lu X C, Wang H M (2012). Microbial oxidation of sulfide tailings and the environmental consequences. Elements , 8(2): 119–124
doi: 10.2113/gselements.8.2.119
29 Mardad I, Serrano A, Soukri A (2013). Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. Afri J Microbiol Res , 7(8): 626 -635
30 McGrath S P, Chaudri A M, Giller K E (1995). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol , 14(2): 94–104
doi: 10.1007/BF01569890 pmid:7766215
31 Mikonova O, Novakova J (2002). Evaluation of P-solubilising activity of soil microorganisms and its sensitivity to soluble phosphate. Rostlinna Vyroba , 48(9): 397–400
32 Nweke C O, Alisi C S, Okolo J C, Nwanyanwu C E (2007). Toxicity of zinc to heterotrophic bacteria from a tropical river sediment. Appl Eco Environ Res , 5(1): 123–132
33 Ouahmane L, Thioulouse J, Ha?di M, Prin Y, Ducousso M, Galiana A, Plenchette C, Kisa M, Duponnois R (2007). Soil functional diversity and P solubilization from rock phosphate after inoculation with native or allochtonous arbuscular mycorrhizal fungi. For Ecol Manage , 241(1-3): 200–208
doi: 10.1016/j.foreco.2007.01.015
34 Peix A, Rivas-Boyero A A, Mateos P F, Rodirguez-Barrueco C, Martinez-Molina E, Velazquez E (2001). Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem , 33(1): 103–110
doi: 10.1016/S0038-0717(00)00120-6
35 Pérez E, Sulbarán M, Ball M M, Yarzábal L A (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem , 39(11): 2905–2914
doi: 10.1016/j.soilbio.2007.06.017
36 Podile A R, Dube H L (1988). Plant growth-promoting activity of Bacillus subtilis AF1. Curr Sci , 57(4): 183–186
37 Pradhan N, Sukla L B (2005). Solubilisation of inorganic phosphate by fungi isolated from agriculture soil. Afr J Biotechnol , 5(10): 850–854
38 Rosling A, Suttle K B, Johansson E, van Hees P A W, Banfield J F (2007). Phosphorous availability in?uences the dissolution of apatite by soil fungi. Geobiology , 5(3): 265–280
doi: 10.1111/j.1472-4669.2007.00107.x
39 Saravanan V S, Madhaiyan M, Thangaraju M (2007). Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere , 66(9): 1794–1798
doi: 10.1016/j.chemosphere.2006.07.067 pmid:16956644
40 Schippers B, Bakker A W, Bakker P A H M (1987). Interactions of deleterious and bene?cial rhizosphere microorganisms and the effect of cropping practices. Ann Rev Phytopathol 25: 339–358
42 Singh J S, Raghabanshi A S, Singh R S, Srivastava S C (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature , 338(6215): 499–500
doi: 10.1038/338499a0
43 Singh M S, Yadav L S, Singh S K, Singh P (2011). Phosphate solubilizing ability of two Arctic Aspergillus niger strains. Polar Res , 30: 7283
doi: 10.3402/polar.v30i0.7283
44 Tao G C, Tian S J, Cai M Y, Xie G H (2008). Phosphate-solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere , 18(4): 515–523
doi: 10.1016/S1002-0160(08)60042-9
45 Vassilev N, Vassileva M, Fenice M, Federici F (2001). Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Bioresour Technol , 79(3): 263–271
doi: 10.1016/S0960-8524(01)00017-7 pmid:11499580
46 Vivas A, Biró B, Ruíz-Lozano J M, Barea J M, Azcón R (2006). Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere , 62(9): 1523–1533
doi: 10.1016/j.chemosphere.2005.06.053 pmid:16098559
47 Welch S A, Taunton A E, Banfield J F (2002). Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J , 19(3): 343–367
doi: 10.1080/01490450290098414
48 Xiang W L, Liang H Z, Liu S, Luo F, Tang J, Li M, Che Z (2011). Isolation and performance evaluation of halotolerant phosphate solubilizing bacteria from the rhizospheric soils of historic Dagong Brine Well in China. World J Microbiol Biotechnol , 27(11): 2629–2637
doi: 10.1007/s11274-011-0736-0
49 Zhu F L, Qu L Y, Hong X G, Sun X Q (2011). Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China . Evidence-Based Complementary and Alternative Medicine , 2011,
doi: 10.1155/2011/615032
[1] Hongmei WANG, Qianying LIU, Deng LIU, Xuan QIU, Linfeng GONG, Cuiping ZENG, . Calcium carbonate precipitation induced by a bacterium strain isolated from an oligotrophic cave in Central China[J]. Front. Earth Sci., 2010, 4(2): 148-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed