Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (1) : 114-124    https://doi.org/10.1007/s11707-014-0371-9
RESEARCH ARTICLE
A granular-biomass high temperature pyrolysis model based on the Darcy flow
Jian GUAN1,*(),Guoli QI1,Peng DONG2
1. China Special Equipment Inspection and Research Institute, Beijing 100013, China
2. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(231 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We established a model for the chemical reaction kinetics of biomass pyrolysis via the high-temperature thermal cracking of liquid products. We divided the condensable volatiles into two groups, based on the characteristics of the liquid prdoducts., tar and biomass oil. The effects of temperature, residence time, particle size, velocity, pressure, and other parameters on biomass pyrolysis and high-temperature tar cracking were investigated numerically, and the results were compared with experimental data. The simulation results showed a large endothermic pyrolysis reaction effect on temperature and the reaction process. The pyrolysis reaction zone had a constant temperature period in several layers near the center of large biomass particles. A purely physical heating process was observed before and after this period, according to the temperature index curve.

Keywords biomass pyrolysis      high temperature pyrolysis model      condensable volatile cracking      Darcy flow     
Corresponding Author(s): Jian GUAN   
Online First Date: 19 June 2014    Issue Date: 04 February 2015
 Cite this article:   
Peng DONG,Jian GUAN,Guoli QI. A granular-biomass high temperature pyrolysis model based on the Darcy flow[J]. Front. Earth Sci., 2015, 9(1): 114-124.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0371-9
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I1/114
Fig.1  Chemical kinetic scheme of biomass pyrolysis.
Fig.2  Geometry of the simulation of granular biomass.
A/(s-1) E/(J·mol-1) Values source
A1 = 5.16 × 106 E1 = 88,600 Di Blasi, 1996
A2 = 1.48 × 1010 E2 = 112,700 Di Blasi, 1996
A3 = 4.28 × 105 E3 = 138,000 regression value
A4 = 1.48 × 1010 E4 = 120,000 regression value
A5 = 4.28 × 107 E5 = 133,000 regression value
Tab.1  Kinetic date of biomass pyrolysis
Parameters Parameter Values Value Source
Initial density of biomass/(kg·m?3) ρ B 0 = 650 kg / m 3 Koufopanos et al., 1991
Specific heat capacity of biomass/(J·kg?1·K?1) C B = 1112.0 + 4.85 ( T - 273 ) , J / ( k g ? K ) Koufopanos et al., 1991
Specific heat capacity of charcoal/(J·kg?1·K?1) C C = 1003.2 + 2.09 ( T - 273 ) , J / ( kg ? K ) Koufopanos et al., 1991
Specific heat capacity of gas/(J·kg?1·K?1) C g = A + B T + C T 2 + D T 3 + E T 4 + F T 5 , J / ( kg ? K ) Feng et al., 2003
Effective coefficient of heat conductivity/(W·m?1·K?1) k = η k B + ( 1 - η ) k C + ? k g + σ T 3 d / ω , W / ( m ? K ) Babu and Chaurasia, 2004
Coefficient of heat conductivity of biomass/(W·m?1·K?1) k B = 0.13 + 0.0003 ( T - 273 ) , W / ( m ? K ) Koufopanos et al., 1991
Coefficient of heat conductivity of charcoal/(W·m?1·K?1) k C = 0.08 - 0.0001 ( T - 273 ) , W / ( m ? K ) Koufopanos et al., 1991
Coefficient of heat conductivity of gas/(W·m?1·K?1) k g = 25.8 × 10 - 3 , W / ( m ? K ) Gr?nli and Melaaen, 2000
Pore diameter/m d = 2 × 10 - 5 , m Di Blasi, 1993b
Emissivity(blackness) ω = 0.9 Melaaen, 1996
Reaction heat/(J·kg?1) Δ H = - 255000 , J / kg Koufopanos et al., 1991
Dynamic viscosity/(kg·m?1·s?1) μ = 4.847 × 10 - 7 T 0.64487 , kg / ( m ? s ) Hagge and Bryden, 2002
molecular weight for Vdaf/(g·mol?1) M g = 30.0 , g / mol Kansa et al., 1977
Intrinsic penetration rate κ B = 1.0 × 10 - 5 , κ C = 10 Di Blasi, 2000
Tab.2  Values used in the mathematic model
Fig.3  Temperature as functions of the conversion yield of biomass.
Fig.4  Temperature profile as a function of time of biomass pyrolysis.
Fig.5  Temperature profile as a function of radial distance.
Fig.6  Temperature profile as functions of conversion time for different layers.
Fig.7  Temperature profile as functions of conversion time for different layers.
Fig.8  Overpressure as functions of radial distance under different time conditions.
Fig.9  Flux of condensable gases as functions of conversion time.
1 Babu B V, Chaurasia A S (2004). Heat transfer and kinetics in the pyrolysis of shrinking biomass particle. Chem Eng Sci, 59(10): 1999–2012
https://doi.org/10.1016/j.ces.2004.01.050
2 Chen B, Chen G Q (2006a). Exergy analysis for resource conversion of the Chinese society 1993 under the material product system. Energy, 31(8–9): 1115–1150
https://doi.org/10.1016/j.energy.2005.06.003
3 Chen B, Chen G Q (2006b). Ecological footprint accounting based on emergy—A case study of the Chinese society. Ecol Modell, 198(1–2): 101–114
https://doi.org/10.1016/j.ecolmodel.2006.04.022
4 Chen B, Chen G Q, Yang Z F (2006a). Exergy-based resource accounting for China. Ecol Modell, 196(3–4): 313–328
https://doi.org/10.1016/j.ecolmodel.2006.02.019
5 Chen B, Chen G Q, Yang Z F, Jiang M M (2007). Ecological footprint accounting for energy and resource in China. Energy Policy, 35(3): 1599–1609
https://doi.org/10.1016/j.enpol.2006.04.019
6 Chen B, He G X, Qi J, Su M R, Zhou S Y, Jiang M M (2012a). Greenhouse gas inventory of a typical high-end industrial park in China. ScientificWorldJournal, doi: 10.1155/2013/717054
pmid: 23365537
7 Chen B, He G X, Yang J, Zhang J R, Su M R, Qi J (2012b). Evaluating ecological and economic benefits of a low-carbon industrial park based on millennium ecosystem assessment framework. ScientificWorldJournal, 2012, 909317: 1–5
https://doi.org/10.1100/2012/909317 pmid: 23365537
8 Chen G Q, Chen B (2009). Extended exergy analysis of the Chinese society. Energy, 34(9): 1127–1144
https://doi.org/10.1016/j.energy.2009.04.023
9 Chen G Q, Jiang M M, Chen B, Yang Z F, Lin C (2006b). Emergy analysis of Chinese agriculture. Agric Ecosyst Environ, 115(1–4): 161–173
https://doi.org/10.1016/j.agee.2006.01.005
10 Chen S Q, Chen B (2011). Assessing inter-city ecological and economic relations: an emergy-based conceptual model. Front Earth Sci, 5(1): 97–102
https://doi.org/10.1007/s11707-011-0171-4
11 Chen S Q, Chen B (2012a). De?ning indirect uncertainty in system-based risk management. Ecol Inform, 10: 10–16
https://doi.org/10.1016/j.ecoinf.2011.05.005
12 Chen S Q, Chen B (2012b). Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria. Environ Sci Technol, 46(8): 4498–4506
https://doi.org/10.1021/es204662k pmid: 22424579
13 Chen S Q, Chen B (2012c). Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: an emergy analysis. Renew Sustain Energy Rev, 16(6): 3948–3959
https://doi.org/10.1016/j.rser.2012.03.040
14 Chen S Q, Chen B, Song D (2012c). Life-cycle energy production and emissions mitigation by comprehensive biogas–digestate utilization. Bioresour Technol, 114: 357–364
https://doi.org/10.1016/j.biortech.2012.03.084 pmid: 22513252
15 Chen Z M, Chen G Q, Zhou J B, Jiang M M, Chen B (2010). Ecological input-output modeling for embodied resources and emissions in Chinese economy. Commun Nonlinear Sci Numer Simul, 15(7): 1942–1965
https://doi.org/10.1016/j.cnsns.2009.08.001
16 Dai J, Fath B D, Chen B (2012). Constructing a network of the Social-economic Consumption System of China using Extended Exergy Analysis. Renew Sustain Energy Rev, 16(7): 4796–4808
https://doi.org/10.1016/j.rser.2012.04.027
17 Di Blasi C (1993a). Modeling and simulation of combustion processes of charring and non-charring solid fuels. Pror Energy Combust Sci, 19(1): 71–104
https://doi.org/10.1016/0360-1285(93)90022-7
18 Di Blasi C (1993b). Analysis of convection and secondary reaction effects within porous solid fuels undergoing pyrolysis. Combust Sci Technol, 90(5): 315–340
https://doi.org/10.1080/00102209308907620
19 Di Blasi C (1996). Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation. Chem Eng Sci, 51(7): 1121–1132
20 Di Blasi C (2000). Modelling the fast pyrolysis of cellulosic particles in fluid-bed reactors. Chem Eng Sci, 55(24): 5999–6013
https://doi.org/10.1016/S0009-2509(00)00406-1
21 Di Blasi C (2008). Modeling chemical and physical processes of wood and biomass pyrolysis. Pror Energy Combust Sci, 34(1): 47–90
https://doi.org/10.1016/j.pecs.2006.12.001
22 Feng J K, Shen Y T, Yang R C (2003). Principle and Calculation of the Boiler (3rd ed). Beijing: Science Press, 691
23 Gr?nli M G, Melaaen M C (2000). Mathematical model for wood pyrolysis—Comparison of experimental measurements with model predictions. Energy Fuels, 14(4): 791–800
https://doi.org/10.1021/ef990176q
24 Hagge M J, Bryden K M (2002). Modeling the impact of shrinkage on the pyrolysis of dry biomass. Chem Eng Sci, 57(14): 2811–2823
https://doi.org/10.1016/S0009-2509(02)00167-7
25 Hubacek K, Feng K S, Chen B (2012). Changing lifestyles towards a low carbon economy: an IPAT analysis for China. Energies, 5(12): 22–31
https://doi.org/10.3390/en5010022
26 Ji X, Chen G Q, Chen B, Jiang M M (2009). Exergy-based assessment for waste gas emissions from Chinese transportation. Energy Policy, 37(6): 2231–2240
https://doi.org/10.1016/j.enpol.2009.02.012
27 Jiang M M, Chen B (2011). Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy. Ecol Modell, 222(13): 2149–2165
https://doi.org/10.1016/j.ecolmodel.2011.04.012
28 Jiang M M, Chen B, Zhou J B, Tao F R, Li Z, Yang Z F, Chen G Q (2007). Emergy account for biomass resource exploitation by agriculture in China. Energy Policy, 35(9): 4704–4719
https://doi.org/10.1016/j.enpol.2007.03.014
29 Jiang M M, Zhou J B, Chen B, Chen G Q (2008). Emergy-based ecological account for the Chinese economy in 2004. Commun Nonlinear Sci Numer Simul, 13(10): 2337–2356
https://doi.org/10.1016/j.cnsns.2007.04.025
30 Jiang M M, Zhou J B, Chen B, Yang Z F, Ji X, Zhang L X, Chen G Q (2009). Ecological evaluation of Beijing economy based on emergy indices. Commun Nonlinear Sci Numer Simul, 14(5): 2482–2494
https://doi.org/10.1016/j.cnsns.2008.03.021
31 Ju L P, Chen B (2011). Embodied energy and emergy evaluation of a typical biodiesel production chain in China. Ecol Modell, 222(14): 2385–2392
https://doi.org/10.1016/j.ecolmodel.2010.07.021
32 Kansa E J, Perlee H E, Chaiken R F (1977). Mathematical model of wood pyrolysis including internal forced convection. Combust Flame, 29(3): 311–324
https://doi.org/10.1016/0010-2180(77)90121-3
33 Koufopanos C A, Maschio G, Lucchesi A (1989). Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng, 67(2): 75–84
https://doi.org/10.1002/cjce.5450670111
34 Koufopanos C A, Papayannakos N, Maschio G, Lucchesi A (1991). Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. Can J Chem Eng, 69(4): 907–915
https://doi.org/10.1002/cjce.5450690413
35 Li C, Suzuki K (2009). Tar property, analysis, reforming, mechanism and model for biomass gasification-an overview. Renew Sustain Energy Rev, 13(3): 594–604
https://doi.org/10.1016/j.rser.2008.01.009
36 Liu G Y, Yang Z F, Chen B (2011a). Extended exergy analysis of urban socioeconomic system: a case study of Beijing, 1996–2006. International Journal of Exergy, 168–191
37 Liu G Y, Yang Z F, Chen B, Ulgiati S (2011b). Monitoring trends of urban development and environmental impact of Beijing, 1999–2006. Sci Total Environ, 409(18): 3295–3308
https://doi.org/10.1016/j.scitotenv.2011.05.045 pmid: 21696806
38 Liu G Y, Yang Z F, Su M R, Chen B (2012). The structure, evolution and sustainability of urban socio-economic system. Ecol Inform, 10: 2–9
https://doi.org/10.1016/j.ecoinf.2011.10.001
39 Lu Y, Su M R, Liu G Y, Chen B, Zhou S Y, Jiang M M (2012). Ecological network analysis for a low-carbon and high-tech industrial park. ScientificWorldJournal, 2012, 305474, 1–9
https://doi.org/10.1100/2012/305474 pmid: 23365516
40 Maniatis K, Beenackers A A C M (2000). Tar protocols. IEA bioenergy gasification task. Biomass and Bioenergy, 18(1): 1–4
https://doi.org/10.1016/S0961-9534(99)00072-0
41 Melaaen M C (1996). Numerical analysis of heat and mass transfer in drying and pyrolysis of porous media. Numerical Heat Transfer, Part A: Applications, 29(4): 331–355
https://doi.org/10.1080/10407789608913796
42 Piskorz J, Majerski P, Radlein D, Scott D S, Bridgwater A V (1998). Fast pyrolysis of sweet sorghum and sweet sorghum bagasse. J Anal Appl Pyrolysis, 46(1): 15–29
https://doi.org/10.1016/S0165-2370(98)00067-9
43 Pyle D L, Zaror C A (1984). Heat transfer and kinetics in the low temperature pyrolysis of solids. Chem Eng Sci, 39(1): 147–158
https://doi.org/10.1016/0009-2509(84)80140-2
44 Qi G L (2010). Experimental research and numerical simulation of biomass pyrolysis and tar thermal cracking. Dissertation for Ph.D degree. Harbin Institute of Technology, 76–85
45 Qi G L, Dong P, Zhang Y (2011). Construction of large biomass high temperature pyrolysis model and numerical simulation. Acta Energiae Solaris Sinica, 32(7): 1058–1063
46 Qu Y H, Lin C, Zhou W, Li Y, Chen B, Chen G Q (2009a). Effects of CO2 concentration and moisture content of sugar-free media on the tissue-cultured plantlets in large growth chamber. Commun Nonlinear Sci Numer Simul, 14(1): 322–330
https://doi.org/10.1016/j.cnsns.2007.05.032
47 Qu Y H, Wei X M, Hou Y F, Chen B, Chen G Q, Lin C (2009b). Analysis for an environmental friendly seedling breeding system. Commun Nonlinear Sci Numer Simul, 14(4): 1766–1772
https://doi.org/10.1016/j.cnsns.2008.03.020
48 Song D, Su M R, Yang J, Chen B (2012). Greenhouse gas emission accounting and management of low-carbon community. ScientificWorldJournal, 2012, 6137211–6
https://doi.org/10.1100/2012/613721 pmid: 23251104
49 Su M, Liang C, Chen B, Chen S, Yang Z (2012). Low-carbon Development patterns: observations of typical Chinese cities. Energies, 5(2): 291–304
https://doi.org/10.3390/en5020291
50 Su M R, Yang Z F, Chen B (2009). Set pair analysis for urban ecosystem health assessment. Commun Nonlinear Sci Numer Simul, 14(4): 1773–1780
https://doi.org/10.1016/j.cnsns.2007.07.019
51 Su M R, Yang Z F, Chen B (2011). An emergy-based analysis of urban ecosystem health characteristics for Beijing city. International Journal of Exergy, 192–209
52 Wei X M, Chen B, Qu Y H, Lin C, Chen G Q (2009). Emergy analysis for ‘Four in One’ peach production system in Beijing. Commun Nonlinear Sci Numer Simul, 14(3): 946–958
https://doi.org/10.1016/j.cnsns.2007.09.016
53 Yang J, Chen B (2011). Using LMDI method to analyze the change of industrial CO2 emission from energy use in Chongqing. Front Earth Sci, 103–115
54 Yang J, Chen B, Qi J, Zhou S Y, Jiang M M (2012). Life-cycle-based multicriteria sustainability evaluation of industrial parks: a case study in China. ScientificWorldJournal, 2012 917830
https://doi.org/10.1100/2012/917830 pmid: 23304091
55 Yang J, Chen W C, Chen B (2011). Impacts of biogas projects on agro-ecosystem in rural areas — A case study of Gongcheng. Front Earth Sci, 5(3): 317–322
56 Yang Q, Chen B, Ji X, He Y F, Chen G Q (2009). Exergetic evaluation of corn-ethanol production in China. Commun Nonlinear Sci Numer Simul, 14(5): 2450–2461
https://doi.org/10.1016/j.cnsns.2007.08.011
57 Zeng L, Luo Z L, Chen B, Yang Z F, Li Z, Lin W X, Chen G Q (2010). Numerical analysis of a lock-release oil slick. Commun Nonlinear Sci Numer Simul, 15(8): 2222–2230
https://doi.org/10.1016/j.cnsns.2009.08.023
58 Zhang L X, Feng Y Y, Chen B (2011). Alternative scenarios for the development of a low-carbon city: a case study of Beijing, China. Energies, 4(12): 2295–2310
https://doi.org/10.3390/en4122295
59 Zhang L X, Song B, Chen B (2012). Emergy-based analysis of four farming systems: insight into agricultural diversification in rural China. J Clean Prod, 28: 33–44
https://doi.org/10.1016/j.jclepro.2011.10.042
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed