Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (2) : 237-247    https://doi.org/10.1007/s11707-014-0477-0
REVIEW
Effects of ultraviolet radiation on marine primary production with reference to satellite remote sensing
Teng LI1,Yan BAI1,*(),Gang LI2,Xianqiang HE1,Chen-Tung Arthur CHEN3,Kunshan GAO4,Dong LIU1
1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
2. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
3. Institute of Marine Geology and Chemistry, College of Marine Sciences, Sun Yat-Sen University, Kaohsiung 80424, China
4. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
 Download: PDF(385 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Incubation experiments have shown that ultraviolet radiation (UVR) has significant influences on marine primary production (MPP). However, existing satellite remote sensing models of MPP only consider the effects of visible light radiation, ignoring the UVR. Additionally, the ocean color satellite data currently used for MPP estimation contain no UV bands. To better understand the mechanism of MPP model development with reference to satellite remote sensing, including UVR’s effects, we first reviewed recent studies of UVR’s effects on phytoplankton and MPP, which highlights the need for improved satellite remote sensing of MPP. Then, based on current MPP models using visible radiation, we discussed the quantitative methods used to implement three key model variables related to UVR: the UVR intensity at the sea surface, the attenuation of UVR in the euphotic layer, and the maximum or optimal photosynthetic rate, considering the effects of UVR. The implementation of these UVR-related variables could be useful in further assessing UVR’s effects on the remote sensing of MPP, and in re-evaluating our existing knowledge of MPP estimation at large spatial scales and long-time scales related to global change.

Keywords marine primary production      satellite remote sensing      radiative transfer model      photosynthetically active radiation      ultraviolet radiation     
Corresponding Author(s): Yan BAI   
Online First Date: 12 December 2014    Issue Date: 30 April 2015
 Cite this article:   
Teng LI,Yan BAI,Gang LI, et al. Effects of ultraviolet radiation on marine primary production with reference to satellite remote sensing[J]. Front. Earth Sci., 2015, 9(2): 237-247.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0477-0
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I2/237
Types* Normal formula Source
WRM P P = λ = 400 n m λ = 700 n m z = 0 z = z e u t = s u n r i s e t = s u n s e t P A R ( λ , t , z ) × C h l a ( z ) × a ? ( λ , z ) × φ ( λ , t , z ) d λ d t d z - R Behrenfeld and Falkowski (1997a)
WIM P P = z = 0 z = z e u t = s u n r i s e t = s u n s e t P A R ( t , z ) × C h l a ( z ) × φ ( t , z ) d t d z - R
TIM P P = z = 0 z = z e u P A R ( z ) × C h l a ( z ) × P b ( z ) d z
DIM P P = f [ P A R ( 0 ) ] × C h l a × P o p t b × D L × Z e u
VGPM P P = [ 0 .66125 × P A R ( 0 ) / ( P A R ( 0 ) + 4 .1 ) ] × C h l a × P o p t b × D L × Z e u Behrenfeld and Falkowski (1997b)
AbPM P P = z =0 z = z e u P A R ( 0 ) × a p h ( z ) × φ ( z ) d z Marra et al., (2003)
CbPM P P = [ P A R ( 0 ) / ( P A R ( 0 ) + 4 .1 ) ] × C p h y t o × u × Z e u Behrenfeld et al., (2005)
Tab.1  Typical MPP models of satellite remote sensing
Fig.1  A sketch of the quantitative implementation of three key UVR-related variables (shown in red color) in MPP models. The boxes in green color show the current methods used in the literature (seen in Section 4.2); boxes in light blue are the relative satellite products which can be used as model inputs.
1 Ahmad Z, Herman J R, Vasilkov A P, Tzortziou M, Mitchell B G, Kahru M (2003). Seasonal variation of UV radiation in the ocean under clear and cloudy conditions. International Society for Optics and Photonics, In?Optical Science and Technology, SPIE’s 48th Annual Meeting, 63–73
2 Barber R T, Borden L, Johnson Z, Marra J, Knudson C, Trees C C (1997). Ground truthing modeled-kPAR and on-deck primary productivity incubations with in-situ observations. Ocean Optics, XIII. International Society for Optics and Photonics, 834–839
3 Barbieri E S, Villafa?e V E, Helbling E W (2002). Experimental assessment of UV effects on temperate marine phytoplankton when exposed to variable radiation regimes. Limnol Oceanogr, 47(6): 1648–1655
https://doi.org/10.4319/lo.2002.47.6.1648
4 Behrenfeld M J (1990). Primary productivity in the Southeast Ocean: effects of Enhanced Ultraviolet-B radiation. Thesis for the Degree of Master of Science. Oregon State University
5 Behrenfeld M J, Boss E, Siegel D A, Shea D M (2005). Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem Cycles, 19(1), DOI: 10.1029/2004GB002299
6 Behrenfeld M J, Falkowski P G (1997a). A consumer’s guide to phytoplankton primary productivity models. Limnol Oceanogr, 42(7): 1479–1491
https://doi.org/10.4319/lo.1997.42.7.1479
7 Behrenfeld M J, Falkowski P G (1997b). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr, 42(1): 1–20
https://doi.org/10.4319/lo.1997.42.1.0001
8 Behrenfeld M J, Hardy J T, Gucinski H, Hanneman A, Lee H II, Wones A (1993). Effects of ultraviolet-B radiation on primary production along latitudinal transects in the South Pacific Ocean. Mar Environ Res, 35(4): 349–363
https://doi.org/10.1016/0141-1136(93)90102-6
9 Booth C R, Morrow J H (1997). The penetration of UV into natural waters. Photochem Photobiol, 65(2): 254–257
https://doi.org/10.1111/j.1751-1097.1997.tb08552.x
10 Brühl C H, Crutzen P J (1989). On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation. Geophys Res Lett, 16(7): 703–706
https://doi.org/10.1029/GL016i007p00703
11 Calkins J, Thordardottir T (1980). The ecological significance of solar UV radiation on aquatic organisms. Nature, 283(5747): 563–566
https://doi.org/10.1038/283563a0
12 Campbell J, Antoine D, Armstrong R, Arrigo K, Balch W, Barber R, Behrenfeld M, Bidigare R, Bishop J, Carr M E, Esaias W, Falkowski P, Hoepffner N, Iverson R, Kiefer D, Lohrenz S, Marra J, Morel A, Ryan J, Vedernikov V, Waters K, Yentsch C, Yoder J (2002). Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Global Biogeochemical Cycles, 16(3): 9 ? 1–9 ? 15
13 Carr M E, Friedrichs M A M, Schmeltz M, Noguchi Aita M, Antoine D, Arrigo K R, Asanuma I, Aumont O, Barber R, Behrenfeld M, Bidigare R, Buitenhuis E T, Campbell J, Ciotti A, Dierssen H, Dowell M, Dunne J, Esaias W, Gentili B, Gregg W, Groom S, Hoepffner N, Ishizaka J, Kameda T, Le Quéré C, Lohrenz S, Marra J, Mélin F, Moore K, Morel A, Reddy T E, Ryan J, Scardi M, Smyth T, Turpie K, Tilstone G, Waters K, Yamanaka Y (2006). A comparison of global estimates of marine primary production from ocean color. Deep Sea Res Part II Top Stud Oceanogr, 53(5–7): 741–770
https://doi.org/10.1016/j.dsr2.2006.01.028
14 Chen S W, Gao K S (2011). Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae). Hydrobiologia, 675(1): 105–117
https://doi.org/10.1007/s10750-011-0807-0
15 Cullen J J, Neale P J, Lesser M P (1992). Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science, 258(5082): 646–650
https://doi.org/10.1126/science.258.5082.646
16 El-Sayed S Z, Stephens F C, Bidigare R R, Ondrusek M E (1990). Effect of ultraviolet radiation on Antarctic marine phytoplankton. In: Kerry K R, Hempel G eds. Antarctic Ecosystems.1st ed. Berlin-Heidelberg: Springer, 379–385
https://doi.org/10.1007/978-3-642-84074-6_43
17 Eppley R W, Stewart E, Abbott M R, Heyman U (1985). Estimating ocean primary production from satellite chlorophyll. Introduction to regional differences and statistics for the Southern California Bight. J Plankton Res, 7(1): 57–70
https://doi.org/10.1093/plankt/7.1.57
18 Frederick J E, Snell H E, Haywood E K (1989). Solar ultraviolet radiation at the earth's surface. Photochem Photobiol, 50(4): 443–450
https://doi.org/10.1111/j.1751-1097.1989.tb05548.x
19 Friedrichs M A M, Carr M E, Barber R T, Scardi M, Antoine D, Armstrong R A, Asanuma I, Behrenfeld M J, Buitenhuis E T, Chai F, Christian J R, Ciotti A M, Doney S C, Dowell M, Dunne J, Gentili B, Gregg W, Hoepffner N, Ishizaka J, Kameda T, Lima I, Marra J, Mélin F, Moore J K, Morel A, O’Malley R T, O'Reilly J, Saba V S, Schmeltz M, Smyth T J, Tjiputra J, Waters K, Westberry T K, Winguth A (2009). Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. J Mar Syst, 76(1–2): 113–133
https://doi.org/10.1016/j.jmarsys.2008.05.010
20 Gala W R, Giesy J P (1991). Effects of ultraviolet radiation on the primary production of natural phytoplankton assemblages in Lake Michigan. Ecotoxicol Environ Saf, 22(3): 345–361
https://doi.org/10.1016/0147-6513(91)90084-3
21 Gao K S, Li G, Helbling E W, Villafa?e V E (2007a). Variability of the UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea. Photochem Photobiol, 83(4): 802–809
https://doi.org/10.1111/j.1751-1097.2007.00154.x
22 Gao K S, Wu Y P, Li G, Wu H Y, Villafa?e V E, Helbling E W (2007b). Solar UV Radiation drives CO2 fixation in marine phytoplankton: a double-edged sword. Plant Physiol, 144(1): 54–59
https://doi.org/10.1104/pp.107.098491
23 Gao K S, Xu J T, Gao G, Li Y, Hutchins D A, Huang B Q, Wang L, Zheng Y, Jin P, Cai X N, H?der D P, Li W, Xu K, Liu N N, Riebesell U (2012). Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change, 2(7): 519–523
https://doi.org/10.1038/nclimate1507
24 Garcia-Pichel F (1994). A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreen. Limnol Oceanogr, 39(7): 1704–1717
https://doi.org/10.4319/lo.1994.39.7.1704
25 Guo S C, Qin Y, Zhao B L, Wu J, Chen H, Chen Y, Qin F (2002). The research of the effects of the atmosphere to the ultraviolet radiation. Universitatis Pekinensis, 38(3): 334–341 (Acta Scientiarum Naturalium)
26 H?der D P, Sinha R P (2005). Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1–2): 221–233
https://doi.org/10.1016/j.mrfmmm.2004.11.017
27 He X Q, Bai Y, Pan D L, Chen C T A, Chen Q, Wang D F, Gong F (2013). Satellite views of seasonal and inter-annual variability of phytoplankton blooms in the eastern China seas over the past 14 yr (1998?2011). Biogeosciences, 10(7): 4721–4739
https://doi.org/10.5194/bg-10-4721-2013
28 Helbling E W, Buma A G, de Boer M K, Villafa?e V E (2001). In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Mar Ecol Prog Ser, 211: 43–49
https://doi.org/10.3354/meps211043
29 Helbling E W, Carrillo P, Medina-Sánchez J M, Durán C, Herrera G, Villar-Argaiz M, Villafa?e V E (2013). Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe. Biogeosciences, 10(2): 1037–1050
https://doi.org/10.5194/bg-10-1037-2013
30 Helbling E W, Gao K S, Gon?alves R J, Wu H, Villafa?e V E (2003). Utilization of solar UV radiation by coastal phytoplankton assemblages off SE China when exposed to fast mixing. Mar Ecol Prog Ser, 259: 59–66
https://doi.org/10.3354/meps259059
31 Helbling E W, Villafa?e E V, Holm-Hansen O (1994). Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. Antarct Res Ser, 62: 207–227
https://doi.org/10.1029/AR062p0207
32 Herman J R, Krotkov N, Celarier E, Larko G D, Labow G (1999). Distribution of UV radiation at the Earth’s surface from TOMS-measured UV-backscattered radiances. J Geophys Res, D, Atmospheres, 104(D10): 12059–12076
https://doi.org/10.1029/1999JD900062
33 Hirawake T, Takao S, Horimoto N, Ishimaru T, Yamaguchi Y, Fukuchi M (2011). A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean. Polar Biol, 34(2): 291–302
https://doi.org/10.1007/s00300-010-0949-y
34 Hiriart V P (2000). Ultraviolet radiation and primary production by Lake Erie phytoplankton communities. Doctoral thesis of University of Waterloo
35 H?jerslev N, Aas E (1991). A relationship for the penetration of ultraviolet B radiation into the Norwegian Sea. J Geophys Res, 96(C9): 17003–17005
https://doi.org/10.1029/91JC01822
36 Huot Y, Jeffrey W H, Davis R F, Cullen J J (2000). Damage to DNA in Bacterioplankton: A model of damage by ultraviolet radiation and its repair as influenced by vertical mixing. Photochem Photobiol, 72(1): 62–74
https://doi.org/10.1562/0031-8655(2000)072<0062:DTDIBA>2.0.CO;2
37 IOCCG (2008). Why ocean colour? The societal benefits of ocean-colour technology. In: Platt T, Hoepffner N, Stuart V, Brown C, eds. Reports of the international ocean-colour coordinating group, No.7, IOCCG, Dartmouth, Canada
38 Ishizaka J, Siswanto E, Itoh T, Murakami H, Yamaguchi Y, Horimoto N, Ishimaru T, Hashimoto S, Saino T (2007). Verification of vertically generalized production model and estimation of primary production in Sagami Bay, Japan. J Oceanogr, 63(3): 517–524
https://doi.org/10.1007/s10872-007-0046-1
39 Jin Z H, Charlock T P, Rutledge K, Stamnes K, Wang Y J (2006). Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface. Appl Opt, 45(28): 7443–7455
https://doi.org/10.1364/AO.45.007443
40 Jin Z H, Stamnes K (1994). Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system. Appl Opt, 33(3): 431–442
https://doi.org/10.1364/AO.33.000431
41 Lee Z P (2009). KPAR: An optical property associated with ambiguous values. Journal of Lake Sciences, 21(2): 159–164
42 Lee Z P, Carder K L, Marra J, Steward R G, Perry M J (1996). Estimating primary production at depth from remote sensing. Appl Opt, 35(3): 463–474
https://doi.org/10.1364/AO.35.000463
43 Lee Z P, Du K P, Arnone R, Liew S C, Penta B (2005). Penetration of solar radiation in the upper ocean: a numerical model for oceanic and coastal waters. J Geophys Res, 110(C9): C09019
https://doi.org/10.1029/2004JC002780
44 Lee Z P, Weidemann A, Kindle J, Arnone R, Carder K L, Davis C (2007). Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. J Geophys Res, 112(C3): C03009
https://doi.org/10.1029/2006JC003802
45 Li G (2006). Studies on the relationships of solar ultraviolet radiation (the UVR) and photosynthetic carbon fixation by phytoplankton assemblages from the South China Sea. Doctoral thesis ofShan Tou University (in Chinese)
46 Li G, Che Z, Gao K S (2013). Photosynthetic carbon fixation by tropical coral reef phytoplankton assemblages: a the UVR perspective. Algae, 28(3): 281–288
https://doi.org/10.4490/algae.2013.28.3.281
47 Li G, Gao K (2014). Effects of solar UV radiation on photosynthetic performance of the diatom Skeletonema costatum grown under nitrate limited condition. Algae, 29(1): 27–34
48 Li G, Gao K S (2013). Cell size-dependent effects of solar UV on primary production in coastal waters of the South China Sea. Estuaries Coasts, 36(4): 728–736
https://doi.org/10.1007/s12237-013-9591-6
49 Li G, Gao K S, Gao G (2011). Differential impacts of solar UV radiation on photosynthetic carbon fixation from the coastal to offshore surface waters in the South China Sea. Photochem Photobiol, 87(2): 329–334
https://doi.org/10.1111/j.1751-1097.2010.00862.x
50 Li G, Wu Y P, Gao K S (2009). Effects of typhoon Kaemi on coastal phytoplankton assemblages in the South China Sea, with special reference to the effects of solar UV radiation. J Geophys Res, 114(G404029): 1–9
https://doi.org/10.1029/2008JG000896
51 Litchman E, Neale P J, Banaszak A T (2002). Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: photoprotection and repair. Limnol Oceanogr, 47(1): 86–94
https://doi.org/10.4319/lo.2002.47.1.0086
52 LokaBharathi P A, Krishnakumari L, Bhattathiri P M A, Chandramohan D (1997). UV radiation and primary production in the Antarctic waters. Scientific report: Thirteenth Indian Expedition to Antarctica, 323–334
53 Lorenzen C J (1970). Surface chlorophyll as an index of the depth, chlorophyll content and primary productivity of the euphotic layer. Limnol Oceanogr, 15(3): 479–480
https://doi.org/10.4319/lo.1970.15.3.0479
54 Madronich S, McKenzie R L, Bj?rn L O, Caldwell M M (1998). Changes in biologically active ultraviolet radiation reaching the earth's surface. J Photochem Photobiol B, 46(1–3): 5–19
https://doi.org/10.1016/S1011-1344(98)00182-1
55 Marra J, Ho C, Trees C C (2003). An alternative algorithm for the calculation of primary productivity from remote sensing data. Lamont Doherty Earth Observatory Technical Report (LDEO-2003-1)
56 Megard R O (1972). Phytoplankton, photosynthesis, and phosphorus in Lake Minnetonka, Minnesota. Limnol Oceanogr, 17(1): 68–87
https://doi.org/10.4319/lo.1972.17.1.0068
57 Mizubayashi K, Kuwahara V S, Segaran T C, Zaleha K, Effendy A W M, Kushairi M R M, Toda T (2013). Monsoon variability of ultraviolet radiation (the UVR) attenuation and bio-optical factors in the Asian tropical coral-reef waters. Estuar Coast Shelf Sci, 126: 34–43
https://doi.org/10.1016/j.ecss.2013.04.002
58 Neale P J, Cullen J J, Davis R F (1998). Inhibition of marine photosynthesis by ultraviolet radiation: variable sensitivity of phytoplankton in the Weddell-Scotia Confluence during the austral spring. Limnol Oceanogr, 43(3): 433–448
https://doi.org/10.4319/lo.1998.43.3.0433
59 Pang S H, Yu H F, He Y Y, Lv H X (2010). Response of Cyanobacterias to UV radiation. Food Sci Technol (Campinas), 35(9): 41–45 (in Chinese)
60 Singh J, Dubey A K, Singh R P (2011). Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environ Sci Biotechnol, 10(1): 63–77
https://doi.org/10.1007/s11157-010-9226-3
61 Smyth T J (2011). Penetration of UV irradiance into the global ocean. J Geophys Res, 116(C11): C11020
https://doi.org/10.1029/2011JC007183
62 Tanskanen A, Krotkov N A, Herman J R, Arola A (2006). Surface ultraviolet irradiance from OMI. IEEE Trans Geosci Rem Sens, 44(5): 1267–1271
https://doi.org/10.1109/TGRS.2005.862203
63 Tedetti M, Sempéré R (2006). Penetration of ultraviolet radiation in the marine environment: a review. Photochem Photobiol, 82(2): 389– 397
https://doi.org/10.1562/2005-11-09-IR-733
64 Tedetti M, Sempéré R, Vasilkov A, Charrière B, Nérini D, Miller W L, Kawamura K, Raimbault P (2007). High penetration of ultraviolet radiation in the south east Pacific waters. Geophys Res Lett, 34(12): L12610
https://doi.org/10.1029/2007GL029823
65 Vasilkov A, Krotkov N, Herman J, McClain C, Arrigo K, Robinson W (2001). Global mapping of underwater UV irradiances and DNA-weighted exposures sea-viewing using total ozone mapping spectrometer and wide field-of-view sensor data products. J Geophys Res, 106(C11): 27205–27219
https://doi.org/10.1029/2000JC000373
66 Vasilkov A P, Herman J R, Ahmad Z, Kahru M, Mitchell B G (2005). Assessment of the ultraviolet radiation field in ocean waters from space-based measurements and full radiative-transfer calculations. Appl Opt, 44(14): 2863–2869
https://doi.org/10.1364/AO.44.002863
67 Villafa?e V E, Sundb?ck K, Figueroa F L, Helbling E W (2003). Photosynthesis in the aquatic environment as affected by UVR. UV effects in aquatic organisms and ecosystems. The Royal Society of Chemistry, Cambridge: 357–397
68 Vincent W F, Roy S (1993). Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environ Rev, 1(1): 1–12
https://doi.org/10.1139/a93-001
69 Wang P C, Wu B Y, Zhang W X (1999). Comparison of UV simulation and measurements of surface ultraviolet radiation. Chinese Journal of Atmosphere Sciences, 23(3): 359–364 (in Chinese)
70 Wang Y, Yang Z, Tang X X, Liu Y, Li Y Q (2002). The sensitivity variability of seven species of marine microalgae to the influence of UV-B radiation. Acta Scientiae Circumstantiae, 22(2): 225–230 (in Chinese)
71 Wu Y P, Gao K S (2011). Photosynthetic response of surface water phytoplankton assemblages to different wavebands of UV radiation in the South China Sea. Acta Oceanol Sin, 33(5): 146–151 (in Chinese)
72 Wu Y P, Gao K S, Li G, Helbling E W (2010). Seasonal impacts of solar UV radiation on photosynthesis of phytoplankton assemblages in the coastal waters of the South China Sea. Photochem Photobiol, 86(3): 586–592
https://doi.org/10.1111/j.1751-1097.2009.00694.x
73 Yuan X C, Yin K D, Zhou W H, Cao W X, Xu X Q, Zhao D (2007). Effects of ultraviolet radiation B (UV-B) on photosynthesis of natural phytoplankton assemblages in a marine bay in Southern China. Chin Sci Bull, 52(4): 545–552
https://doi.org/10.1007/s11434-007-0079-2
74 Zhang P Y, Tang X X, Cai P J, Yu J, Yang Z (2005). Effects of UV-B radiation on protein and nucleic acid synthesis in three species of marine Red-Tide Microalgae. Acta Phytoecol Sin, 29(3): 505–509 (in Chinese)
[1] Chaoshun LIU,Maosi CHEN,Runhe SHI,Wei GAO. Retrievals of aerosol optical depth and total column ozone from Ultraviolet Multifilter Rotating Shadowband Radiometer measurements based on an optimal estimation technique[J]. Front. Earth Sci., 2014, 8(4): 610-624.
[2] W. Kolby SMITH, Wei GAO, Heidi STELTZER. Current and future impacts of ultraviolet radiation on the terrestrial carbon balance[J]. Front Earth Sci Chin, 2009, 3(1): 34-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed