Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (2) : 236-244    https://doi.org/10.1007/s11707-015-0514-7
RESEARCH ARTICLE
Adaptive regularized scheme for remote sensing image fusion
Sizhang TANG1,2,Chaomin SHEN1,Guixu ZHANG1,*()
1. Shanghai Key Laboratory of Multidimensional Information Processing and Department of Computer Science and Technology, East China Normal University, Shanghai 200241, China
2. Department of Information and Computer Science, Shanghai Business School, Shanghai 201400, China
 Download: PDF(1687 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose an adaptive regularized algorithm for remote sensing image fusion based on variational methods. In the algorithm, we integrate the inputs using a “grey world” assumption to achieve visual uniformity. We propose a fusion operator that can automatically select the total variation (TV)–L1 term for edges and L2-terms for non-edges. To implement our algorithm, we use the steepest descent method to solve the corresponding Euler–Lagrange equation. Experimental results show that the proposed algorithm achieves remarkable results.

Keywords remote sensing image fusion      adaptive regulariser      variational method      steepest descent method     
Corresponding Author(s): Guixu ZHANG   
Just Accepted Date: 26 May 2015   Online First Date: 28 July 2015    Issue Date: 05 April 2016
 Cite this article:   
Sizhang TANG,Chaomin SHEN,Guixu ZHANG. Adaptive regularized scheme for remote sensing image fusion[J]. Front. Earth Sci., 2016, 10(2): 236-244.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0514-7
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I2/236
Fig.1  Edge?extraction?using?different?methods.?(a)?Original?image.?(b)–(g)?Edge-images?extracted?by?Sobel,?Prewitt,?Roberts, Canny, Kirsch, and the fused methods.
Fig.2  Input images and qualitative comparison. (a)–(b) Input images; (c)–(f) Fused images by Piella, Fang, Yuan, and the proposed method.
MethodsQwQfMIAGESFVIFF
Piella0.99860.58040.47930.08120.74180.11370.5885
Yuan0.99910.74210.59000.09860.84110.15590.5924
Fang0.99870.41390.42130.08150.75840.13070.3076
Proposed0.99920.80300.57630.10900.81860.18270.6852
Tab.1  Comparison of results in Fig. 2
Fig.3  Input images and qualitative comparison. (a)–(b) Input images; (c)–(f) Fused images by Piella, Fang, Yuan and the proposed method.
MethodsQwQfMIAGESFVIFF
Piella0.99850.54880.48440.04950.54250.07060.5824
Yuan0.99940.74530.63240.06050.62630.09490.5871
Fang0.99910.75530.51160.06070.56660.09670.4452
Proposed0.99950.80930.63230.06850.62220.11400.6784
Tab.2  Comparison of results in Fig. 3
Fig.4  Input images and qualitative comparison. (a)–(b) Input images; (c)–(j) fused images by Piella, Yuan, Fang, and the proposed method.
MethodsQwQfMIAGESFVIFF
Piella0.99600.27210.07210.04350.90130.06900.1456
Yuan0.99600.32540.06360.05790.88460.10480.1453
Fang0.99600.21040.05370.04360.93380.07730.0863
proposed0.99640.43660.08310.04950.95080.09460.2992
Tab.3  Comparison of fused results in Fig. 4
1 Agrawal D, Singhai J (2010). Multi-focus image fusion using modified pulse coupled neural network for improved image quality. IET Image Processing, 4(6): 443–451
https://doi.org/10.1049/iet-ipr.2009.0194
2 Aubert G, Kornprobst P (2009). Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences. Berlin: Springer-Verlag
3 Bertalmio M, Caselles V, Provenzi E, Rizzi A (2007). Perceptual color correction through variational techniques. IEEE Trans Image Process, 16(4): 1058–1072
https://doi.org/10.1109/TIP.2007.891777
4 Brelstaff G J, Párraga A, Troscianko T, Carr D (1995). Hyper spectral camera system: acquisition and analysis. In: Satellite Remote Sensing II. International Society for Optics and Photonics: 150–159
5 Buchsbaum G (1980). A spatial processor model for object color perception. J Franklin Inst, 310(1): 1–26
https://doi.org/10.1016/0016-0032(80)90058-7
6 Chai Y, Li H, Zhang X (2012). Multi-focus image fusion based on features contrast of multi-scale products in non-subsampled contourlet transform domain. Optik-International Journal for Light and Electron Optics, 123(7): 569–581
https://doi.org/10.1016/j.ijleo.2011.02.034
7 Chan T F, Esedoglu S (2005). Aspects of total variation regularized l1function approximation. SIAM J Appl Math, 65(5): 1817–1837
https://doi.org/10.1137/040604297
8 Chan T, Shen J, Vese L (2003). Variational PDE models in image processing. Not Am Math Soc, 50(1): 14–26
9 Cvejic N, Seppanen T, Godsill S (2009). A no reference image fusion metric based on the regional importance measure. IEEE Journal Of Selected Topics In Signal Processing, 3(2): 212–221
https://doi.org/10.1109/JSTSP.2009.2015071
10 Ellmauthaler A, Pagliari C L, Da Silva E A (2013). Multi-scale image fusion using the undecimated wavelet transform with spectral factorization and nonorthogonal filter banks. IEEE Trans Image Process, 22(3): 1005–1017
https://doi.org/10.1109/TIP.2012.2226045
11 El-taweel G S, Helmy A K (2013). Image fusion scheme based on modified dual pulse coupled neural network. IET Image Processing, 7(5): 407–414
12 Fang F, Li F, Zhang G, Shen C (2013). A variational method for multisource remote-sensing image fusion. Int J Remote Sens, 34(7): 2470–2486
https://doi.org/10.1080/01431161.2012.744882
13 Gao G R, Lu P X, Feng D Z (2013). Multi-focus image fusion based on non-sub-sampled shear-let transform. IET Image Processing, 7(6): 633–639
https://doi.org/10.1049/iet-ipr.2012.0558
15 Hinterberger W, Scherzer O (2006). Variational methods on the space of functions of bounded hessian for convexification and de-noising. Computing, 76(1–2): 109–133
https://doi.org/10.1007/s00607-005-0119-1
16 James A, Dasarathy B (2014). Medical image fusion: a survey of the state of the art. Inf Fusion, 19: 4–19
https://doi.org/10.1016/j.inffus.2013.12.002
17 Kim Y, Lee C, Han D, Kim Y, Kim Y (2011). Improved additive-wavelet image fusion. IEEE Transactions on Geoscience and Remote Sensing Letters, 8(2): 263–267
https://doi.org/10.1109/LGRS.2010.2067192
18 Kluckner S, Pock T, Bischof H (2010). Exploiting redundancy for aerial image fusion using convex optimization. Proceedings of the 32nd DAGM conference on Pattern Recognition, Darmstadt, Germany
19 Kong W, Lei Y, Lei Y, Lu S (2011). Image fusion technique based on non-sub-sampled contour-let transform and adaptive unit-fast-linking pulse-coupled neural network. IET Image Processing, 5(2): 113– 121
https://doi.org/10.1049/iet-ipr.2009.0425
20 Kumar M, Dass S (2009). A total variation-based algorithm for pixel-level image fusion. IEEE Trans Image Process, 18(9): 2137–2143
https://doi.org/10.1109/TIP.2009.2025006
21 Li X, He M, Roux M (2010). Multi-focus image fusion based on redundant wavelet transform. IET Image Processing, 4(4): 283–293
https://doi.org/10.1049/iet-ipr.2008.0259
22 Liu G, Shen Y (2012). Ultrasonic image fusion using compressed sensing. Electron Lett, 48(19): 1182–1184
https://doi.org/10.1049/el.2012.2282
24 Liu X, Zhou Y, Wang J (2014). Image fusion based on shearlet transform and regional features. AEU, Int J Electron Commun, 68(6): 471– 477
https://doi.org/10.1016/j.aeue.2013.12.003
25 Lustig M, Donoho D, Pauly J M (2007). Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med, 58(6): 1182–1195
https://doi.org/10.1002/mrm.21391
26 Lysaker M, Lundervold A, Tai X C (2003). Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans Image Process, 12(12): 1579–1590
https://doi.org/10.1109/TIP.2003.819229
27 Mahbubur Rahman S M, Omair Ahmad M, Swamy M N S (2010). Contrast-based fusion of noisy images using discrete wavelet transform. IET Image Processing, 4(5): 374–384
https://doi.org/10.1049/iet-ipr.2009.0163
29 Nikolova M (2004). A variational approach to remove outliers and impulse noise. J Math Imaging Vis, 20(1–2): 99–120
https://doi.org/10.1023/B:JMIV.0000011920.58935.9c
30 Papafitsoros K, Schönlieb C B (2014). A combined first and second order variational approach for image reconstruction. J Math Imaging Vis, 48(2): 308–338
https://doi.org/10.1007/s10851-013-0445-4
31 Petrovic V (2004). Subjective image fusion evaluation data. Imaging Science Biomedical Engineering. University of Manchester:1–9
33 Piella G (2009). Image fusion for enhanced visualization: a variational approach. Int J Comput Vis, 83(1): 1–11
https://doi.org/10.1007/s11263-009-0206-4
35 Pock T, Zebedin L, Bischof H (2011). TGV-fusion. In: Calude C S, Rozenberg A G, Salomaa A, eds. Maurer Festschrift. LNCS, 6570: 245–258
36 Pouteau R, Stoll B, Chabrier S (2010). Multi-source SVM fusion for environmental monitoring in marquesas archipelago. In: Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, 2719–2722
38 Rudin L I, Osher S, Fatemi E (1992). Non-linear total variation based noise removal algorithms. Physica D, 60(1): 259–268
https://doi.org/10.1016/0167-2789(92)90242-F
39 Sapiro G (2001). Geometric Partial Differential Equations and Image Analysis. Cambridge University Press
40 Schowengerdt R A (2006). Remote sensing: Models and Methods for Image Processing (3rd Edition). Academic Press
41 Socolinsky D A (2000). A variational Approach to Image Fusion. Dissertation for PhD degree. The Johns Hopkins University, April 2000
42 Socolinsky D A, Wolff L B (2002). Multispectral image visualization through first-order fusion. IEEE Trans Image Process, 11(8): 923–931
https://doi.org/10.1109/TIP.2002.801588
43 Stathaki (2008). Image Fusion: Algorithms and Applications. Amsterdam: Elsevier
44 Tafti P D, Stalder A F, Delgado-Gonzalo R, Unser M (2011). Variational enhancement and de-noising of flow field images. 8th IEEE International symposium on biomedical imaging: from Nano to Macro: 1061–1064
45 Tikhonov A N (1943). On the stability of inverse problems. Dokl Akad Nauk SSSR, 39(5): 195–198
46 Tran M P, Peteri R, Bergounioux M (2012). De-noising 3D medical images using a second order variational model and wavelet shrinkage. In: Image Analysis and Recognition. Berlin: Springer, 138–145
48 Wang C, Ye Z F (2007). Perceptual contrast-based image fusion: a variational approach. Acta Automatica Sinica, 33(2): 132–137
https://doi.org/10.1109/TBME.2013.2279301
48 Wang L, Li B, Tian L (2014). Multi-modal medical volumetric data fusion using 3D discrete shearlet transform and global-to-local rule. IEEE Trans Biomed Eng, 61(1): 197–206
https://doi.org/10.1109/TBME.2013.2279301
49 Wang W W, Shui P L, Feng X C (2008). Variational models for fusion and de-noising of multi-focus images. IEEE Signal Process Lett, 15: 65–68
https://doi.org/10.1109/LSP.2007.911148
51 Wang Z, Ziou D, Armenakis C, Li D, Li Q (2005). A comparative analysis of image fusion methods. IEEE Trans Geosci Rem Sens, 43(6): 1391–1402
https://doi.org/10.1109/TGRS.2005.846874
53 Yang B, Li S (2010). Multi-focus image fusion and restoration with sparse representation. IEEE Trans Instrum Meas, 59(4): 884–892
https://doi.org/10.1109/TIM.2009.2026612
54 Yang L, Guo B, Ni W (2008). Multimodality medical image fusion based on multi-scale geometric analysis of contourlet transform. Neurocomputing, 72(1–3): 203–211
https://doi.org/10.1016/j.neucom.2008.02.025
55 Yang Z Z, Yang Z (2013). Novel multi-focus image fusion and reconstruction framework based on compressed sensing. IET Image Processing, 7(9): 837–847
https://doi.org/10.1049/iet-ipr.2012.0710
56 Yuan J, Miles B, Shi J, Garvin G, Tai X C and A. Fenster A (2012). Efficient convex optimization approaches to variational image fusion. UCLA Tech. Report CAM-11-86
57 Zhang X, Chan T F (2010). Wavelet inpainting by nonlocal total variation. Inverse Problems and Imaging, 4(1): 191–210
https://doi.org/10.3934/ipi.2010.4.191
58 Zheng S, Shi W, Liu J, Zhu G, Tian J (2007). Multisource image fusion method using support value transform. IEEE Trans Image Process, 16: 1
[1] FES-15514-OF-TSZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed