Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (4) : 691-699    https://doi.org/10.1007/s11707-015-0529-0
RESEARCH ARTICLE
Multiple-scale temporal variations and fluxes near a hydrothermal vent over the Southwest Indian Ridge
Xiaodan CHEN1,Chujin LIANG1,*(),Changming DONG2,3,Beifeng ZHOU1,Guanghong LIAO1,Junde LI1
1. State Key Lab of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou 310012, China
2. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
3. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90001, USA
 Download: PDF(1603 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A deep-ocean mooring system was deployed 100 m away from an active hydrothermal vent over the Southwest Indian Ridge (SWIR), where the water depth is about 2,800 m. One year of data on ocean temperature 50 m away from the ocean floor and on velocities at four levels (44 m, 40 m, 36 m, and 32 m away from the ocean floor) were collected by the mooring system. Multiple-scale variations were extracted from these data: seasonal, tidal, super-tidal, and eddy scales. The semidiurnal tide was the strongest tidal signal among all the tidal constituents in both currents and temperature. With the multiple-scale variation presented in the data, a new method was developed to decompose the data into five parts in terms of temporal scales: time-mean, seasonal, tidal, super-tidal, and eddy. It was shown that both eddy and tidal heat (momentum) fluxes were characterized by variation in the bottom topography: the tidal fluxes of heat and momentum in the along-isobath direction were much stronger than those in the cross-isobath direction. For the heat flux, eddy heat flux was stronger than tidal heat flux in the cross-isobath direction, while eddy heat flux was weaker in the along-isobath direction. For the momentum flux, the eddy momentum flux was weaker than tidal momentum flux in both directions. The eddy momentum fluxes at the four levels had a good relationship with the magnitude of mean currents: it increased with the mean current in an exponential relationship.

Keywords multiple-scale analysis      tidal flux      eddy flux     
Corresponding Author(s): Chujin LIANG   
Just Accepted Date: 26 August 2015   Online First Date: 30 September 2015    Issue Date: 30 October 2015
 Cite this article:   
Xiaodan CHEN,Chujin LIANG,Changming DONG, et al. Multiple-scale temporal variations and fluxes near a hydrothermal vent over the Southwest Indian Ridge[J]. Front. Earth Sci., 2015, 9(4): 691-699.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0529-0
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I4/691
Fig.1  Location of the hydrothermal vent (red star). The active hydrothermal field is located at (37°47′S, 49°39′E) along the SWIR. The mooring system is about 100 m away from the hydrothermal vent, which is not distinctive from the vent in the figure.
Fig.2  The structure of the mooring system: a downward-looking 300-kHz ADCP, with a temperature sensor (not shown), is fixed at 50 m above the ocean bottom.
Fig.3  Daily-averaged time series of current speed (a), direction (b) and temperature (c) (at 50 m above the ocean floor). Blue and red curves denote daily-averaged and 30-day-moving-smoothed values, respectively.
Fig.4  Spectral density of (a) seawater temperature and (b, c) vertically-averaged currents (b: along-isobath velocity U; c: cross-isobath velocity V). Obviously, semidiurnal tidal signals dominate in both currents and temperature.
Fig.5  Tidal ellipses of the two leading tidal constituents: (a) M2: at 44 m; (b) M2: at 40 m; (c) M2: at 36 m; (d) M2: at 32 m; (e) S2: at 44 m; (f) S2: at 40 m; (g) S2: at 36 m; (h) S2: at 32 m. Tidal vectors turn clockwise.
Fig.6  Heat fluxes at 50 m away from the sea floor: (a) along-isobath direction and (b) cross-isobath direction. Blue indicates tidal heat flux, red represents eddy heat flux and the remaining colors denote cross terms.
Fig.7  Momentum fluxes at four levels: (a) along-isobath, (b) cross-isobath and (c) along-cross-isobath. Blue indicates tidal momentum flux, red represents eddy momentum flux and the remaining colors denote cross terms.
Fig.8  Yearly-averaged eddy flux vs. mean current velocity. (a) Eddy momentum flux in the along-isobath direction. (b) Eddy momentum flux in the cross-isobath direction. The red line is a regression line.
1 Cao  H, Cao  Z (2011). Review of submarine hydrothermal activities in Southwest Indian Ridge. Marine Geology and Quaternary Geology, 31(1): 67–75(in Chinese)
2 Crone  T J, Wilcock  W S (2005). Modeling the effects of tidal loading on mid-ocean ridge hydrothermal systems. Geochem Geophys Geosyst, 6(7): n/a
https://doi.org/10.1029/2004GC000905
3 Dong  C, Idica  E Y, McWilliams  J C (2009). Circulation and multiple-scale variability in the Southern California Bight. Prog Oceanogr, 82(3): 168–190
https://doi.org/10.1016/j.pocean.2009.07.005
4 Edmonds  H N, Michael  P J, Baker  E T, Connelly  D P, Snow  J E, Langmuir  C H, Dick  J B, Mühe  R, German  C R, Graham  D W (2003). Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, 421(6920): 252–256
https://doi.org/10.1038/nature01351
5 Emery  W J, Meincke  J (1986). Global water masses-summary and review. Oceanol Acta, 9(4): 383–391
6 Faria  A F, Thornton  E B, Stanton  T P, Soares  C V, Lippmann  T C (1998). Vertical profiles of longshore currents and related bed shear stress and bottom roughness. Journal of Geophysical Research: Oceans (1978−2012), 103(C2): 3217–3232
7 Feddersen  F, Guza  R T, Elgar  S, Herbers  T H C (2000). Velocity moments in alongshore bottom stress parameterizations. Journal of Geophysical Research: Oceans (1978−2012), 105(C4): 8673–8686
8 Huang  W, Tao  C, Deng  X, Zhou  J, Sun  Y, Dou  B, Liu  W (2009). Discussion and the scientific significance of IODP drilling to study in the 49°39′E vent field in Southwest Indian Ridge. Journal of Marine Sciences, 27(02): 97–103 (in Chinese)
9 Kolla  V, Henderson  L, Biscaye  P E (1976a). Clay mineralogy and sedimentation in the western Indian Ocean. Deep-Sea Res, 23(10): 949–961
10 Kolla  V, Sullivan  L, Streeter  S S, Langseth  M G (1976b). Spreading of Antarctic Bottom Water and its effects on the floor of the Indian Ocean inferred from bottom-water potential temperature, turbidity, and sea-floor photography. Mar Geol, 21(3): 171–189
https://doi.org/10.1016/0025-3227(76)90058-X
11 LeBlond  P H (1976). Temperature-salinity analysis of world ocean waters. Journal of the Fisheries Board of Canada, 33(6): 1471
https://doi.org/10.1139/f76-190
12 Li  X, Chu  F, Lei  J, Zhao  J (2008). Advances in slow-ultraslow-spreading Southwest Indian Ridge. Advances in Earth Science, 23(6): 595–603 (in Chinese)
13 Middleton  J M, Thomson  R E (1986). Modelling the rise of hydrothermal plumes. Canadian Technical Report of Hydrography and Ocean Science, 69: 1–18
14 Minshull  T A, Muller  M R, White  R S (2006). Crustal structure of the Southwest Indian Ridge at 66 E: seismic constraints. Geophys J Int, 166(1): 135–147
https://doi.org/10.1111/j.1365-246X.2006.03001.x
15 Morton  B R, Taylor  G, Turner  J S (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc Lond A Math Phys Sci, 234(1196): 1–23
https://doi.org/10.1098/rspa.1956.0011
16 Muller  M R, Minshull  T A, White  R S (2000). Crustal structure of the Southwest Indian Ridge at the Atlantis II fracture zone. Journal of Geophysical Research: Solid Earth (1978−2012), 105(B11): 25809–25828
17 Pawlowicz  R, Beardsley  B, Lentz  S (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci, 28(8): 929–937
https://doi.org/10.1016/S0098-3004(02)00013-4
18 Reid  J L (2003). On the total geostrophic circulation of the Indian Ocean: flow patterns, tracers, and transports. Prog Oceanogr, 56(1): 137–186
https://doi.org/10.1016/S0079-6611(02)00141-6
19 Rooth  C (1972). A linearized bottom friction law for large-scale oceanic motions. J Phys Oceanogr, 2(4): 509–510
https://doi.org/10.1175/1520-0485(1972)002<0509:ALBFLF>2.0.CO;2
20 Santoso  A, England  M H, Hirst  A C (2006). Circumpolar deep water circulation and variability in a coupled climate model. J Phys Oceanogr, 36(8): 1523–1552
https://doi.org/10.1175/JPO2930.1
21 Speer  K G, Rona  P A (1989). A model of an Atlantic and Pacific hydrothermal plume. Journal of Geophysical Research: Oceans (1978−2012), 94(C5): 6213–6220
22 Tao  C, Li  H, Huang  W, Han  X, Wu  G, Su  X, Zhou  N, Lin  J, He  Y H, Zhou  J P (2011). Mineralogical and geochemical features of sulfide chimneys from the 49 39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chin Sci Bull, 56(26): 2828–2838
https://doi.org/10.1007/s11434-011-4619-4
23 Tao  C, Lin  J, Guo  S, Chen  Y, Wu  G, Han  X, German  C R, Yoerger  D R, Zhou  N, Li  H, Su  X, Zhu  J (2012). First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40(1): 47–50
https://doi.org/10.1130/G32389.1
24 Warren  B A (1974). Deep flow in the Madagascar and Mascarene basins. Deep-Sea Res, 21(1): 1–21
25 Warren  B A (1978). Bottom water transport through the Southwest Indian Ridge. Deep-Sea Res, 25(3): 315–321
https://doi.org/10.1016/0146-6291(78)90596-9
26 Wichers  S (2005). Verification of numerical models for hydrothermal plume water through field measurements at TAG. Dissertation for PhD Degree. Massachusetts Institute of Technology
27 Zhang  T, Gao  J (2011). Characters of magmatic activity and tectonics on the ultraslow spreading ridge in Southwest Indian ocean. Advances in Marine Science, 29(03): 314–322 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed