Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (4) : 709-721    https://doi.org/10.1007/s11707-015-0542-3
RESEARCH ARTICLE
Eddy analysis in the Eastern China Sea using altimetry data
Dandi QIN1, Jianhong WANG1,3(), Yu LIU1, Changming DONG1,2()
1. School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
2. Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California, USA
3. Climate and Weather Disasters Collaborative Innovation Center, Nanjing University of Information Science & Technology, Nanjing 210044, China
 Download: PDF(3767 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Statistical characteristics of mesoscale eddies in the Eastern China Sea (ECS) are analyzed using altimetry sea surface height anomaly (SSHA) data from 1993 to 2010. A velocity geometry-based automated eddy detection scheme is employed to detect eddies from the SSHA data to generate an eddy data set. About 1,096 eddies (one lifetime of eddies is counted as one eddy) with a lifetime longer than or equal to 4 weeks are identified in this region. The average lifetime and radius of eddies are 7 weeks and 55 km, respectively, and there is no significant difference between cyclonic eddies (CEs) and anticyclonic eddies (AEs) in this respect. Eddies’ lifetimes are generally longer in deep water than in shallow water. Most eddies propagate northeastward along the Kuroshio (advected by the Kuroshio), with more CEs generated on its western side and AEs on its eastern side. The variation of the Kuroshio transport is one of the major mechanisms for eddy genesis, however the generation of AEs on the eastern side of the Kuroshio (to the open ocean) is also subject to other factors, such as the wind stress curl due to the presence of the Ryukyu Islands and the disturbance from the open ocean.

Keywords mesoscale eddy      Eastern China Sea      altimetry data      Kuroshio     
Corresponding Author(s): Jianhong WANG,Changming DONG   
Just Accepted Date: 26 August 2015   Online First Date: 17 September 2015    Issue Date: 30 October 2015
 Cite this article:   
Dandi QIN,Jianhong WANG,Yu LIU, et al. Eddy analysis in the Eastern China Sea using altimetry data[J]. Front. Earth Sci., 2015, 9(4): 709-721.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0542-3
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I4/709
1 A Amores, S Monserrat, M Marcos (2013). Vertical structure and temporal evolution of an anticyclonic eddy in the Balearic Sea (western Mediterranean). Journal of Geophysical Research: Oceans, 118(4): 2097–2106
https://doi.org/10.1002/jgrc.20150
2 M Andres, J H Park, M Wimbush, X H Zhu, K I Chang, H Ichikawa (2008). Study of the Kuroshio/Ryukyu Current system based on satellite-altimeter and in situ measurements. J Oceanogr, 64(6): 937–950
https://doi.org/10.1007/s10872-008-0077-2
3 A Chaigneau, O Pizarro (2004). Eddy characteristics and tracer transports from TP/ERS altimetry, in a region offshore Chile. Gayana (Concepción), 68: 102–107
https://doi.org/10.4067/S0717-65382004000200019
4 D B Chelton, M G Schlax, R M Samelson, R A De Szoeke (2007). Global observations of large oceanic eddies. Geophys Res Lett, 34(15): L15606
https://doi.org/10.1029/2007GL030812
5 D B Chelton, S P Xie (2010). Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography (Wash DC), 23(4): 52–69
https://doi.org/10.5670/oceanog.2010.05
6 G Chen, Y Hou, X Chu (2011). Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure. J Geophys Res, 116(C6): C06018
https://doi.org/10.1029/2010JC006716
7 G Chen, Y Hou, X Chu, P Qi, P Hu (2009). The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data. Chin J Oceanology Limnol, 27(4): 943–954
https://doi.org/10.1007/s00343-009-9297-6
8 X Couvelard, R Caldeira, I Araújo, R Tomé (2012). Wind mediated vorticity-generation and eddy-confinement, leeward of the Madeira Island: 2008 numerical case study. Dyn Atmos Oceans, 58: 128–149
https://doi.org/10.1016/j.dynatmoce.2012.09.005
9 B Cushman-Roisin (1994). Introduction to Geophysical Fluid Dynamics. Prentice Hall, Inc. Upper Saddle River, 313
10 C Dong, X Lin, Y Liu, F Nencioli, Y Guan, Y Chao, T Dickey, J C McWilliams (2012). Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product. J Geophys Res Oceans (1978−2012), 117,
https://doi.org/10.1029/2011JC007354.
11 C Dong, T Mavor, F Nencioli, S Jiang, Y Uchiyama, J C McWilliams, T Dickey, M Ondrusek, H Zhang, D K Clark (2009). An oceanic cyclonic eddy on the lee side of Lanai Island, Hawai'i. J Geophys Res Oceans (1978−2012), 114,
https://doi.org/10.1029/2009JC005346
12 C Dong, J C McWilliams (2007). A numerical study of island wakes in the Southern California Bight. Cont Shelf Res, 27(9): 1233–1248
https://doi.org/10.1016/j.csr.2007.01.016
13 C Dong, J C McWilliams, Y Liu, D Chen (2014). Global heat and salt transports by eddy movement. Nat Commun, 5
https://doi.org/10.1038/ncomms4294
14 L L Fu, D B Chelton, P Y Le Traon, R Morrow (2010). Eddy dynamics from satellite altimetry. Oceanography (Wash DC), 23(4): 14–25
https://doi.org/10.5670/oceanog.2010.02
15 B Guo, R Ge (1997). The action of Kuroshio frontal eddy in the water exchange between continental shelf water and Kuroshio Current in East China Sea. Acta Oceanol Sin, 19: 1–11 (in Chinese)
16 H Ichikawa, M Chaen (2000). Seasonal variation of heat and freshwater transports by the Kuroshio in the East China Sea. J Mar Syst, 24(1−2): 119–129
https://doi.org/10.1016/S0924-7963(99)00082-2
17 T Kuragano, M Kamachi (2000). Global statistical space-time scales of oceanic variability estimated from the TOPEX/POSEIDON altimeter data. J Geophys Res Oceans (1978−2012), 105: 955–974,
https://doi.org/10.1029/1999JC900247.
18 X Lin, C Dong, D Chen, Y Liu, J Yang, B Zou, Y Guan (2015). Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep Sea Res Part I Oceanogr Res Pap, 99: 46–64
https://doi.org/10.1016/j.dsr.2015.01.007
19 X Liu, C Dong, D Chen, J Su (2014). The pattern and variability of winter Kuroshio intrusion northeast of Taiwan. Journal of Geophysical Research: Oceans, 119(8): 5380–5394
https://doi.org/10.1002/2014JC009879
20 Y Liu, C Dong, Y Guan, D Chen, J McWilliams, F Nencioli (2012). Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Res Part I Oceanogr Res Pap, 68: 54–67
https://doi.org/10.1016/j.dsr.2012.06.001
21 Z Liu, J Gan (2012). Variability of the Kuroshio in the East China Sea derived from satellite altimetry data. Deep Sea Res Part I Oceanogr Res Pap, 59: 25–36
https://doi.org/10.1016/j.dsr.2011.10.008
22 J C McWilliams, G R Flierl (1979). On the evolution of isolated, nonlinear vortices. J Phys Oceanogr, 9(6): 1155–1182
https://doi.org/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2
23 F Nencioli, C Dong, T Dickey, L Washburn, J C McWilliams (2010). A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J Atmos Ocean Technol, 27(3): 564–579
https://doi.org/10.1175/2009JTECHO725.1
24 A Peliz, D Boutov, A Teles-Machado (2013). The Alboran Sea mesoscale in a long term high resolution simulation: statistical analysis. Ocean Model, 72: 32–52
https://doi.org/10.1016/j.ocemod.2013.07.002
25 A R Robinson 1983. Overview and summary of eddy science. Eddies in marine science, 3–15
https://doi.org/10.1007/978-3-642-69003-7_1.
26 A Rubio, B Blanke, S Speich, N Grima, C Roy (2009). Mesoscale eddy activity in the southern Benguela upwelling system from satellite altimetry and model data. Prog Oceanogr, 83(1−4): 288–295
https://doi.org/10.1016/j.pocean.2009.07.029
27 P Sangrà, A Pascual, A Rodriguez-Santana, F Machin, E Mason, J C McWilliams, J Pelegri, C Dong, A Rubio, J Arístegui, Á Marrero-Díaz, A Hernández-Guerra, A Martínez-Marrero, M Auladell (2009). The Canary Eddy Corridor: a major pathway for long-lived eddies in the subtropical North Atlantic. Deep Sea Res Part I Oceanogr Res Pap, 56(12): 2100–2114
https://doi.org/10.1016/j.dsr.2009.08.008
28 P J van Leeuwen (2007). The propagation mechanism of a vortex on the β plane. J Phys Oceanogr, 37(9): 2316–2330
https://doi.org/10.1175/JPO3107.1
29 Q Xia, H Shen (2015). Automatic detection of oceanic mesoscale eddies in South China Sea. Chinese Journal of Oceanology and Limnology, 33(5): 1334–1348,
30 C Xu, X D Shang, R X Huang (2014). Horizontal eddy energy flux in the world oceans diagnosed from altimetry data. Sci Rep, 4
https://doi.org/10.1038/srep05316
31 D Xu, B Zhao (1999). Existential proof and numerical study of a mesoscale anticyclonic eddy in the Qingdao-Shidao offshore. Acta Oceanol Sin, 21: 18–26 (in Chinese)
32 T Yanagi, T Shimizu, T Matsuno (1996). Baroclinic eddies south of Cheju Island in the East China Sea. J Oceanogr, 52(6): 763–769
https://doi.org/10.1007/BF02239464
33 Y Yuan, B Guan (2007). Overview of studies on some eddies in the China seas and their adjacent seas II. The East China Sea and the region east of the Ryukyu Islands. Acta Oceanol Sin, 29: 1–17 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed