Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (4) : 620-628    https://doi.org/10.1007/s11707-016-0599-7
RESEARCH ARTICLE
Flora characteristics of Chenier Wetland in Bohai Bay and biogeographic relations with adjacent wetlands
Yanyun ZHAO1, Zhaohua LU2,3(), Jingtao LIU2, Shugang HU1
1. College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou 256603, China
3. Institute of Restoration Ecology, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing) , Beijing 100083, China
 Download: PDF(645 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determining the composition and characteristics of the plant communities involved. This study determined and characterized the community of higher plants in the Chenier wetland of Bohai Bay using a combination of field surveys, quadrat approaches, and multivariate statistical analyses. This community was then compared to other adjacent wetlands (Tianjin, Qinhuangdao, Laizhouwan, Jiaozhouwan, and Yellow River Delta wetland) located near the Huanghai and Bohai Seas using principal coordinate analysis (PCoA). Results showed a total of 56 higher plant species belonging to 52 genera from 20 families in Chenier wetland, the majority of which were dicotyledons. Single-species families were predominant, while larger families, including Gramineae, Compositae, Leguminosae, and Chenopodiaceae contained a higher number of species (each≥6 species). Cosmopolitan species were also dominant with apparent intrazonality. Abundance (number of species) of temperate species was twice that of tropical taxa. Species number of perennial herbs, such as Gramineae and Compositae, was generally higher. Plant diversity in the Chenier wetland, based on the Shannon-Wiener index, was observed to be between the Qinhuangdao and Laizhouwan indices, while no significant difference was found in other wetlands using the Simpson index. Despite these slight differences in diversity, PCoA based on species abundance and composition of the wetland flora suggest that the Bohai Chenier community was highly similar to the coastal wetlands in Tianjin and Laizhouwan, further suggesting that these two wetlands could be important breeding grounds and resources for the restoration of the plant ecosystem in the Chenier wetland.

Keywords Bohai Bay      Chenier      coastal wetland      floristic geography      restoration     
Corresponding Author(s): Zhaohua LU   
Just Accepted Date: 07 December 2016   Online First Date: 11 January 2017    Issue Date: 10 November 2017
 Cite this article:   
Yanyun ZHAO,Zhaohua LU,Jingtao LIU, et al. Flora characteristics of Chenier Wetland in Bohai Bay and biogeographic relations with adjacent wetlands[J]. Front. Earth Sci., 2017, 11(4): 620-628.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0599-7
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I4/620
Fig.1  Study area.
Coastal wetlands Latitude Longitude Family Genera Species Reference
HHS 37˚15´N?38˚15´N 118˚05´E?119˚15´E 43 123 193 Zhang et al. (2009)
LZW 36˚25´N?37˚19´N 118˚32´E?119˚37´E 48 129 197 Zhang et al. (2008)
TJ - - 46 135 232 Mo et al. (2009)
QHD - - 105 400 788 Zhang et al. (2004)
JZW - - 35 61 75 Zhang et al. (2006)
Tab.1  Floristic composition and plant diversity of 6 coastal wetlands around Huanghai and Bohai Sea in China
Fig.2  The amounts of families, genera, and species of the higher plants in Chenier of Bohai Bay (genera/species).
Item Famililes Genera Species
Number Percentage/% Number Percentage/% Number Percentage/%
Gymnosperm 1 5 1 1.92 1 1.79
Angiosperm 19 95 51 98.08 55 98.21
Dicotyledons 16 80 34 65.38 36 64.29
Monocotyledons 3 15 17 32.69 19 33.93
Tab.2  Statistic of plants in Chenier wetland in Bohai Bay
Fig.3  Number of species for each family and genera.
Fig.4  Species number, frequency, and percentage of different life forms including trees (Th), shrubs (Sh), perennial herbaceous (Ph), annual (Ah), and biennial herbs (Bh).
Family Frequency/% Family Frequency/%
Gramineae 77.67 Rubiaceae 4.85
Compositae 74.76 Cyperaceae 2.91
Asclepiadaceae 52.43 Tamaricaceae 2.91
Boraginaceae 28.16 Convolvulaceae 1.94
Rhamnaceae 17.48 Zygophyllaceae 1.94
Chenopodiaceae 16.50 Iridaceae 1.94
Vitaceae 16.50 Ephedraceae 0.97
Leguminosae 11.65 Geraniaceae 0.97
Liliaceae 10.68 Solanaceae 0.97
Plumbaginaceae 5.83 Apocynaceae 0.97
Tab.3  Species frequency of different family plants in Chenier wetland in Bohai Bay
Fig.5  Number of families and genera per areal type.
Fig.6  Diversity indices of genus geographical flora.
Coordinate axis Eigenvalues Contribution of variance/% Accumulative eigenvalues Accumulative contribution of variance/%
1 0.84 83.5 0.84 83.5
2 0.08 8.3 0.92 91.8
Tab.4  Flora spectrum variance proportion and cumulative variance of two principal coordinates
Fig.7  PCoA of six typical representative coastal wetlands in Huanghai and Bohai Bays.
1 Acosta A, Carranza  M L, Izzi  C F (2009). Are there habitats that contribute best to plant species diversity in coastal dunes? Biodivers Conserv, 18(4): 1087–1098
https://doi.org/10.1007/s10531-008-9454-9
2 Anastasiu P, Negrean  G, Samoilă C ,  Memedemin D ,  Cogălniceanu D  (2011). A comparative analysis of alien plant species along the Romanian Black Sea coastal area. The role of harbours. J Coast Conserv, 15(4): 595–606
https://doi.org/10.1007/s11852-011-0149-0
3 Bai J H, Huang  L B, Gao  Z Q, Lu  Q Q, Wang  J J, Zhao  Q Q (2014). Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments. J Hazard Mater, 280: 295–303
https://doi.org/10.1016/j.jhazmat.2014.07.070
4 Bai J H, Zhao  Q Q, Lu  Q Q, Wang  J J, Reddy  K R (2015). Effects of freshwater input on trace element pollution in salt marsh soils of a typical coastal estuary, China. J Hydrol (Amst), 520: 186–192
https://doi.org/10.1016/j.jhydrol.2014.11.007
5 Benot M L, Mony  C, Merlin A ,  Marion B ,  Bouzillé J B ,  Bonis A  (2011). Clonal growth strategies along flooding and grazing gradients in Atlantic coastal meadows. Folia Geobot, 46(2‒3): 219–235
https://doi.org/10.1007/s12224-010-9082-5
6 Bermúdez R, Retuerto  R (2014a). Together but different: co-occurring dune plant species differ in their water- and nitrogen-use strategies. Oecologia, 174(3): 651–663
https://doi.org/10.1007/s00442-013-2820-7
7 Bermúdez R, Retuerto  R (2014b). A sunny day at the beach: ecophysiological assessment of the photosynthetic adaptability of coastal dune perennial herbs by chlorophyll fluorescence parameters. Photosynthetica, 52(3): 444–455
https://doi.org/10.1007/s11099-014-0049-2
8 Bontrager M, Webster  K, Elvin M ,  Parker I M  (2014). The effects of habitat and competitive/facilitative interactions on reintroduction success of the endangered wetland herb,  Arenaria paludicola. Plant Ecol, 215(4): 467–478 
https://doi.org/10.1007/s11258-014-0317-z
9 Chen H, Zheng  Y, Li F  (1992). Flora of Shandong Province (Vol. 1).Qingdao: Publishing House of Qingdao, 1–1210
10 Chen H, Zheng  Y, Li F  (1997). Flora of Shandong Province (Vol. 2).Qingdao: Publishing House of Qingdao, 1–1451
11 Ciccarelli D, Bacaro  G, Chiarucci A  (2012). Coastline dune vegetation dynamics: evidence of no stability. Folia Geobot, 47(3): 263–275
https://doi.org/10.1007/s12224-011-9118-5
12 Dobben H F, Slim  P A (2012). Past and future plant diversity of a coastal wetland driven by soil subsidence and climate change. Clim Change, 110(3‒4): 597–618
https://doi.org/10.1007/s10584-011-0118-5
13 Estiarte M, Puig  G, Peñuelas J  (2011). Large delay in flowering in continental versus coastal populations of a Mediterranean shrub, Globulariaalypum. Int J Biometeorol, 55(6): 855–865
https://doi.org/10.1007/s00484-011-0422-9
14 Fenu G, Carboni  M, Acosta A T R ,  Bacchetta G  (2013). Environmental factors influencing coastal vegetation pattern: new insights from the Mediterranean Basin. Folia Geobot, 48(4): 493–508
https://doi.org/10.1007/s12224-012-9141-1
15 Fontán Bouzas A ,  Alcántara-Carrió J, Montoya Montes I, Barranco Ojeda A, Albarracín S, Rey Díaz de Rada  J, Rey Salgado J  (2013). Distribution and thickness of sedimentary facies in the coastal dune, beach and near shore sedimentary system at Maspalomas, Canary Islands. Geo-Mar Lett, 33(2‒3): 117–127
https://doi.org/10.1007/s00367-012-0313-z
16 Johnsen I, Christensen  S N, Riis-Nielsen  T (2014). Nitrogen limitation in the coastal heath at Anholt, Denmark. J Coast Conserv, 18(4): 369–382
https://doi.org/10.1007/s11852-014-0323-2
17 Johnson J S, Cairns  D M, Houser  C (2013). Coastal marsh vegetation assemblages of Galveston Bay: insights for the east Texas Chenier plain. Wetlands, 33(5): 861–870
https://doi.org/10.1007/s13157-013-0443-8
18 Knevel I C, Lubke  R A (2005). Reproductive phenology of Scaevolaplumieri: a key coloniser of the coastal foredunes of South Africa. Plant Ecol, 175(1): 137–145
https://doi.org/10.1007/s11258-004-3369-7
19 Krauss K W, Whitbeck  J L, Howard  R J (2012). On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater). Plant Soil, 358(1‒2): 265–274
https://doi.org/10.1007/s11104-012-1182-y
20 Li S R (2013). The study on carbon flux ground monitoring in Binzhou Seashell Islands and wetlands. Dissertation for PhD Degree. Dalian Maritime University
21 Liu B, Liu  Z, Wang Z ,  Wang Z (2014). Responses of rhizomatous grass Phragmites communis to wind erosion: effects on biomass allocation. Plant Soil, 380(1‒2): 389–398 
https://doi.org/10.1007/s11104-014-2104-y
22 Liu B, Zhao  W, Wen Z ,  Teng J, Li  X (2009). Floristic characteristics and biodiversity patterns in the Baishuijiang river basin, china. Environ Manage, 44(1): 73–83
https://doi.org/10.1007/s00267-009-9308-6
23 Liu Q R, Zhang  C, Kang M Y  (2004). A study on the flora of spermatophyte in Xiaowutai Mountains. Bull Bot Res, 24(4): 499–506
24 Lo E Y Y ,  Duke N C ,  Sun M (2014). Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol Biol, 14(1): 83
https://doi.org/10.1186/1471-2148-14-83
25 Mérigot B, Bertrand  J A, Mazouni  N, Manté C ,  Durbec J P ,  Gaertner J C  (2007). A multi-component analysis of species diversity of ground fish assemblages on the continental shelf of the Gulf of Lions (north-western Mediterranean Sea. Estuar Coast Shelf Sci, 73(1‒2): 123–136
https://doi.org/10.1016/j.ecss.2006.12.017
26 Mo X, Li  H, Hao C ,  Meng W, Liang  Y, Li D  (2009). Floral characteristics of dominant plants in Tianjin Coastal New Area Wetland. Bulletin of Soil and Water Conservation, 29(6): 79–83
27 Mollema P N, Antonellini  M, Gabbianelli G ,  Galloni E  (2013). Water budget management of a coastal pine forest in a Mediterranean catchment (Marina Romea, Ravenna, Italy). Environmental Earth Sciences, 68(6): 1707–1721
https://doi.org/10.1007/s12665-012-1862-1
28 Nzunda E F, Griffiths  M E, Lawes  M J (2014). Resource allocation and storage relative to resprouting ability in wind disturbed coastal forest trees. Evol Ecol, 28(4): 735–749
https://doi.org/10.1007/s10682-014-9698-7
29 Pan H J, Tian  J Y, Gu  F T (2001). Seashell islands near the Yellow River Delta and protection of their plant diversity. Marine Environmental Science, 20(3): 54–59
30 Peinado M, Aguirre  J L, Delgadillo  J, Macías M Á  (2007). Zonobiomes, zonoecotones and a zonal vegetation along the Pacific coast of North America. Plant Ecol, 191(2): 221–252
https://doi.org/10.1007/s11258-006-9239-8
31 Priti H, Aravind  N A, Uma Shaanker  R, Ravikanth G  (2016). Modeling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecol Eng, 89: 14–23
https://doi.org/10.1016/j.ecoleng.2016.01.006
32 Reyes-Martínez M J ,  Lercari D ,  Ruíz-Delgado M C ,  Sánchez-Moyano J E ,  Jiménez-Rodríguez A, Pérez-Hurtado A, García-García  F J (2015). Human pressure on sandy beaches: implications for trophic functioning. Estuaries Coasts, 38(5): 1782–1796
https://doi.org/10.1007/s12237-014-9910-6
33 Shao Q L, Xie  X D, Li  F S (2002). Studies of flora of Yellow River Delta National Reserve Area. Xibei Zhiwu Xuebao, 22(4): 947–951
34 Shen Q, Qin  J, Cao L  (2011). Quantitative classification and ordination of shrub-grass vegetation on Hangzhou’s Xixi Wetland. Journal of Zhejiang International Studies University, 7(4): 92–100
35 Tanaka N, Jinadasa  K B S N, Mowjood  M I M, Fasly  M S M (2011). Coastal vegetation planting projects for tsunami disaster mitigation: effectiveness evaluation of new establishments. Landscape and Ecological Engineering, 7(1): 127–135
https://doi.org/10.1007/s11355-010-0122-3
36 Tian J, Xia  J, Sun J ,  Liu Q, Zhang  H, Zhao Y ,  Xie W, Zhang  C, Fu R ,  Xie T, Li  J, Li T  (2011). Ecological Protection and Restoration of Shell Ridge in Yellow River Delta.Beijing: Chemical Industry Press
37  Tikka P M ,  Högmander H ,  Koski P S  (2001). Road and railway verges serve as dispersal corridors for grassland plants. Landscape Ecol, 16(7): 659–666
https://doi.org/10.1023/A:1013120529382
38 Volis S, Blecher  M (2010). Quasi in situ: a bridge between ex situ and in situ conservation of plants. Biodivers Conserv, 19(9): 2441–2454
https://doi.org/10.1007/s10531-010-9849-2
39 Wang H, Li  J, Zhang Y ,  Zhang J ,  Li F (2000a). The younger Cheniers (shell banks) on the west coast of Bohai Bay: morphology, structure and polygenetic processes. Geologica Review, 46(3): 276–287
40 Wang H, Zhang  J, Zhang Y ,  Li J, Li  F, Van Strydonck M, Hendrix V  (2000b). Chronology of the Chenier I and shoreline changes since the last 1ka, on western coast of BohaiBay. Marine Geology & Quaternary Geology, 20(2): 7–14
41 Wilton A D, Breitwieser  I (2000). Composition of the New Zealand seed plant flora. NZ J Bot, 38(4): 537–549
https://doi.org/10.1080/0028825X.2000.9512703
42 Wu T, Li  J, Dai J ,  Wang R (2008). Floristic analysis and distribution pattern of alien plants in Shandong Province, eastern China. Frontiers of Forestry in China, 3(2): 219–225
https://doi.org/10.1007/s11461-008-0032-9
43 Wu Z Y (1991). The areal-types of Chinese genera of seed plants. Acta BotanicaYunnanica, supplement: 1–139
44 Xia J B, Zhang  G C, Zhang  S Y, Sun  J K, Zhao  Y Y, Shao  H B, Liu  J T (2014). Photosynthetic and water use characteristics in three natural secondary shrubs on Shell Islands, Shandong, China. Plant Biosyst, 148(1): 109–117
https://doi.org/10.1080/11263504.2013.878407
45 Xia J, Zhang  S, Wang R ,  Zhao Y, Sun  J, Liu J ,  Liu Q (2013). Water ecology and fractal characteristics of soil particle size distribution of three typical vegetations in Shell Island. Acta Ecol Sin, 33(21): 7013–7022
https://doi.org/10.5846/stxb201207140994
46 Xu B, Li  Z M, Sun  H (2014). Plant diversity and floristic characters of the alpine subnival belt flora in the Hengduan Mountains, SW China. J Syst Evol, 52(3): 271–279
https://doi.org/10.1111/jse.12037
47 Yue J, Dong  Y, Zhang B ,  Geng X, Liu  X, Zhao X ,  Mu L, Zhang  B, Han F  (2012). A few of barrier sand-bars on the west coast of Bohai Bay. Acta Geol Sin, 86(3): 522–534
48 Zhang F, Meng  X, Jin Y  (2004). Primary study on the flora of seed plants from the coast of Qinhuangdao. Journal of Hebei Normal University of Science & Technology, 18(4): 27–30
49 Zhang G L, Bai  J H, Xi  M, Zhao Q Q ,  Lu Q Q ,  Jia J (2016). Soil quality assessment of coastal wetlands in the Yellow River Delta of China based on the minimum data set. Ecol Indic, 66: 458–466
https://doi.org/10.1016/j.ecolind.2016.01.046
50 Zhang M, Pan  Y X, Yang  H X (2013). Species abundance patterns of supratidal sandy grassland along China’s Shandong Peninsula and their responses to human disturbances. Chinese Journal of Plant Ecology, 37(6): 542–550
https://doi.org/10.3724/SP.J.1258.2013.00055
51 Zhang S Y, Xia  J B, Zhang  G C, Zhao  Z G, Zhao  Y Y, Shao  H B, Sun  J K, Shao  C Y, Liu  Q (2014). Threshold effects of photosynthetic efficiency parameters of wild jujube in response to soil moisture variation on shell beach ridges, Shandong, China. Plant Biosyst, 148(1): 140–149
https://doi.org/10.1080/11263504.2013.852629
52 Zhang W, Zhao  S L (2002). A study of floristic division of Shandong province. Guihaia, 22(1): 29–34
53 Zhang X, Feng  A, Sui Y ,  Xia D (2006). Floral characteristics and protection of vascular plants in coastal wetlands of Jiaozhou Bay. Chinese Journal of Ecology, 25(7): 822–827
54 Zhang X, Gu  D, Chen D ,  Sui Y (2008). Flora characteristics of vascular plants of coastal wetlands of southern Laizhou Bay and its protection. Ecol Environ, 17(1): 86–92
55 Zhang X, Ye  S, Yin P ,  Yuan H (2009). Flora characteristics of vascular plants of coastal wetlands in Yellow River Delta. Ecology and Environmental Sciences, 18(2): 600–607
56 Zhao Q Q, Bai  J H, Huang  L B, Gu  B H, Lu  Q Q, Gao  Z Q (2016). A review of methodologies and success indicators for coastal wetland restoration. Ecol Indic, 60: 442–452
https://doi.org/10.1016/j.ecolind.2015.07.003
57 Zhao Y Y, Hu  X M, Liu  J T, Lu  Z H, Xia J B,Tian J Y ,  Ma J S  (2015b). Vegetation pattern in Shell Ridge Island in China’s Yellow River Delta. Frontiers of Earth Science, 9(3): 567–577
https://doi.org/10.1007/s11707-015-0496-5
58 Zhao Y Y, Hu  X M, Liu  J T, Sun  J K (2011). Characteristics of vegetation in Chenier Islands along Yellow River Delta. Bulletin of Soil and Water Conservation, 31(2): 177–180
59 Zhao Y Y, Lu  Z H, Xia  J B, Liu  J T (2015a). Root architecture and adaptive strategy of 3 shrubs in Shell Bay in Yellow River Delta. Acta Ecol Sin, 35(6): 1688–1695
60 Zhao Y, Hu  X, Lu Z  (2014). Soil C, N and P stoichiometry of shrub communities in Chenier Wetlands in Yellow River Delta, China. Asian J Chem, 26(17): 5457–5460
61 Zinnert J C, Nelson  J D, Hoffman  A M (2012). Effects of salinity on physiological responses and the photochemical reflectance index in two co-occurring coastal shrubs. Plant Soil, 354(1‒2): 45–55
https://doi.org/10.1007/s11104-011-0955-z
[1] Zhitao WU, Mingyue WANG, Hong ZHANG, Ziqiang DU. Vegetation and soil wind erosion dynamics of sandstorm control programs in the agro-pastoral transitional zone of northern China[J]. Front. Earth Sci., 2019, 13(2): 430-443.
[2] Haizhu HU, Xiaomin MAO, Qing YANG. Development of a groundwater flow and reactive solute transport model in the Yongding River alluvial fan, China[J]. Front. Earth Sci., 2019, 13(2): 371-384.
[3] Han JIA, Yongming SHEN, Meirong SU, Chunxue YU. Numerical simulation of hydrodynamic and water quality effects of shoreline changes in Bohai Bay[J]. Front. Earth Sci., 2018, 12(3): 625-639.
[4] Jianguo LI, Wenhui YANG, Qiang LI, Lijie PU, Yan XU, Zhongqi ZHANG, Lili LIU. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China[J]. Front. Earth Sci., 2018, 12(2): 339-348.
[5] Liangxia ZHANG, Wei CAO, Jiangwen FAN. Soil organic carbon dynamics in Xilingol grassland of northern China induced by the Beijing-Tianjin Sand Source Control Program[J]. Front. Earth Sci., 2017, 11(2): 407-415.
[6] Mingjie LIU,Zhen LIU,Biao WANG,Xiaoming SUN,Jigang GUO. A new method for recovering paleoporosity of sandstone: case study of middle Es3 member of Paleogene formation in Niuzhuang Sag, Dongying Depression, Bohai Bay Basin in China[J]. Front. Earth Sci., 2015, 9(3): 521-530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed