Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (4) : 751-764    https://doi.org/10.1007/s11707-016-0602-3
RESEARCH ARTICLE
Interannual variations in length of day and atmospheric angular momentum, and their seasonal associations with El Niño/Southern Oscillation-like sea surface temperature patterns
Yuefeng LI1(), Ziniu XIAO2, Wenjing SHI2, Qi ZHONG1, Qiguang WANG1, Huanlian LI1
1. China Meteorological Administration Training Center, WMO Regional Training Center, Beijing 100081, China
2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
 Download: PDF(3462 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study examines the seasonal connections between the interannual variations in LOD (length of day)/AAMglobe (the relative atmospheric angular momentum for the whole globe) and the ENSO-like SST (El Niño/Southern Oscillation-like sea surface temperature) pattern and corresponding zonal and vertical circulations. Consistent with previous studies, the ENSO-like SST impact the following season LOD/AAMglobe, with the strongest correlations in DJF (December, January, and February), when it is likely to be the peak El Niño/La Niña period. Lag correlations between the interannual variations in LOD/AAMglobe and surface temperature, and the interannual variations in LOD and both zonal circulation and vertical airflow around the equator, consistently indicate that the LOD/AAMglobe reflect the potential impacts of variations in the Earth’s rotation rate on the following season’s sea surface temperatures (SST) over the tropical central and eastern Pacific (where the ENSO-like SST pattern is located). Moreover, the centers of strongest variation in the AAMcolumn (the relative atmospheric angular momentum for an air column and the unit mass over a square meter) are located over the mid-latitudinal North Pacific in DJF and MAM (March, April, and May), and over the mid-latitudinal South Pacific in JJA (June, July, and August) and SON (September, October, and November). This suggests that the AAMcolumn over the mid-latitudinal Pacific around 30°N (30°S) dominate the modulation of Earth’s rotation rate, and then impact the variations in LOD during DJF and MAM (JJA and SON).

Keywords four season features      interannual variation      length of day      atmospheric angular momentum      ENSO-like SST pattern     
Corresponding Author(s): Yuefeng LI   
Just Accepted Date: 19 October 2016   Online First Date: 04 November 2016    Issue Date: 10 November 2017
 Cite this article:   
Yuefeng LI,Ziniu XIAO,Wenjing SHI, et al. Interannual variations in length of day and atmospheric angular momentum, and their seasonal associations with El Niño/Southern Oscillation-like sea surface temperature patterns[J]. Front. Earth Sci., 2017, 11(4): 751-764.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0602-3
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I4/751
1 del Rio R Abarca, D Gambis, D A Salstein (2000). Interannual signals in length of day and atmospheric angular momentum. Ann Geophysicae, EGS- Springer-Verlag 18: 347–364
2 del Rio R Abarca, D Gambis, D A Salstein (2012). Interdecadal oscillations in atmospheric angular momentum variations. J Geodetic Sci, 2(1): 42–52
https://doi.org/10.2478/v10156-011-0025-8
3 R T H Barnes, R Hide, A A White, C A Wilson (1983). Atmospheric angular momentum fluctuations, length of day changes and polar motion. Proc R Soc Lon 387: 31–73
4 R X Black, D A Salstein, R D Rosen (1996). Interannual modes of variability in atmospheric angular momentum. J Clim, 9(11): 2834–2849
https://doi.org/10.1175/1520-0442(1996)009<2834:IMOVIA>2.0.CO;2
5 B F Chao (1988). Correlation of interannual length-of-day variation with El Nino/Southern Oscillation, 1972‒1986. J Geophys Res, 93(B7): 7709–7715
https://doi.org/10.1029/JB093iB07p07709
6 B F Chao (1989). Length-of-day variations caused by El Nino Southern Oscillation and Quasi-Biennial Oscillation. Science, 243(4893): 923–925
https://doi.org/10.1126/science.243.4893.923
7 J L Chen, C R Wilson, B F Chao, C K Shum, B D Tapley (2000). Hydrological and oceanic excitations to polar motion and length-of-day variation. Geophys J Int, 141(1): 149–156
https://doi.org/10.1046/j.1365-246X.2000.00069.x
8 J O Dickey, S L Marcus, T M Chin (2007). Thermal wind forcing and atmospheric angular momentum: origin of the Earth’s delayed response to ENSO. Geophys Res Lett, 34(17): L17803
https://doi.org/10.1029/2007GL030846
9 T M Eubanks, J A Steppe, J O Dickey, P S Callahan (1985). A spectral analysis of the Earth’s angular momentum budget. J Geophys Res, 90(B7): 5385–5404
https://doi.org/10.1029/JB090iB07p05385
10 Z N Gu (1996). Imbalance of seasonal budget in the atmospheric angular momentum and length of day. Annals of Shanghai Observatory Academia Sinica, 17: 73–79 (in Chinese)
11 R Hide, J O Dickey (1991). Earth’s variable rotation. Science, 253(5020): 629–637
https://doi.org/10.1126/science.253.5020.629
12 J Höpfner (1997). Seasonal variations in length of day and atmospheric angular momentum. Scientific Technical Report, No.: STR97/08
13 J Höpfner (1999). Interannual variations in length of day and atmospheric angular momentum with respect to ENSO cycles. Scientific Technical Report, No.: STR99/07
14 E Kalnay, M Kanamitsu, R Kistler, W Collins, D Deaven, L Gandin, M Iredell, S Saha, G White, J Woollen, Y Zhu, M Chelliah, W Ebisuzaki, W Higgins, J Janowiak, K C Mo, C Ropelewski, J Wang, A Leetmaa, R Reynolds, R Jenne, D Joseph (1996). The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc, 77(3): 437–471
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
15 K Lambeck (1980). The Earth’s Variable Rotation. New York: Cambridge University Press
16 K Lambeck, A Cazenave (1976). Long term variations in the length of day and climatic change. Geophys J R Astr Soc, 46: 555–573
https://doi.org/10.1111/j.1365-246X.1976.tb01248.x
17 C Y Li (1996). A further study on interaction between anomalous winter monsoon in East Asia and El Nino. Acta Meteorol Sin, 10: 309–320
18 G Li, B H Ren, C Y Yang, J Q Zheng (2010). Traditional El Nino and El Nino Modoki revisited: Is El Nino Modoki linearly independent of traditional El Nino? Atmos Oceanic Sci Let, 3(2): 70–74
https://doi.org/10.1080/16742834.2010.11446845
19 Y F Li, S P Harrison , P Zhao, J H Ju (2009). Simulations of the impacts of dynamic vegetation on interannual and interdecadal variability of Asian summer monsoon with modern and mid-Holocene orbital forcings. Global Planet Change, 66: 235–252
https://doi.org/10.1016/j.gloplacha.2008.12.013
20 Y F Li, L R Leung (2013). Potential impacts of the Arctic on interannual and interdecadal summer precipitation over China. J Clim, 26(3): 899–917
https://doi.org/10.1175/JCLI-D-12-00075.1
21 F F Luo, S L Li, Y Q Gao, F Tore (2012). A new method for predicting the decadal component of global SST. Atmos Ocea Sci Let, 5(6): 521–526
22 P J Morgan, R W King, I I Shapiro (1985). Length of day and atmospheric angular momentum: a comparison for 1981‒1983. J Geophys Res, 90(B14): 12645–12652
https://doi.org/10.1029/JB090iB14p12645
23 W H Munk, R L Miller (1950). Variation in the Earth’s angular velocity resulting from fluctuations in atmospheric and cceanic circulation. Tellus, 2(2): 93–101
https://doi.org/10.1111/j.2153-3490.1950.tb00318.x
24 A H Oort (1983). Global atmospheric circulation statistics, 1958‒1973. NOAA Prof. Paper 14, original from University of California, 1–180 (read on )
25 W H Qian , J F Chou (1996). Atmosphere-earth angular momentum exchange and ENSO cycle. Sci China Ser D, 26: 80–86
26 E M Rasmusson, T H Carpenter (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Mon Weather Rev, 110(5): 354–384
https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
27 Z Q Ren, S Q Zhang (1986). Decrease of Earth rotation and El Nino events. Acta Meteorol Sin, 44: 411–416 (in Chinese)
28 R D Rosen (1993). The axial momentum balance of earth and its fluid envelope. Surv Geophys, 14(1): 1–29
https://doi.org/10.1007/BF01044076
29 R D Rosen, D A Salstein (1983). Variations in atmospheric angular momentum on global and regional scales and the length of day. J Geophys Res, 88(C9): 5451–5470
https://doi.org/10.1029/JC088iC09p05451
30 R D Rosen, D A Salstein (1985). Contribution of stratospheric winds to annual and semi-annual fluctuations in atmospheric angular momentum and the length of day. J Geophys Res, 90(D5): 8033–8041
https://doi.org/10.1029/JD090iD05p08033
31 D A Salstein, D M Kann, A J Miller, R D Rosen (1993). The sub-bureau for atmospheric angular momentum of the international Earth rotation service: a meteorological data center with geodetic applications. Bull Am Meteorol Soc, 74(1): 67–80
https://doi.org/10.1175/1520-0477(1993)074<0067:TSBFAA>2.0.CO;2
32 M Satoh, S Yoshida (1996). Response of the atmospheric angular momentum and the length of the day to the surface temperature increase for an aqua planet model. Geophys Res Lett, 23(18): 2569–2572
https://doi.org/10.1029/96GL02211
33 V P Starr (1948). An essai on the general circulation of the Earth’s atmosphere. J Meteorol, 5(2): 39–43
https://doi.org/10.1175/1520-0469(1948)005<0039:AEOTGC>2.0.CO;2
34 M Stefanick (1982). Interannual atmospheric angular momentum variability 1963‒1973 and the southern oscillation. J Geophys Res, 87(C1): 428–432
https://doi.org/10.1029/JC087iC01p00428
35 C Torrence , G P Compo (1998). A practical guide to wavelet analysis. Bull Am Meteorol Soc, 79: 61–78
36 R G Wu, J L Chen, W Chen (2012). Different types of ENSO influences on the Indian summer monsoon variability. J Clim, 25(3): 903–920
https://doi.org/10.1175/JCLI-D-11-00039.1
37 S Yang, K M Lau, K M Kim (2002). Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J Clim, 15(3): 306–325
https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2
38 D W Zheng, S F Luo, G X Song (1988). Interannual variation of Earth rotation, El Nino event and atmospheric angular momentum. Sci China Ser B, 3: 332–337 (in Chinese)
39 M Zhong , H M Yan , Y Z Zhu , X P Lei (2002). Atmospheric angular momentum fluctuations and the excitations on earth rotation at seasonal scale. ACTA Astronomica Sinica, 43: 90–98 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed