Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (3) : 554-564    https://doi.org/10.1007/s11707-016-0616-x
RESEARCH ARTICLE
Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region
Na ZHAO1,2(), Mengzhen XU2, Zhiwei LI3(), Zhaoyin WANG2, Hanmi ZHOU1
1. College of Agricultural Engineering, Henan University of Science and Technology, Luoyang 471003, China
2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
3. School of Hydraulic Engineering, Key Laboratory of Water Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha University of Science & Technology, Changsha 410114, China
 Download: PDF(1122 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. The aquatic ecosystem of the Ruoergai Wetland is crucial to the whole Yellow River basin. The Ruoergai wetland has three main kinds of water bodies: rivers, oxbow lakes, and marsh wetlands. In this study, macroinvertebrates were used as indicators to assess the aquatic ecological status because their assemblage structures indicate long-term changes in environments with high sensitivity. Field investigations were conducted in July, 2012 and in July, 2013. A total of 72 taxa of macroinvertebrates belonging to 35 families and 67 genera were sampled and identified. Insecta was the dominant group in the Ruoergai Basin. The alpha diversity of macroinvertebrates at any single sampling site was low, while the alpha diversity on a basin-wide scale was much higher. Macroinvertebrate assemblages in rivers, oxbow lakes, and marsh wetlands differ markedly. Hydrological connectivity was a primary factor causing the variance of the bio-community. The river channels had the highest alpha diversity of macroinvertebrates, followed by marsh wetlands and oxbow lakes. The density and biomass of Gastropoda, collector filterers, and scrapers increased from rivers to oxbow lakes and then to marsh wetlands. The river ecology was particular in the Ruoergai Wetland with the high beta diversity of macroinvertebrates, the low alpha diversity of macroinvertebrates, and the low taxa richness, density, and biomass of EPT (Ephemeroptera, Plecoptera, Trichoptera). To maintain high alpha diversity of macroinvertebrates in the Ruoergai Wetland, moderate connectivity of oxbow lakes and marsh wetlands with rivers and measures to control headwater erosion are both crucial.

Keywords macroinvertebrates      aquatic ecology      hydrological connectivity      Ruoergai Wetland      Yellow River source     
Corresponding Author(s): Na ZHAO,Zhiwei LI   
Just Accepted Date: 23 November 2016   Online First Date: 14 December 2016    Issue Date: 12 July 2017
 Cite this article:   
Na ZHAO,Mengzhen XU,Zhiwei LI, et al. Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region[J]. Front. Earth Sci., 2017, 11(3): 554-564.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0616-x
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I3/554
Fig.1  Locations of the study area and the sampling sites.
Parameter Bai River Hei River Oxbow lakes Marsh wetlands
T/°C Mean±SE 19.67±1.99 16.43±1.17 22.73±2.64 20.30±2.60
Min?Max 12.80?25.20 11.00?19.20 15.10?30.50 15.10?27.50
DO/(mg·L ?1) Mean±SE 6.42±0.16 6.46±0.28 8.47±0.95 7.86±1.23
Min?Max 6.11?7.17 5.31?7.40 6.33?12.51 4.74?10.50
pH Mean±SE 8.42±0.11 8.03±0.10 9.32±0.44 8.99±0.47
Min?Max 8.20?8.75 7.75?8.28 8.11?10.75 8.02?10.01
Cond/(mS·cm?1) Mean±SE 107.1±9.8 98.5±6.5 132±24.1 343.1±128.6
Min?Max 83.5?137.4 79.7?118.6 66.8?228.0 62.7?628.0
hSD/cm Mean±SE 33±5 19±7 19±8 17±9
Min?Max 20?50 4?40 5?50 15?60
h/cm Mean±SE 25±6 15±4 26±5 15±5
Min?Max 13?49 7?32 15?40 11?35
v/(m·s?1) Mean±SE 0.41±0.14 0.38±0.14 0±0 0±0
Min?Max 0.10?1.00 0.15?1.00 0?0 0?0
BMac/(g·m?2) Mean±SE 0±0 0±0 1148±743 18,666±9507
Min?Max 0?0 0?0 120?4800 163?37,000
TOC/(mg·L ?1) Mean±SE 5.39±0.10 5.59±0.36 7.86±1.33 11.46±4.72
Min?Max 5.11?5.82 4.10?6.31 4.23?12.20 3.74?23.66
TN/( mg·L ?1) Mean±SE 0.184±0.019 0.257±0.034 0.387±0.087 0.327±0.127
Min?Max 0.148?0.248 0.127?0.369 0.181?0.680 0.154?0.702
TP/( mg·L ?1) Mean±SE 0.037±0.008 0.047±0.017 0.054±0.012 0.069±0.018
Min?Max 0.023?0.065 0.020?0.130 0.028?0.100 0.020?0.099
Substrate type Gravel, silt and fine sand Gravel, humus Silt Silt
Tab.1  Environmental parameters (mean±SE) in the Ruoergai Wetland
Phylum Family Species (genus) number
Bai River Hei River Oxbow lakes Marsh wetlands
Nematoda Nematoda u 0 u 0
Annelida Tubificidae (1) (1) (1) (2)
Naididae 1 0 0 0
Mollusca Planorbidae 1 0 2 1
Lymnaeidae 1 0 2 2
Sphaeriidae 0 0 (1) (1)
Arthropoda Conchostraca 0 0 0 u
Cladocera 0 0 u u
Calanoida 0 0 u u
Gammaridae (1) (1) (1) 0
Acariformes u u u u
Entomobryomorpha 0 0 u 0
Baetidae 1 1 0 0
Heptageniidae (1) (1) 0 0
Ephemerellidae (2) (1) 0 0
Perlodidae 1 1 0 0
Nemouridae 1 1 0 0
Taeniopterygidae 1 0 0 0
Limnephilidae 1 1 0 1
Brachycentridae 2 2 0 0
Hydropsychidae (2) 0 0 0
Dytiscidae 0 0 3 4
Haliplidae 0 0 (1) 0
Chrysomelidae 0 0 u u
Hydrophilidae 0 u 0 u
Gomphidae 2 0 0 0
Lestidae 0 0 (1) 0
Libellulidae 0 0 0 (1)
Corixidae 0 0 (1) (1)
Veliidae 0 0 0 u
Tipulidae (2) (1) 0 0
Ephydridae 0 0 (1) 0
Athericidae 0 1 0 0
Ceratopogonidae u 0 0 0
Chironomidae (9) (5) (10) (6)
Tab.2  Taxa list of macroinvertebrates in the Ruoergai Wetland
Fig.2  DCA diagram of the sampling sites (1, 2, 3… represent S1, S2, S3…; ○: rivers, ◇: oxbow lakes, □: marsh wetlands).
Fig.3  The alpha diversity indices of the three water bodies in the Ruoergai Wetland.
Fig.4  Density (a) and dry biomass (b) of each taxonomic group of macroinvertebrates in the Ruoergai Wetland.
Fig.5  Density (a) and dry biomass (b) of each functional feeding group of macroinvertebrates in the Ruoergai Wetland.
Fig.6  Habitat conditions of the rivers in the Ruoergai Basin.
Fig.7  (a)The peat layer of the Mai River (a Hei River’s tributary) was cut through (32°57′0.9″N, 103°5′0″E) (July 2013); (b)The headwater erosion in the Ruoergai Wetland (33°5′6.7″N, 102°50′10.6″E) (July 2013).
Fig.8  The alpha diversity of macroinvertebrates.
River Item Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Mean value
Rivers of the Ruoergai Wetland Taxa richness 1 8 3 1 1 5 0 2 3
Density/(ind·m ?2) 2 94 7 4 24 18 0 2 19
Biomass/(g dry weight·m ?2) 0.001 0.145 0.004 0.002 0.020 0.010 0.000 0.0004 0.023
The Lanmucuo River Taxa richness 8 9 9 5 6 7 6 4 7
Density/(ind·m ?2) 660 765 492 492 51 262 39 46 351
Biomass/(g dry weight·m ?2) 0.253 0.293 0.356 0.136 0.027 0.307 0.023 0.065 0.182
Tab.3  EPT taxa richness, density, and biomass at selected sites
1 Amoros C, Bornette  G (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol, 47(4): 761–776
https://doi.org/10.1046/j.1365-2427.2002.00905.x
2 Amoros C, Roux  A (1988). Interaction between water bodies within the floodplains of large rivers: function and development of connectivity. In: Schreiber K F, ed. Connectivity in Landscape Ecology. Munster,  125–130
3 Bai J H, Lu  Q Q, Wang  J J, Zhao  Q Q, Ouyang  H, Deng W ,  Li A N  (2013). Landscape pattern evolution processes of alpine wetlands and their driving factors in the Zoige plateau of China. J Mt Sci, 10(1): 54–67
https://doi.org/10.1007/s11629-013-2572-1
4 Barbour M T, Gerritsen  J, Snyder B D  (1999). Benthic macroinvertebrate protocols. In: Barbour M T, Gerritsen J, Snyder B D, Stribling J B, eds. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. EPA 841-B-99-002. Washington: U.S. Environmental Protection Agency, 7.1–7.20
5 Beisel J N, Usseglio-Polatera  P, Moreteau J C  (2000). The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. In: Jungwirth M, Muhar S, Schmutz S, eds. Assessing the Ecological Integrity of Running Waters. Springer Netherlands, 163–171
6 Braak C T, Smilauer  P (2002). CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power: Ithaca, New York, USA
7 Dai Y, Luo  Y, Wang C K ,  Shen Y P ,  Ma Z F ,  Wang X L  (2010). Climate variation and abrupt change in wetland of Zoige Plateau during 1961 and 2008. Journal of Glaciology and Geocryology, 32(1): 35–42 (in Chinese)
8 Dong Z B, Hu  G Y, Yan  C Z, Wang  W L, Lu  J F (2010). Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai-Tibetan Plateau. Environ Earth Sci, 59(8): 1731–1740
https://doi.org/10.1007/s12665-009-0155-9
9 Downes B J, Lake  P, Schreiber E ,  Glaister A  (2000). Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia, 123(4): 569–581
https://doi.org/10.1007/PL00008862
10 Duan X H, Wang  Z Y, Xu  M Z (2010). Benthic Macroinvertebrates and Application in the Assessment of Stream Ecology. Beijing: Tsinghua University Press, 1–168 (in Chinese)
11 Gallardo B, García  M, Cabezas Á ,  González E ,  González M ,  Ciancarelli C ,  Comín F A  (2008). Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquat Sci, 70(3): 248–258
https://doi.org/10.1007/s00027-008-8024-2
12 Hu G Y, Dong  Z B, Lu  J F, Yan  C Z (2012). Driving forces of land use and land cover change (LUCC) in the Zoige Wetland, Qinghai-Tibetan Plateau. Sci Cold Arid Reg, 4(5): 422–430
https://doi.org/10.3724/SP.J.1226.2012.00422
13 Huo L, Chen  Z, Zou Y ,  Lu X, Guo  J, Tang X  (2013). Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecol Eng, 51: 287–295
https://doi.org/10.1016/j.ecoleng.2012.12.020
14 Junk W J, Bayley  P B, Sparks  R E (1989). The flood pulse concept in river-floodplain systems. Can J Fish Aquat Sci, 106(1): 110–127
15 Kefford B J (1998). The relationship between electrical conductivity and selected macroinvertebrate communities in four river systems of south-west Victoria, Australia. Int J Salt Lake Res, 7(2): 153–170
https://doi.org/10.1007/BF02441884
16 Lessard J L, Hayes  D B (2003). Effects of elevated water temperature on fish and macroinvertebrate communities below small dams. River Res Appl, 19(7): 721–732
https://doi.org/10.1002/rra.713
17 Li Z W, Wang  Z Y, Zhang  C D, Han  L J, Zhao  N (2014). A study on the mechanism of wetland degradation in Ruoergai swamp. Advances in Water Science, 25(2): 172–180 (in Chinese)
18 Obolewski K (2011). Macrozoobenthos patterns along environmental gradients and hydrological connectivity of oxbow lakes. Ecol Eng, 37(5): 796–805
https://doi.org/10.1016/j.ecoleng.2010.06.037
19 Pan B Z, Wang  H J, Liang  X M, Wang  H Z (2011). Macrozoobenthos in Yangtze floodplain lakes: patterns of density, biomass, and production in relation to river connectivity. J N Am Benthol Soc, 30(2): 589–602
https://doi.org/10.1899/10-025.1
20 Pan B Z, Wang  Z Y, Xu  M Z (2012). Macroinvertebrates in abandoned channels: assemblage characteristics and their indications for channel management. River Res Appl, 28(8): 1149–1160
https://doi.org/10.1002/rra.1515
21 Pringle C (2003). What is hydrologic connectivity and why is it ecologically important? Hydrol Processes, 17(13): 2685–2689
https://doi.org/10.1002/hyp.5145
22 Qiu P F, Wu  N, Luo P ,  Wang Z Y ,  Li M H  (2009). Analysis of dynamics and driving factors of wetland landscape in Zoige, Eastern Qinghai-Tibetan Plateau. J Mt Sci, 6(1): 42–55
https://doi.org/10.1007/s11629-009-0230-4
23 Reckendorfer W, Baranyi  C, Funk A ,  Schiemer F  (2006). Floodplain restoration by reinforcing hydrological connectivity: expected effects on aquatic mollusc communities. J Appl Ecol, 43(3): 474–484
https://doi.org/10.1111/j.1365-2664.2006.01155.x
24 Salo J, Kalliola  R, Häkkinen I ,  M�kinen Y ,  Niemelä P ,  Puhakka M ,  Coley P D  (1986). River dynamics and the diversity of Amazon lowland forest. Nature, 322(6076): 254–258
https://doi.org/10.1038/322254a0
25 Shannon C E, Weaver  W (1948). A mathematical theory of communication. American Telephone and Telegraph Company
26 Smith M, Kay  W, Edward D ,  Papas P ,  Richardson K S J ,  Simpson J ,  Pinder A ,  Cale D, Horwitz  P, Davis J ,  Yung F H ,  Norris R H ,  Halse S A  (1999). AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshw Biol, 41(2): 269– 282
https://doi.org/10.1046/j.1365-2427.1999.00430.x
27 Steinberg C E W ,  Kamara S ,  Prokhotskaya V Y ,  Manusadžianas L ,  Karasyova T A ,  Timofeyev M A ,  Jie Z, Paul  A, Meinelt T ,  Farjalla V F ,  Matsuo A Y O ,  Burnison B K ,  Menzel R  (2006). Dissolved humic substances-ecological driving forces from the individual to the ecosystem level? Freshw Biol, 51(7): 1189–1210
https://doi.org/10.1111/j.1365-2427.2006.01571.x
28 Tang J, Xu  Q R, Wang  L M, Ding  X, Tang B ,  Wu L S ,  Feng S, Sun  Q, Yang Z R ,  Zhang J  (2011). Soil bacterial community diversity under different stages of degradation in zoige wetland. Microbiology, 38(5): 677–686 (in Chinese)
29 Tang T, Qu  X, Li D ,  Liu R, Xie  Z, Cai Q  (2004). Benthic algae of the Xiangxi River, China. J Freshwat Ecol, 19(4): 597–604
https://doi.org/10.1080/02705060.2004.9664740
30 Tockner K, Malard  F, Ward J V  (2000). An extension of the flood pulse concept. Hydrol Processes, 14(16‒17): 2861–2883
https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F
31 Vannote R L, Minshall  G W, Cummins  K W, Sedell  J R, Cushing  C E (1980). The river continuum concept. Can J Fish Aquat Sci, 37(1): 130–137
https://doi.org/10.1139/f80-017
32 Wang Z Y, Lee  J H W, Melching  C S (2012). River Dynamics and Integrated River Management. Berlin and Beijing: Springer
33 Wang Z Y, Melching  C S, Duan  X H, Yu  G (2009). Ecological and hydraulic studies of step-pool systems. J Hydraul Eng, 135(9): 705–717
https://doi.org/10.1061/(ASCE)0733-9429(2009)135:9(705)
34 Ward J V, Stanford  J A (1995). The serial discontinuity concept: extending the model to floodplain rivers. Regul River, 10(2‒4): 159–168
https://doi.org/10.1002/rrr.3450100211
35 Ward J V, Tockner  K, Schiemer F  (1999). Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regul River, 15(1‒3): 125–139
https://doi.org/10.1002/(SICI)1099-1646(199901/06)15:1/3<125::AID-RRR523>3.0.CO;2-E
36 Water and Waste Water Monitoring and Analysis Method Committee (WWWMAMC) (2002). Water and Waste Water Monitoring and Analysis Method (4th ed). Beijing: China Environmental Science Press (in Chinese)
37 Wu P F, Yang  D X (2011). Effect of habitat degradation on soil meso- and microfaunal communities in the Zoige Alpine Meadow, Qinghai-Tibetan Plateau. Acta Ecol Sin, 31(13): 3745–3757 (in Chinese)
38 Xiao D R, Tian  B, Tian K ,  Yang Y (2010). Landscape patterns and their changes in Sichuan Ruoergai wetland national nature reserve. Acta Ecol Sin, 30(1): 27–32
https://doi.org/10.1016/j.chnaes.2009.12.005
39 Xu M Z, Wang  Z Y, Duan  X H, Pan  B Z (2014). Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiologia, 729(1): 247–259
https://doi.org/10.1007/s10750-013-1504-y
40 Yan Y J, Liang  Y L (1999). A study of dry-to-wet weight ratio of aquatic macroinvertebrates. Journal of Huazhong University of Science & Technology, 27(9): 61–63 (in Chinese)
41 Zhang H Z, Wu  P F, Yang  D X, Cui  L W, He  X J, Xiong  Y Q (2011a). Dynamics of soil meso- and microfauna communities in Zoige alpine meadows on the eastern edge of Qinghai-Tibet Plateau, China. Acta Ecol Sin, 31(15): 4385–4397 (in Chinese)
42 Zhang X Y, Lu  X G, Gu  H J (2005). To analysis threats, to describe present conservation situation and to provide management advices of the Ruoergai Marshes. Wetland Science, 3(4): 292–297 (in Chinese)
43 Zhang Y, Wang  G, Wang Y  (2011b). Changes in alpine wetland ecosystems of the Qinghai-Tibetan plateau from 1967 to 2004. Environ Monit Assess, 180(1‒4): 189–199
https://doi.org/10.1007/s10661-010-1781-0
44 Zhao N, Wang  Z Y, Pan  B Z, Xu  M Z, Li  Z W (2015). Macroinvertebrate assemblages in mountain streams with different streambed stability. River Res Appl, 31(7): 825–833
https://doi.org/10.1002/rra.2775
45 Zhou W, Lu  X, Wu Z ,  Deng L, Jull  A T, Donahue  D, Beck W  (2002). Peat record reflecting Holocene climatic change in the Zoig Plateau and AMS radiocarbon dating. Chin Sci Bull, 47(1): 66–70
https://doi.org/10.1360/02tb9013
[1] Tuyen Van NGUYEN, Woon-Seok CHO, Hungsoo KIM, Il Hyo JUNG, YongKuk KIM, Tae-Soo CHON. Inferring community properties of benthic macroinvertebrates in streams using Shannon index and exergy[J]. Front Earth Sci, 2014, 8(1): 44-57.
[2] Brian FINLAYSON. Rivers in Australia[J]. Front Earth Sci Chin, 2010, 4(4): 375-385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed