Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (1) : 170-190    https://doi.org/10.1007/s11707-016-0628-6
RESEARCH ARTICLE
The effect of wind on the dispersal of a tropical small river plume
Junpeng ZHAO1,2, Wenping GONG1,2(), Jian SHEN3
1. School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
2. Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Guangzhou 510275, China
3. Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062, USA
 Download: PDF(8181 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Wanquan River is a small river located in Hainan, a tropical island in China. As the third largest river in Hainan, the river plume plays an important role in the regional terrigenous mass transport, coastal circulation, and the coral reef’s ecosystem. Studies have shown that wind forcings significantly influence river plume dynamics. In this study, wind effects on the dispersal of the river plume and freshwater transport were examined numerically using a calibrated, unstructured, finite volume numerical model (FVCOM). Both wind direction and magnitude were determined to influence plume dispersal. Northeasterly (downwelling-favorable) winds drove freshwater down-shelf while southeasterly (onshore) winds drove water up-shelf (in the sense of Kelvin wave propagation) , and were confined near the coast. Southwesterly (upwelling-favorable) and northwesterly (offshore) winds transport more freshwater offshore. The transport flux is decomposed into an advection, a vertical shear, and an oscillatory component. The advection flux dominates the freshwater transport in the coastal area and the vertical shear flux is dominant in the offshore area. For the upwelling-favorable wind, the freshwater transport becomes more controlled by the advection transport with an increase in wind stress, due to enhanced vertical mixing. The relative importance of wind forcing and buoyancy force was investigated. It was found that, when the Wedderburn number is larger than one, the plume was dominated by wind forcing, although the importance of wind varies in different parts of the plume. The water column stratification decreased as a whole under the prevailing southwesterly wind, with the exception of the up-shelf and offshore areas.

Keywords small river plume      wind effect      freshwater transport     
Corresponding Author(s): Wenping GONG   
Just Accepted Date: 25 November 2016   Online First Date: 24 March 2017    Issue Date: 23 January 2018
 Cite this article:   
Junpeng ZHAO,Wenping GONG,Jian SHEN. The effect of wind on the dispersal of a tropical small river plume[J]. Front. Earth Sci., 2018, 12(1): 170-190.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0628-6
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I1/170
Fig.1  Study area and the in-situ observation stations. In panel (b), the isobaths are included with an interval of 10 m. The filled squares represent the tidal gauge stations, and the filled triangles represent the shipboard survey stations in summer, 2012. The solid and dotted lines are the alongshore transect and cross-shelf transect, respectively. The filled cycles in panel (c) indicate the locations of underway stations, and the color denotes the surface salinity measured.
Fig.2  (a) The monthly measured discharge from 1998 to 2007 and (b) the monthly averaged discharge at the Jiaji hydrologic station.
Fig.3  The model domain and bathymetry (m).
Fig.4  Comparison of observed (dotted lines) and modeled (solid lines) water elevations at three tidal gauge locations.
Fig.5  Comparison of observed and modeled salinity profiles.
Parameter Elevation Salinity
Golf
Pumpa)
Seafood
Market
Boao A, neap A, spring B, neap B, spring C, neap C, spring
r 0.85 0.96 0.97 0.81 0.82 0.44 0.31 0.7 0.79
AAD 0.12 0.12 0.06 5.37 5.45 2.15 2.99 2.81 4.08
RMSE 0.14 0.13 0.08 5.75 5.76 2.64 4.12 3.29 4.68
skill 0.92 0.96 0.98 0.76 0.74 0.65 0.58 0.72 0.65
Tab.1  Table 1r, AAD, RMSE, and Skill Assessment Parameter (skill) for modeled elevation and surface salinity
Fig.6  Comparison of surface salinity from model simulation (blue lines) and underway observation (red lines) for the 12 sections.
Fig.7  Surface salinity and flow (a, c) and freshwater depth (b, d) for the initial condition and after 8 days of the simulation without wind. The white lines in the upper panel represent the 34.0-psu isohaline. The blue lines in (b) indicate the sections for calculating the Wedderburn number and PEA.
Fig.8  The surface salinity overlain with velocity (upper panels) and freshwater depth (lower panels) after 8 days of the simulation under the 5 m·s–1 southwesterly (a, e), northeasterly (b, f), northwesterly (c, g), and southeasterly (d, h) winds. The white lines in the upper panel represent the 34.0-psu isohaline.
Fig.9  The 5 m·s–1 wind-induced vertical salinity profile and current field for cross-shelf section (left panels) and alongshore section (right panels) after 8 days of the simulation with southwesterly (a, b), northeasterly (c, d), northwesterly (e, f), and southeasterly (g, h) winds. The distance in the cross-shelf section is from mouth to offshore, and the distance in the alongshore section is from south to north. The vertical velocity is scaled by 500 m·s–1. Filled contours indicate salinity and the contours superimposed on the shading indicate alongshore velocity (in cross-shelf sections, positive down-shelf) or cross-shelf velocity (in alongshore sections, positive offshore).
Fig.10  The surface salinity overlain with velocity (upper panels) and freshwater depth (lower panels) after 8 days of the simulation under a southwesterly wind with 1 (a, d), 3 (b, e), and 10 m·s–1 (c, f) of speed. The corresponding results with 5 m·s–1 are shown in Figs. 8(a) and 8(e).
Fig.11  The southwesterly wind-induced vertical salinity profiles and current field for the cross-shelf section (left panels) and alongshore section (right panels) after 8 days of the simulation with no wind (a, b), 1 m·s–1 (c, d), 3 m·s–1 (e, f), and 10 m·s–1 (g, h) wind speed. The corresponding results with 5 m·s–1 are shown in Figs. 9(a) and 9(b). The distance in the cross-shelf section is from the mouth to offshore, and the distance in the alongshore section is from the south to the north. The vertical velocity is scaled by 500 m·s–1. Filled contours indicate salinity and the contours superimposed on the shading indicate alongshore velocity (in cross-shelf sections, positive down-shelf) or cross-shelf velocity (in alongshore sections, positive offshore).
Fig.12  Vertical integrated freshwater transport under 5 m·s–1 wind in southwesterly (a, e, i, m), northeasterly (b, f, j, n), northwesterly (c, g, k, o) and southeasterly (d, h, l, p) directions. The panels in the first, second, third, and fourth rows are total freshwater flux, the advection transport, vertical shear transport, and oscillatory transport, respectively.
Fig.13  Vertically integrated freshwater transport under no-wind (a, e, i, m), 1 m·s–1 (b, f, j, n), 3 m·s–1 (c, g, k, o), and 10 m·s–1 (d, h, l, p) under a southwesterly wind. The panels in the first, second, third, and fourth rows are total freshwater flux, the advection transport, vertical shear transport, and oscillatory transport, respectively. The corresponding results with 5 m·s–1 are shown in Figs. 12(a), 12(e), 12(i), 12(m).
Wind velocity/( m·s–1) Whole Section
Down-shelf Up-shelf Offshore
1 0.02 0.01 0.02 0.03
3 0.19 0.12 0.26 0.31
5 0.54 0.34 0.71 0.85
10 2.15 1.35 2.84 3.39
Tab.2  Wedderburn number under different wind velocity
Fig.14  Schematic diagrams showing the influence of the wind straining and mixing on the stratification of the plume under the southwesterly (a), northeasterly (b), northwesterly (c), and southeasterly (d) winds at a speed of 5 m·s–1. Arrows indicate the directions of buoyancy-driven surface flows in different areas of the plume. Symbols at two sides of the arrows indicate the effect of wind straining (red) and wind mixing (black). Plus (+) indicates an increase in stratification and minus (?) indicates a decrease.
Wind Sections
Down-Shelf Up-Shelf Offshore
0 1.00 1.00 1.00
SW-1 0.66 0.85 1.74
SW-3 0.06 1.49 1.31
SW-5 0.02 0.81 0.82
SW-10 0.01 0.08 0.42
NE-5 0.29 0.00 0.00
NW-5 0.53 0.01 0.14
SE-5 0.12 0.97 0.05
Tab.3  Non-dimensional PEA at different parts of the plume in different wind conditions. The positions of the sections are indicated in Fig. 7
Fig.15  The correlation between Wedderburn number and non-dimensional PEA.
Fig.16  Simulated surface plume and current structures on 24 August 2012 under real (a) and no-tide (b) conditions. The white lines represent the 34.0-psu isohaline.
1 Avicola G, Huq  P (2003). The role of outflow geometry in the formation of the recirculating bulge region in coastal buoyant outflows. J Mar Res, 61(4): 411–434
https://doi.org/10.1357/002224003322384870
2 Bourrin F, Friend  P L, Amos  C L, Manca  E, Ulses C,  Palanques A,  Durrieu de Madron X,  Thompson C E L (2008). Sediment dispersal from a typical Mediterranean flood: the Têt River, Gulf of Lions. Cont Shelf Res, 28(15): 1895–1910
https://doi.org/10.1016/j.csr.2008.06.005
3 Chao S Y (1988a). River-forced estuarine plumes. J Phys Oceanogr, 18(1): 72–88
https://doi.org/10.1175/1520-0485(1988)018<0072:RFEP>2.0.CO;2
4 Chao S Y (1988b). Wind-driven motion of estuarine plumes. J Phys Oceanogr, 18(8): 1144–1166
https://doi.org/10.1175/1520-0485(1988)018<1144:WDMOEP>2.0.CO;2
5 Chao S Y (1990). Tidal modulation of estuarine plumes. J Phys Oceanogr, 20(7): 1115–1123
https://doi.org/10.1175/1520-0485(1990)020<1115:TMOEP>2.0.CO;2
6 Chen C S, Liu  H D, Beardsley  R C (2003). An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J Atmos Ocean Technol, 20(1): 159–186
https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
7 Chen C S, Xue  P F, Ding  P X, Beardsley  R C, Xu  Q C, Mao  X M, Gao  G P, Qi  J H, Li  C Y, Lin  H C, Cowles  G, Shi M C (2008). Physical mechanisms for the offshore detachment of the Changjiang diluted water in the East China Sea. Journal of Geophysical Research: Oceans, 113(C2): C02002
https://doi.org/10.1029/2006JC003994
8 Chen S N, Sanford  L P (2009). Axial wind effects on stratification and longitudinal salt transport in an idealized, partially mixed estuary. J Phys Oceanogr, 39(8): 1905–1920
https://doi.org/10.1175/2009JPO4016.1
9 Choi B J, Wilkin  J L (2007). The effect of wind on the dispersal of the Hudson River plume. J Phys Oceanogr, 37(7): 1878–1897
https://doi.org/10.1175/JPO3081.1
10 Dzwonkowski B, Park  K, Collini R (2015). The coupled estuarine-shelf response of a river-dominated system during the transition from low to high discharge. Journal of Geophysical Research: Oceans, 120(9): 6145–6163
11 Egbert G D, Erofeeva  S Y (2002). Efficient inverse modeling of Barotropic Ocean Tides. J Atmos Ocean Technol, 19(2): 183–204
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
12 Fong D A, Geyer  W R (2001). Response of a river plume during an upwelling favorable wind event. Journal of Geophysical Research: Oceans, 106(C1): 1067–1084
https://doi.org/10.1029/2000JC900134
13 Fong D A, Geyer  W R (2002). The alongshore transport of freshwater in a surface-trapped river plume. J Phys Oceanogr, 32(3): 957–972
https://doi.org/10.1175/1520-0485(2002)032<0957:TATOFI>2.0.CO;2
14 Fong D A, Geyer  W R, Signell  R P (1997). The wind-forced response on a buoyant coastal current: observations of the western Gulf of Maine plume. J Mar Syst, 12(1–4): 69–81
https://doi.org/10.1016/S0924-7963(96)00089-9
15 García-Berdeal I,  Hickey B,  Kawase M (2002). Influence of wind stress and ambient flow on a high discharge river plume. J Geophys Res, 107(C9): 3130 
https://doi.org/10.1029/2001JC000932
16 Garvine R W (1995). A dynamical system for classifying buoyant coastal discharges. Cont Shelf Res, 15(13): 1585–1596
https://doi.org/10.1016/0278-4343(94)00065-U
17 Garvine R W (1999). Penetration of buoyant coastal discharge onto the continental shelf: a numerical model experiment. J Phys Oceanogr, 29(8): 1892–1909
https://doi.org/10.1175/1520-0485(1999)029<1892:POBCDO>2.0.CO;2
18 Gaston T F, Schlacher  T A, Connolly  R M (2006). Flood discharges of a small river into open coastal waters: plume traits and material fate. Estuar Coast Shelf Sci, 69(1–2): 4–9
https://doi.org/10.1016/j.ecss.2006.03.015
19 Ge J Z, Ding  P X, Chen  C S (2015). Low-salinity plume detachment under non-uniform summer wind off the Changjiang Estuary. Estuar Coast Shelf Sci, 156: 61–70
https://doi.org/10.1016/j.ecss.2014.10.012
20 Geyer W R (1997). Influence of wind on dynamics and flushing of shallow estuaries. Estuar Coast Shelf Sci, 44(6): 713–722
https://doi.org/10.1006/ecss.1996.0140
21 Geyer W R, Hill  P, Milligan T,  Traykovski P (2000). The structure of the Eel River plume during floods. Cont Shelf Res, 20(16): 2067–2093
https://doi.org/10.1016/S0278-4343(00)00063-7
22 Geyer W R, Hill  P S, Kineke  G C (2004). The transport, transformation and dispersal of sediment by buoyant coastal flows. Cont Shelf Res, 24(7–8): 927–949
https://doi.org/10.1016/j.csr.2004.02.006
23 Guo X Y, Valle-Levinson  A (2007). Tidal effects on estuarine circulation and outflow plume in the Chesapeake Bay. Cont Shelf Res, 27(1): 20–42
https://doi.org/10.1016/j.csr.2006.08.009
24 Hetland R D (2005). Relating river plume structure to vertical mixing. J Phys Oceanogr, 35(9): 1667–1688
https://doi.org/10.1175/JPO2774.1
25 Horner-Devine A R,  Fong D A,  Monismith S G,  Maxworthy T (2006). Laboratory experiments simulating a coastal river inflow. J Fluid Mech, 555: 203–232 
https://doi.org/10.1017/S0022112006008937
26 Huq P (2009). The role of Kelvin number on Bulge formation from estuarine buoyant outflows. Estuaries Coasts, 32(4): 709–719
https://doi.org/10.1007/s12237-009-9162-z
27 Isobe A (2005). Ballooning of river-plume bulge and its stabilization by tidal currents. J Phys Oceanogr, 35(12): 2337–2351
https://doi.org/10.1175/JPO2837.1
28 Johnson D, Weidemann  A, Arnone R,  Davis C (2001). Chesapeake Bay outflow plume and coastal upwelling events: physical and optical properties. J Geophys Res, 106(C6): 11613–11622
https://doi.org/10.1029/1999JC000185
29 Jurisa J T, Chant  R (2012). The coupled Hudson River estuarine-plume response to variable wind and river forcings. Ocean Dyn, 62(5): 771–784
https://doi.org/10.1007/s10236-012-0527-7
30 Jurisa J T, Chant  R J (2013). Impact of offshore winds on a buoyant river plume system. J Phys Oceanogr, 43(12): 2571–2587
https://doi.org/10.1175/JPO-D-12-0118.1
31 Large W, Pond  S (1981). Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr, 11(3): 324–336
https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
32 Lentz S J, Largier  J (2006). The influence of wind forcing on the Chesapeake Bay buoyant coastal current. J Phys Oceanogr, 36(7): 1305–1316 
https://doi.org/10.1175/JPO2909.1
33 Li Y, Li  M (2011). Effects of winds on stratification and circulation in a partially mixed estuary. J Geophys Res, 116(C12): 12012
34 Moffat C, Lentz  S (2012). On the response of a buoyant plume to downwelling-favorable wind stress. J Phys Oceanogr, 42(7): 1083–1098
https://doi.org/10.1175/JPO-D-11-015.1
35 Nof D, Pichevin  T (2001). The ballooning of outflows. J Phys Oceanogr, 31(10): 3045–3058
https://doi.org/10.1175/1520-0485(2001)031<3045:TBOO>2.0.CO;2
36 Ostrander C E,  McManus M A,  DeCarlo E H,  Mackenzie F T (2008). Temporal and spatial variability of freshwater plumes in a semienclosed estuarine–bay system. Estuaries Coasts, 31(1): 192–203 
https://doi.org/10.1007/s12237-007-9001-z
37 Pan J Y, Gu  Y Z, Wang  D X (2014). Observations and numerical modeling of the Pearl River plume in summer season. Journal of Geophysical Research: Oceans, 119(4): 2480–2500
https://doi.org/10.1002/2013JC009042
38 Piñones A, Valle-Levinson  A, Narváez D A,  Vargas C A,  Navarrete S A,  Yuras G,  Castilla J C (2005). Wind-induced diurnal variability in river plume motion. Estuar Coast Shelf Sci, 65(3): 513–525
https://doi.org/10.1016/j.ecss.2005.06.016
39 Rabalais N N, Turner  R E, Wiseman  W J Jr (2002). Gulf of Mexico hypoxia, aka “The dead zone”. Annu Rev Ecol Syst, 33(1): 235–263
https://doi.org/10.1146/annurev.ecolsys.33.010802.150513
40 Ralston D K, Geyer  W R, Lerczak  J A (2010). Structure, variability, and salt flux in a strongly forced salt wedge estuary. Journal of Geophysical Research: Oceans, 115(C6):160–164
41 Rennie S E, Largier  J L, Lentz  S J (1999). Observations of a pulsed buoyancy current downstream of Chesapeake Bay. J Geophys Res, 104(C8): 18227–18240
https://doi.org/10.1029/1999JC900153
42 Saha S, Moorthi  S, Wu X,  Wang J, Nadiga  S, Tripp P,  Behringer D,  Hou Y T,  Chuang H y,  Iredell M,  Ek M, Meng  J, Yang R,  Mendez M P,  van den Dool H,  Zhang Q,  Wang W, Chen  M, Becker E (2014). The NCEP Climate Forecast System Version 2. J Clim, 27(6): 2185–2208 
https://doi.org/10.1175/JCLI-D-12-00823.1
43 Sanders T M, Garvine  R W (2001). Fresh water delivery to the continental shelf and subsequent mixing: an observational study. J Geophys Res, 106(C11): 27087–27101
https://doi.org/10.1029/2001JC000802
44 Shu Y Q, Chen  J, Yao J L,  Pan J Y,  Wang W W,  Mao H B,  Wang D X (2014). Effects of the Pearl River plume on the vertical structure of coastal currents in the Northern South China Sea during summer 2008. Ocean Dyn, 64(12): 1743–1752
https://doi.org/10.1007/s10236-014-0779-5
45 Shu Y Q, Wang  D X, Zhu  J A, Peng  S Q (2011). The 4-D structure of upwelling and Pearl River plume in the northern South China Sea during summer 2008 revealed by a data assimilation model. Ocean Model, 36(3–4): 228–241
https://doi.org/10.1016/j.ocemod.2011.01.002
46 Simpson J (1997). Physical processes in the ROFI regime. J Mar Syst, 12(1): 3–15
https://doi.org/10.1016/S0924-7963(96)00085-1
47 Simpson J H, Crisp  D J, Hearn  C (1981). The shelf-sea fronts: implications of their existence and behaviour. Philos Trans R Soc Lond A, 302(1472): 531–546 (and Discussion) 
https://doi.org/10.1098/rsta.1981.0181
48 Tarya A, Hoitink  A J F, Van der Vegt  M (2010). Tidal and subtidal flow patterns on a tropical continental shelf semi-insulated by coral reefs. Journal of Geophysical Research: Oceans, 115(C9): C09029 
https://doi.org/10.1029/2010JC006168
49 Tarya A, van der Vegt  M, Hoitink A J F (2015). Wind forcing controls on river plume spreading on a tropical continental shelf. Journal of Geophysical Research: Oceans, 120(1): 16–35
50 Vic C, Berger  H, Treguier A M,  Couvelard X (2014). Dynamics of an equatorial river plume: theory and numerical experiments applied to the congo plume case. J Phys Oceanogr, 44(3): 980–994
https://doi.org/10.1175/JPO-D-13-0132.1
51 Wang J H, Shen  Y M, Guo  Y K (2010). Seasonal circulation and influence factors of the Bohai Sea: a numerical study based on Lagrangian particle tracking method. Ocean Dyn, 60(6): 1581–1596
https://doi.org/10.1007/s10236-010-0346-7
52 Warner J C, Geyer  W R, Lerczak  J A (2005). Numerical modeling of an estuary: a comprehensive skill assessment. Journal of Geophysical Research: Oceans, 110(C5): C05001 
https://doi.org/10.1029/2004JC002691
53 Warrick J A, DiGiacomo  P M, Weisberg  S B, Nezlin  N P, Mengel  M, Jones B H,  Ohlmann J C,  Washburn L,  Terrill E J,  Farnsworth K L (2007). River plume patterns and dynamics within the Southern California Bight. Cont Shelf Res, 27(19): 2427–2448
https://doi.org/10.1016/j.csr.2007.06.015
54 Whitehead J A (1985). The deflection of a baroclinic jet by a wall in a rotating fluid. Journal of Fluid Mechanics, 157: 79–93
55 Whitney M M, Garvine  R W (2005). Wind influence on a coastal buoyant outflow. Journal of Geophysical Research: Oceans, 110(C3): C03014
https://doi.org/10.1029/2003JC002261
56 Whitney M M, Garvine  R W (2006). Simulating the Delaware Bay buoyant outflow: comparison with observations. J Phys Oceanogr, 36(1): 3–21
https://doi.org/10.1175/JPO2805.1
57 Wu H, Zhu  J R, Shen J,  Wang H (2011). Tidal modulation on the Changjiang River plume in summer. Journal of Geophysical Research: Oceans, 116: C08017
58 Xia M, Xie  L, Pietrafesa L J,  Whitney M M (2011). The ideal response of a Gulf of Mexico estuary plume to wind forcing: its connection with salt flux and a Lagrangian view. J Geophys Res, 116(C8): C08035
https://doi.org/10.1029/2010JC006689
59 Yankovsky A E,  Hickey B M,  Munchow A K (2001). Impact of variable inflow on the dynamics of a coastal buoyant plume. J Geophys Res, 106(19): 809–819, 824
60 Yin K, Harrison  P J, Pond  S, Beamish R J (1995). Entrainment of nitrate in the Fraser River Estuary and its biological implications. II. Effects of spring vs. neap tides and river discharge. Estuar Coast Shelf Sci, 40(5): 529–544
https://doi.org/10.1006/ecss.1995.0036
61 Zhang H, Sheng  J Y (2013). Estimation of extreme sea levels over the eastern continental shelf of North America. Journal of Geophysical Research: Oceans, 118(11): 6253–6273
https://doi.org/10.1002/2013JC009160
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed