Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (4) : 682-688    https://doi.org/10.1007/s11707-016-0629-5
RESEARCH ARTICLE
Calcification response of Pleurochrysis carterae to iron concentrations in batch incubations: implication for the marine biogeochemical cycle
Xiang ZOU1,2,3, Shiyong SUN1,2,3(), Sen LIN1, Kexuan SHEN1,3, Faqin DONG1, Daoyong TAN1, Xiaoqin NIE1, Mingxue LIU1, Jie WEI1
1. School of Environment and Resources, Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
2. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
3. Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Mianyang 621010, China
 Download: PDF(1346 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Calcified coccolithophores, a diverse and widely distributed group of marine microalgae, produce biogenic calcite in the form of coccoliths located on the cell surface. Using batch incubations of the coccolithophoridPleurochrysis carterae, we investigated the responses of this calcification process to iron concentrations by changing the iron supply in the initial culture media from a normal concentration to 1 ppm (parts per million), 5 ppm, and 10 ppm. Time-dependent measurements of cell population, production of inorganic carbon (coccoliths), and organic carbon (organic cellular components) showed that elevated iron supply in the growth medium ofP. carterae stimulates carbon sequestration by increasing growth along enhanced photosynthetic activity and calcification. In addition, the acquired time-dependent UV-Vis and FT-IR spectra revealed that iron fertilization-enhanced coccolith calcification is accompanied by a crystalline phase transition from calcite to aragonite or amorphous phase. Our results suggest that iron concentration has a significant influence on the marine carbon cycle of coccolithophores.

Keywords calcification      coccolithophores      iron fertilization      Pleurochrysis carterae     
Corresponding Author(s): Shiyong SUN   
Just Accepted Date: 19 December 2016   Online First Date: 17 March 2017    Issue Date: 10 November 2017
 Cite this article:   
Xiang ZOU,Shiyong SUN,Sen LIN, et al. Calcification response of Pleurochrysis carterae to iron concentrations in batch incubations: implication for the marine biogeochemical cycle[J]. Front. Earth Sci., 2017, 11(4): 682-688.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0629-5
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I4/682
Fig.1  Growth dynamics of P. carterae in the presence of various iron additions in culture with 1 ppm, 5 ppm, and 10 ppm, respectively. Growth curves (a) and specific growth rate (µ) (b). Triplicate cultures at each iron concentration and values are the means of triplicate cultures at each treatment±SD.
Fig.2  Measurements of particulate inorganic carbon contents (PIC) (a), particulate organic carbon contents (POC) (b), and the ratios of PIC/POC (c) ofP. carterae in the presence of various iron additions in culture with 1 ppm, 5 ppm, and 10 ppm, respectively. Triplicate cultures at each iron concentration and values are the means of triplicate cultures at each treatment±SD.
Fig.3  The calcification rate (a), ratios of Sr/Ca (b), and ratios of Mg/Ca (c) of P. carterae in the presence of various iron supplies in culture with 1 ppm, 5 ppm, and 10 ppm, respectively. Triplicate cultures at each Fe concentration and value are the means of triplicate cultures at each treatment±SD.
Fig.4  The UV-Vis spectra of P. carterae in the presence of various iron concentrations in culture with 1 ppm (a), 5 ppm (b), and 10 ppm (c), and compared spectra collected at 120 h culturing (d), respectively.
Fig.5  The ART-FTIR spectra of P. carterae in the presence of various Fe concentrations in culture with normal (a), 1 ppm (b), 5 ppm (c), and 10 ppm (d), respectively.
1 Arrigo K R (2005). Marine microorganisms and global nutrient cycles. Nature, 437(7057): 349–355
https://doi.org/10.1038/nature04159
2 Blain S, Queguiner  B, Armand L ,  Belviso S ,  Bombled B ,  Bopp L, Bowie  A, Brunet C ,  Brussaard C ,  Carlotti F ,  Christaki U ,  Corbiere A ,  Durand I ,  Ebersbach F ,  Fuda J L ,  Garcia N ,  Gerringa L ,  Griffiths B ,  Guigue C ,  Guillerm C ,  Jacquet S ,  Jeandel C ,  Laan P, Lefevre  D, Lo Monaco C ,  Malits A ,  Mosseri J ,  Obernosterer I ,  Park Y H ,  Picheral M ,  Pondaven P ,  Remenyi T ,  Sandroni V ,  Sarthou G ,  Savoye N ,  Scouarnec L ,  Souhaut M ,  Thuiller D ,  Timmermans K ,  Trull T ,  Uitz J, van Beek  P, Veldhuis M ,  Vincent D ,  Viollier E ,  Vong L, Wagener  T (2007). Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446(7139): 1070–1074
https://doi.org/10.1038/nature05700
3 Bowie A R, Maldonado  M T, Frew  R D, Croot  P L, Achterberg  E P, Mantoura  R F C, Worsfold  P J, Law  C S, Boyd  P W (2001). The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr, 48(11): 2703–2743
https://doi.org/10.1016/S0967-0645(01)00015-7
4 Boyd P, Ellwood  M (2010). The biogeochemical cycle of iron in the ocean. Nat Geosci, 3(10): 675–682
https://doi.org/10.1038/ngeo964
5 Chow J S, Lee  C, Engel A  (2015). The influence of extracellular polysaccharides, growth rate, and free coccoliths on the coagulation efficiency of Emiliania huxleyi. Mar Chem, 175: 5–17
https://doi.org/10.1016/j.marchem.2015.04.010
6 Guan W C, Gao  K S (2010). Impacts of UV radiation on photosynthesis and growth of the coccolithophore Emiliania huxleyi (Haptophyceae). Environ Exp Bot, 67(3): 502–508
https://doi.org/10.1016/j.envexpbot.2009.08.003
7 Hassler C S, Norman  L, Nichols C A M ,  Clementson L A ,  Robinson C ,  Schoemann V ,  Watson R J , and  Doblin M A , (2015). Iron associated with exopolymeric substances is highly bioavailable to oceanic phytoplankton. Marine Chemistry, 173: 136–147
8 Henriksen K, Stipp  S L S (2009). Controlling biomineralization: the effect of solution composition on coccolith polysaccharide functionality. Cryst Growth Des, 9(5): 2088–2097
https://doi.org/10.1021/cg8004272
9 Jin P, Wang  T, Liu N ,  Dupont S ,  Beardall J ,  Boyd P W ,  Riebesell U , Gao K (2015). Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature communications, 6: 8714
10 Langer G, Gussone  N, Nehrke G ,  Riebesell U ,  Eisenhauer A ,  Kuhnert H ,  Rost B, Trimborn  S, Thoms S  (2006). Coccolith strontium to calcium ratios in Emiliania huxleyi: the dependence on seawater strontium and calcium concentrations. Limnol Oceanogr, 51(1): 310–320
https://doi.org/10.4319/lo.2006.51.1.0310
11 Li W, Chen  W S, Zhou  P P, Zhu  S L, Yu  L J (2013). Influence of initial calcium ion concentration on the precipitation and crystal morphology of calcium carbonate induced by bacterial carbonic anhydrase. Chemical Engineering Journal, 218: 65–72
12 Macrellis H M ,  Trick C G ,  Rue E L ,  Smith G ,  Bruland K W  (2001). Collection and detection of natural iron-binding ligands from seawater. Mar Chem, 76(3): 175–187 doi:10.1016/S0304-4203(01)00061-5
13 Müller M, Antia  A, LaRoche J  (2008). Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi. Limnol Oceanogr, 53(2): 506–512
https://doi.org/10.4319/lo.2008.53.2.0506
14 O’Dea S A ,  Gibbs S J ,  Bown P R ,  Young J R ,  Poulton A J ,  Newsam C ,  Wilson P A  (2014). Coccolithophore calcification response to past ocean acidification and climate change. Nat Commun, 5: 5363
15 Rickaby R, Schrag  D, Zondervan I ,  Riebesell U  (2002), Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi. Global Biogeochemical Cycles, 16(1): 6-1–6-8
16 Rost B, Riebesell  U (2004).Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein H R, Young J R, eds. Coccolithophores: From Molecular Processes to Global Impact. Berlin: Springer-Verlag, 99–125
17 Shi D, Xu  Y, Hopkinson B M ,  Morel F M M  (2010). Effect of ocean acidification on iron availability to marine phytoplankton. Science, 327(5966): 676–679
https://doi.org/10.1126/science.1183517
18 Sun J, Gu  X Y, Feng  Y Y, Jin  S F, Jiang  W S, Jin  H Y, Chen  J F (2014). Summer and winter living coccolithophores in the Yellow Sea and the East China Sea. Biogeosciences, 11(3): 779–806
https://doi.org/10.5194/bg-11-779-2014
19 Tortell P D, Maldonado  M T, Granger  J, Price N M  (1999). Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol, 29(1): 1–11
https://doi.org/10.1111/j.1574-6941.1999.tb00593.x
20 Wang W X, Dei  R C (2001). Biological uptake and assimilation of iron by marine plankton: influences of macronutrients. Mar Chem, 74(2‒3): 213–226
https://doi.org/10.1016/S0304-4203(01)00014-7
21 Wang Y Y, Yao  Q Z, Zhou  G T, Fu  S Q (2015). Transformation of amorphous calcium carbonate into monohydrocalcite in aqueous solution: a biomimetic mineralization study. Eur J Mineral, 27(6): 717–729
https://doi.org/10.1127/ejm/2015/0027-2486
22 Xing T, Gao  K S, Beardall  J (2015). Response of growth and photosynthesis of Emiliania huxleyi to visible and UV irradiances under different light regimes. Photochem Photobiol, 91(2): 343–349
https://doi.org/10.1111/php.12403
23 Xu K, Gao  K (2015). Solar UV irradiances modulate effects of ocean acidification on the coccolithophorid Emiliania huxleyi. Photochem Photobiol, 91(1): 92–101
https://doi.org/10.1111/php.12363
24 Xu K, Gao  K, Villafañe V E ,  Helbling E W  (2011). Photosynthetic responses of Emiliania huxleyi to UV radiation and elevated temperature: roles of calcified coccoliths. Biogeosciences, 8(6): 1441–1452
https://doi.org/10.5194/bg-8-1441-2011
25 Young J R, Andruleit  H, Probert I  (2009). Coccolith function and morphogenesis: insights from appendage-bearing coccolithophores of the family syracosphaeraceae (Haptophyta). J Phycol, 45(1): 213–226
https://doi.org/10.1111/j.1529-8817.2008.00643.x
26 Young J R, Davis  S A, Bown  P R, Mann  S (1999). Coccolith ultrastructure and biomineralisation. J Struct Biol, 126(3): 195–215
https://doi.org/10.1006/jsbi.1999.4132
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed