Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (4) : 660-669    https://doi.org/10.1007/s11707-017-0633-4
RESEARCH ARTICLE
Temporal-spatial variation of DOC concentration, UV absorbance and the flux estimation in the Lower Dagu River, China
Min XI(), Fanlong KONG, Yue LI, Fanting KONG
School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
 Download: PDF(433 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dissolved organic carbon (DOC) is an important component for both carbon cycle and energy balance. The concentration, UV absorbance, and export flux of DOC in the natural environment dominate many important transport processes. To better understand the temporal and spatial variation of DOC, 7 sites along the Lower Dagu River were chosen to conduct a comprehensive measurement from March 2013 to February 2014. Specifically, water samples were collected from the Lower Dagu River between the 26th and 29th of every month during the experimental period. The DOC concentration (CDOC) and UV absorbance were analyzed using a total organic carbon analyzer and the ultraviolet-visible absorption spectrum, and the DOC export flux was estimated with a simple empirical model. The results showed that the CDOC of the Lower Dagu River varied from 1.32 to 12.56 mg/L, consistent with global rivers. The CDOC and UV absorbance showed significant spatial variation in the Dagu River during the experiential period because of the upstream natural processes and human activities in the watershed. The spatial variation is mainly due to dam or reservoir constructions, riverside ecological environment changes, and non-point source or wastewater discharge. The seasonal variation of CDOC was mainly related to the source of water DOC, river runoff, and temperature, and the UV absorbance and humification degree of DOC had no obvious differences among months (P<0.05). UV absorbance was applied to test the CDOC in Lower Dagu River using wave lengths of 254 and 280 nm. The results revealed that the annual DOC export flux varied from 1.6 to 3.76×105 g C/km2/yr in a complete hydrological year, significantly lower than the global average. It is worth mentioning that the DOC export flux was mainly concentrated in summer (~90% of all-year flux in July and August), since the runoff in the Dagu River took place frequently in summer. These observations implied environment change could bring the temporal-spatial variation of DOC and the exports, which would further affect the land-ocean interactions in the Lower Dagu River and the global carbon cycle.

Keywords DOC      temporal-spatial variation      UV absorbance      export flux      Dagu River     
Corresponding Author(s): Min XI   
Online First Date: 13 April 2017    Issue Date: 10 November 2017
 Cite this article:   
Min XI,Fanlong KONG,Yue LI, et al. Temporal-spatial variation of DOC concentration, UV absorbance and the flux estimation in the Lower Dagu River, China[J]. Front. Earth Sci., 2017, 11(4): 660-669.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0633-4
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I4/660
Fig.1  Schematic map of the study area and the sample sites.
Sampling sitesPositionDescriptions
R136°22'22.39"N, 120°07'45.85"ENear the Dagu River rubber dam, north of south Jiaolai River
R236°21'45.64"N, 120°07'05.53"EThe outfall of south Jiaolai River into Dagu River
R336°20'28.86"N, 120°12'24.02"ENear the bridge of National Road 204 on the Taoyuan River, south of Jihongtan reservoir
R436°20'09.24"N, 120°09'07.92"ENear the bridge of National Road 204 in the Lower Dagu River
R536°15'31.05"N, 120°07'10.25"ENear the bridge of Provincial Road 395 in the Lower Dagu River
R636°14'08.08"N, 120°07'20.11"ENear the bridge of National Road 22 in the Lower Dagu River
R736°13'32.56"N, 120°06'59.10"EThe southern tip of study area in the vicinity of the Dagu River estuary
Tab.1  The description of sampling locations
Sampling sitesMaximum (mg/L)Minimum (mg/L)Mean (mg/L)Range (mg/L)Std. Deviation (mg/L)
StatisticStd. Error
R14.301.912.9580.1962.390.680
R27.632.134.6520.4475.501.547
R312.564.098.2680.7718.472.670
R45.201.323.3800.3483.881.204
R56.863.645.2490.2733.220.947
R66.833.635.0770.2843.200.984
R77.173.735.4270.2913.441.007
Tab.2  Descriptive statistics for CDOC in the Lower Dagu River
Sampling sitesMaximumMinimumMeanRangeStd. Deviation
StatisticStd. Error
Abs254R10.110.050.06980.00870.060.0213
R20.1640.1020.13030.00960.0620.0235
R30.3960.080.18570.04520.3160.1107
R40.1180.0550.08230.00920.0630.0225
R50.1360.110.12250.00350.0260.0085
R60.1260.1180.12120.00120.0080.0029
R70.1320.1150.12130.00250.0170.0062
Abs280R10.070.0310.04550.00590.0390.0145
R20.110.0810.09420.00470.0290.0115
R30.3320.060.14630.03920.2720.0961
R40.0720.0380.0580.00570.0340.0139
R50.0950.0780.08570.00260.0170.0063
R60.0980.0800.0860.00270.0180.0066
R70.0980.0790.08470.00310.0190.0075
Abs400R10.0110.0010.00570.00170.010.0043
R20.0160.010.01280.00090.0060.0023
R30.1120.010.03550.01560.1020.0381
R40.020.0050.0120.00210.0150.0052
R50.0150.010.0130.00070.0050.0018
R60.0160.010.0130.00090.0060.0022
R70.0150.010.01220.00090.0050.0023
E4/E6R17.140.53.27331.13206.642.7728
R27.51.674.27830.93925.832.3006
R362.074.17830.57833.931.4166
R46.671.53.15830.75215.171.8423
R5152.676.4851.935412.334.7407
R6101.674.6351.31498.333.2208
R78.7525.411.25676.753.0783
Tab.3  Descriptive statistics for Abs254, Abs280, Abs400 and E4/E6
Fig.2  Monthly dynamics of Abs254, Abs280, Abs400and E4/E6 in the lower Dagu River.
Fig.3  Monthly changes of DOC export flux and river runoff in the lower Dagu River.
Fig.4  The cumulative export flux and percentage of DOC in the lower Dagu River.
Fig.5  Seasonal changes of DOC concentrations (mean value) in the lower Dagu River.
Fig.6  Relationship between the DOC concentration and Abs254, Abs280, Abs400 in the lower Dagu River.
1 Bai J, Zhang G, Zhao Q, Lu Q, Jia J, Cui B, Liu X (2016). Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Sci Rep, 6: 34835 
https://doi.org/10.1038/srep34835
2 Clark J M, Lane S N, Chapman P J, Adamson J K (2008). Link between DOC in near surface peat and stream water in anupland catchment. Sci Total Environ, 404(2–3): 308–315 
https://doi.org/10.1016/j.scitotenv.2007.11.002
3 Guo W, Xu J, Wang J, Wen Y, Zhuo J, Yan Y (2010). Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis. J Environ Sci (China), 22(11): 1728–1734 
https://doi.org/10.1016/S1001-0742(09)60312-0
4 Harrison J A, Caraco N, Seitzinger S P (2005). Global patterns and sources of dissolved organic matter to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles, 19(4): 2488–2501
5 Hartmann J, Jansen N, Durr H H, Kempe S, Köhler P (2009). Global CO2 consumption by chemical weathering: What is the contribution of highly active weathering regions? Global Planet Change, 69(4): 185–194 
https://doi.org/10.1016/j.gloplacha.2009.07.007
6 Hedges J I, Keil R G, Benner R (1997). What happens to terrestrial organic matter in the ocean? Org Geochem, 27(5–6): 195–212 
https://doi.org/10.1016/S0146-6380(97)00066-1
7 Jiang B (2007). Water quality evolvement and forecasting of the well-field at the middle-low reach of Dagu River. Dissertation for Master Degree. Qingdao University, 1–3
8 Kong F, Xi M, Lu X, Jiang M, Li Y (2013). Spatial and temporal variation of dissolved organic carbon in soils of annular wetlands in Sanjiang Plain, China. Acta Pedologica Sinica, 50(7): 847–852
9 Li L L, Jiang T, Yan J L, Guo N, Wei S Q, Wang D Y, Gao J, Zhao Z (2014). Ultraviolet-Visible (UV-Vis) spectral characteristics of Dissolved Organic Matter (DOM) in soils and sediments of typical water-level fluctuation zones of Three Gorges Reservoir Areas. Environ Sci, 35(3): 933–941
10 Li S F, Yu Y C, He S (2002). Summary of research on dissolved organic carbon(DOC). Soil and Environmental Sciences, 11(4): 422–429
11 Li X, Yuan H, Li N, Song J (2008). Organic carbon source and burial during the past one hundred years in Jiaozhou Bay, North China. J Environ Sci (China), 20(5): 551–557 
https://doi.org/10.1016/S1001-0742(08)62093-8
12 Lin J (2007). The DOC behavior and flux of Changjiang and Zhujiang river estuary. Fujian: Xiamen University,23–46
13 Lou X D, Zhai S Q, Kang B, Hu L L (2014). Seasonal dynamic characteristics of dissolved organic carbon in Zoige Peatland and its impact factors. Research of Environmental Sciences, 27(2): 157–163
14 Ludwig W, Probst J L, Kempe S (1996). Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles, 10(1): 23–41
https://doi.org/10.1029/95GB02925
15 Martins O, Probst J L (1991). Biogeochemistry of major African rivers:carbon and mineral transport. In: Degens E T, Kempe S, Richey J E, eds. Biogeochemistry of Major World Rivers. SCOPE Report 42, Wiley, 127–155
16 Meybeck M (1993). Riverine transport of atmospheric carbon sources, global typology and budget. Water Air Soil Pollut, 70(1–4): 443–463
https://doi.org/10.1007/BF01105015
17 Mitsch W J, Gosselink J G (2007). Wetlands (4th ed). New York: John Wiley & sons, Inc., 582
18 Moody C S, Worrall F, Evans C D, Jones T G (2013). The rate of loss of dissolved organic carbon (DOC) through a catchment. J Hydrol (Amst), 492: 139–150 
https://doi.org/10.1016/j.jhydrol.2013.03.016
19 Moore T R (1987). An assessment of a simple spectrophotometric method for the determination of dissolved organic carbon in freshwaters. N Z J Mar Freshw Res, 21(4): 585–589
https://doi.org/10.1080/00288330.1987.9516262
20 Maie N, Sekiguchi S, Watanabe A, Tsutsuki K, Yamashita Y, Melling L, Cawley K M, Shima E, Jaffé R (2014). Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland influenced coastal rivers. J Sea Res, 91: 58–69 
https://doi.org/10.1016/j.seares.2014.02.016
21 Patel N, Mounier S, Guyot J L, Benamou C, Benaim J Y (1999). Fluxes of dissolved and colloidal organic carbon, along the Purus and Amazonas rivers (Brazil). Sci Total Environ, 229(1–2): 53–64
https://doi.org/10.1016/S0048-9697(99)00069-8
22 Peterson B, Fry B, Hullar M, Saupe S, Wright R (1994). The distribution and stable carbon isotopic composition of dissolved organic carbon in estuaries. Estuaries, 17(1): 111–121
https://doi.org/10.2307/1352560
23 Ran L, Lu X X, Sun H, Han J, Li R, Zhang J (2013). Spatial and seasonal variability of organic carbon transport in the Yellow River, China. J Hydrol (Amst), 498: 76–88 
https://doi.org/10.1016/j.jhydrol.2013.06.018
24 Schelker J, Öhman K, Löfgren S, Laudon H (2014). Scaling of increased dissolved organic carbon inputs by forest clear-cutting – What arrives downstream? J Hydrol (Amst), 508: 299–306 
https://doi.org/10.1016/j.jhydrol.2013.09.056
25 Spitzy A, Leenheer J (1990). Dissolved organic carbon in rivers. In: Degens E T, Kempe S, Richey J E, eds. Scope (Scientific Committee on Problems of the Environment), No 42, Biogeochemistry of Major World Rivers. Chichester: Wiley,213–232
26 Tao S, Liang T, Xu S, Di W (1997). Temporal and spatial variation of dissolved organic carbon content and its flux in yichun river. Acta Geogr Sin, 52(3): 254–261
27 Tian Y Q, Wang D, Chen R F, Huang W (2012). Using modeled runoff to study DOC dynamics in stream and river flow: a case study of an urban watershed southeast of Boston, Massachusetts. Ecol Eng, 42: 212−222 
https://doi.org/10.1016/j.ecoleng.2012.01.017
28 Wang C, Guo W, Guo Z, Wei J, Zhang B, Ma Z (2013). Characterization of dissolved organic matter in groundwater from the coastal Dagu River watershed, China using fluorescence excitation-emission matrix spectroscopy. Spectroscopy and Spectral Analysis, 33(9): 2460–2465
29 Wilson L, Wilson J, Holden J, Johnstone I, Armstrong A, Morris M (2011). Ditch blocking, water chemistry and organic carbon flux: Evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Sci Total Environ, 409(11): 2010–2018
https://doi.org/10.1016/j.scitotenv.2011.02.036
30 Worrall F, Davies H, Bhogal A, Lilly A, Evans M, Turner K, Burt T, Barraclough D, Smith P, Merrington G (2012). The flux of DOC from the UK Predicting the role of soils, land use and net watershed losses. J Hydrol (Amst), 448-449: 149–160
https://doi.org/10.1016/j.jhydrol.2012.04.053
31 Xi M, Kong F, Lyu X, Jiang M, Li Y (2015). Spatial variation of dissolved organic carbon in soils of riparian wetlands and responses to hydro-geomorphologic changes in Sanjiang Plain, China. Chin Geogr Sci, 25(2): 174–183
https://doi.org/10.1007/s11769-015-0744-3
32 Xi M, Lu X, Li Y, Kong F (2007). Distribution characteristics of dissolved organic carbon in annular wetland soil-water solutions through soil profiles in the Sanjiang Plain, Northeast China. J Environ Sci (China), 19(9): 1074–1078
https://doi.org/10.1016/S1001-0742(07)60175-2
33 Yin X, Lyu X, Liu X, Xue Z (2015). Influence of land use change on dissolved organic carbon export in Naoli River watershed, Northeast China. Chinese Journal of Applied Ecology, 26(12): 3788–3794
34 Zhang Y L (2008). The response of transport characteristics of riverine organic carbon to regional climate. Earth and Environment, 36(4): 348–355
35 Zhao K, Qiao L, Shi J, He S, Li G, Yin P (2015a). Evolution of sedimentary dynamic environment in the western Jiaozhou Bay, Qingdao, China in the last 30 years. Estuar Coast Shelf Sci, 163: 244–253
https://doi.org/10.1016/j.ecss.2014.12.011
36 Zhao Q, Bai J, Liu P, Gao H, Wang J (2015b). Decomposition and carbon and nitrogen dynamics of Phragmites australis litter as affected by flooding periods in coastal wetlands. CLEAN-Soil, Air, Water, 43(3): 441–445 
https://doi.org/10.1002/clen.201300823
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed