Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (2) : 325-338    https://doi.org/10.1007/s11707-017-0638-z
RESEARCH ARTICLE
New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process
Yuxiang ZHANG1,3, Zhigang ZENG1,2,3(), Shuai CHEN1, Xiaoyuan WANG1,2, Xuebo YIN1
1. Seafloor Hydrothermal Activity Laboratory of the Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(2603 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the middle Okinawa Trough (MOT), rhyolites have been typically considered as products of crystallization differentiation of basaltic magma as a feature of bimodal volcanism. However, the evidence is insufficient. This paper compared chemical trends of volcanic rocks from the MOT with fractional crystallization simulation models and experimental results and utilized trace element modeling combined with Rayleigh fractionation calculations to re-examine fractional crystallization processes in generating rhyolites. Both qualitative and quantitative studies indicate that andesites, rather than rhyolites, originate by fractional crystallization from basalts in the MOT. Furthermore, we established two batch-melting models for the MOT rhyolites and proposed that type 1 rhyolites are produced by remelting of andesites with amphiboles in the residue, while type 2 rhyolites are derived from remelting of andesites without residual amphiboles. It is difficult to produce melts with a SiO2 content ranging from 62% to 68% either by magmatic differentiation from basalts or by remelting of andesites, and this difficulty might help account for the compositional gap (Daly gap) for bimodal volcanism in the Okinawa Trough.

Keywords Okinawa Trough      rhyolite      andesite      remelting      fractional crystallization     
Corresponding Author(s): Zhigang ZENG   
About author:

Miaojie Yang and Mahmood Brobbey Oppong contributed equally to this work.

Just Accepted Date: 28 March 2017   Online First Date: 24 April 2017    Issue Date: 09 May 2018
 Cite this article:   
Yuxiang ZHANG,Zhigang ZENG,Shuai CHEN, et al. New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process[J]. Front. Earth Sci., 2018, 12(2): 325-338.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0638-z
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I2/325
1 C J Allègre, J F Minster (1978). Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett, 38(1): 1–25
https://doi.org/10.1016/0012-821X(78)90123-1
2 R R Almeev, F Holtz, A A Ariskin, J I Kimura (2013). Storage conditions of Bezymianny Volcano parental magmas: results of phase equilibria experiments at 100 and 700 MPa. Contrib Mineral Petrol, 166(5): 1389–1414
https://doi.org/10.1007/s00410-013-0934-x
3 K I Aoki (1971). Petrology of mafic inclusions from Itinome-gata, Japan. Contrib Mineral Petrol, 30(4): 314–331
https://doi.org/10.1007/BF00404726
4 R J Arculus, K J A Wills (1980). The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol, 21(4): 743–799
https://doi.org/10.1093/petrology/21.4.743
5 B H Baker, G G Goles, W P Leeman, M M Lindstrom (1977). Geochemistry and petrogenesis of a basalt-benmoreite-trachyte suite from the southern part of the Gregory Rift, Kenya. Contrib Mineral Petrol, 64(3): 303–332
https://doi.org/10.1007/BF00371759
6 J S Beard, G E Lofgren (1991). Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol, 32(2): 365–401
https://doi.org/10.1093/petrology/32.2.365
7 D L Blatter, T W Sisson, W B Hankins (2013). Crystallization of oxidized, moderately hydrous arc basalt at mid-to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol, 166(3): 861–886
https://doi.org/10.1007/s00410-013-0920-3
8 C C Bonnefoi, A Provost, F Albarede (1995). The ‘Daly gap’ as a magmatic catastrophe. Nature, 378(6554): 270–272
https://doi.org/10.1038/378270a0
9 A Bouvier, J D Vervoort, P J Patchett (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett, 273(1): 48–57
https://doi.org/10.1016/j.epsl.2008.06.010
10 J G Brophy (1991). Composition gaps, critical crystallinity, and fractional crystallization in orogenic (calc-alkaline) magmatic systems. Contrib Mineral Petrol, 109(2): 173–182
https://doi.org/10.1007/BF00306477
11 B Charlier, O Namur, M J Toplis, P Schiano, N Cluzel, M D Higgins, J V Auwera (2011). Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology, 39(10): 907–910
https://doi.org/10.1130/G32091.1
12 N I Christensen (1978). Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics, 47(1): 131–157
https://doi.org/10.1016/0040-1951(78)90155-5
13 S L Chung, S L Wang, R Shinjo, C S Lee, C H Chen (2000). Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough. Terra Nova, 12(5): 225–230
https://doi.org/10.1046/j.1365-3121.2000.00298.x
14 C Dalpé, D R Baker (2000). Experimental investigation of large-ion-lithophile-element-, high-field-strength-element- and rare-earth-element- partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity. Contrib Mineral Petrol, 140(2): 233–250
https://doi.org/10.1007/s004100000181
15 J Davidson, S Turner, H Handley, C Macpherson, A Dosseto (2007). Amphibole “sponge” in arc crust? Geology, 35(9): 787–790
https://doi.org/10.1130/G23637A.1
16 S M DeBari, R G Coleman (1989). Examination of the deep levels of an island arc: evidence from the Tonsina Ultramafic-Mafic Assemblage, Tonsina, Alaska. J Geophys Res Solid Earth, 94(B4): 4373–4391
https://doi.org/10.1029/JB094iB04p04373
17 D J DePaolo, G J Wasserburg (1976). Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys Res Lett, 3(12): 743–746
https://doi.org/10.1029/GL003i012p00743
18 J Dufek, O Bachmann (2010). Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology, 38(8): 687–690
https://doi.org/10.1130/G30831.1
19 F Espinoza, D Morata, M Polvé, Y Lagabrielle, R C Maury, C Guivel, J Cotten, H Bellon, M Suárez (2008). Bimodal back-arc alkaline magmatism after ridge subduction: Pliocene felsic rocks from Central Patagonia (47°S). Lithos, 101(3): 191–217
https://doi.org/10.1016/j.lithos.2007.07.002
20 O Fabbri, P Monié, M Fournier (2004). Transtensional deformation at the junction between the Okinawa trough back-arc basin and the SW Japan island arc. Geol Soc Lond Spec Publ, 227(1): 297–312
https://doi.org/10.1144/GSL.SP.2004.227.01.15
21 M Furukawa, S Kondo, M Miki, N Isezaki (1991). Report on DELP 1988 Cruises in the Okinawa Trough: Part 5. Measurement of the three components and total intensity of the geomagnetic field in the Okinawa Trough. Bull Earthq Res Inst Univ Tokyo, 66: 91–150
22 C J Garrido, J L Bodinier, J P Burg, G Zeilinger, S S Hussain, H Dawood, M N Chaudhry, F Gervilla (2006). Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (Northern Pakistan): implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol, 47(10): 1873–1914
https://doi.org/10.1093/petrology/egl030
23 T H Green, A E Ringwood (1967). Crystallization of basalt and andesite under high pressure hydrous conditions. Earth Planet Sci Lett, 3: 481–489
https://doi.org/10.1016/0012-821X(67)90083-0
24 A R Greene, S M Debari, P B Kelemen, J Blusztajn, P D Clift (2006). A detailed geochemical study of island arc crust: the Talkeetna arc section, South–Central Alaska. J Petrol, 47(6): 1051–1093
https://doi.org/10.1093/petrology/egl002
25 T L Grove, M B Baker (1984). Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J Geophys Res Solid Earth, 89(B5): 3253–3274
https://doi.org/10.1029/JB089iB05p03253
26 T L Grove, J M Donnelly-Nolan (1986). The evolution of young silicic lavas at Medicine Lake Volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas. Contrib Mineral Petrol, 92(3): 281–302
https://doi.org/10.1007/BF00572157
27 T L Grove, L T Elkins-Tanton, S W Parman, N Chatterjee, O Müntener, G A Gaetani (2003). Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol, 145(5): 515–533
https://doi.org/10.1007/s00410-003-0448-z
28 P Guo, W L Xu, J J Yu, F Wang, J Tang, Y Li (2016). Geochronology and geochemistry of Late Triassic bimodal igneous rocks at the eastern margin of the Songnen–Zhangguangcai Range Massif, Northeast China: petrogenesis and tectonic implications. Int Geol Rev, 58(2): 196–215
https://doi.org/10.1080/00206814.2015.1059295
29 M Hamada, T Fujii (2008). Experimental constraints on the effects of pressure and H2O on the fractional crystallization of high-Mg island arc basalt. Contrib Mineral Petrol, 155(6): 767–790
https://doi.org/10.1007/s00410-007-0269-6
30 W Hildreth (2004). Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geotherm Res, 136(3): 169–198
https://doi.org/10.1016/j.jvolgeores.2004.05.019
31 N Hirata, H Kinoshita, H Katao, H Baba, Y Kaiho, S Koresawa, Y Ono, K Hayashi (1991). Report on DELP 1988 cruises in the Okinawa Trough: Part 3. Crustal structure of the southern Okinawa Trough. Bull Earthq Res Inst Univ Tokyo, 66: 37–70
32 A G Hochstaedter, J B Gill, M Kusakabe, S Newman, M Pringle, B Taylor, P Fryer (1990). Volcanism in the Sumisu Rift, I. Major element, volatile, and stable isotope geochemistry. Earth Planet Sci Lett, 100(1): 179–194
https://doi.org/10.1016/0012-821X(90)90184-Y
33 A W Hofmann, M D Feigenson (1983). Case studies on the origin of basalt. Contrib Mineral Petrol, 84(4): 382–389
https://doi.org/10.1007/BF01160289
34 H Honma, M Kusakabe, H Kagami, S Iizumi, H Sakai, Y Kodama, M Kimura (1991). Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin. Geochem J, 25(2): 121–136
https://doi.org/10.2343/geochemj.25.121
35 P Huang, A C Li, H Y Jiang (2006). Geochemical features and their geological implications of volcanic rocks from the northern and middle Okinawa Trough. Acta Petrologica Sinica, 22(6): 1703–1712 (in Chinese)
36 M Ishikawa, H Sato, M Furukawa, M Kimura, Y Kato, R Tsugaru, K Shimamura (1991). Report on DELP 1988 cruises in the Okinawa Trough: Part 6. Petrology of volcanic rocks. Bull Earthq Res Inst Univ Tokyo, 66: 151–177
37 H Ishizuka, Y Kawanobe, H Sakai (1990). Petrology and geochemistry of volcanic rocks dredged from the Okinawa Trough, an active back-arc basin. Geochem J, 24(2): 75–92
https://doi.org/10.2343/geochemj.24.75
38 T Iwasaki, N Hirata, T Kanazawa, J Melles, K Suyehiro, T Urabe, L Möller, J Makris, H Shimamura (1990). Crustal and upper mantle structure in the Ryukyu Island Arc deduced from deep seismic sounding. Geophys J Int, 102(3): 631–651
https://doi.org/10.1111/j.1365-246X.1990.tb04587.x
39 O Jagoutz, O Müntener, J P Burg, P Ulmer, E Jagoutz (2006). Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet Sci Lett, 242(3): 320–342
https://doi.org/10.1016/j.epsl.2005.12.005
40 K T Johnson (1998). Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Mineral Petrol, 133(1–2): 60–68
https://doi.org/10.1007/s004100050437
41 W B Jones (1979). Mixed benmoreite/trachyte flows from Kenya and their bearing on the Daly gap. Geol Mag, 116(6): 487–489
https://doi.org/10.1017/S0016756800044496
42 T Kawamoto (1996). Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett, 144(3): 577–589
https://doi.org/10.1016/S0012-821X(96)00182-3
43 M Kimura (1985). Back-arc rifting in the Okinawa Trough. Mar Pet Geol, 2(3): 222–240
https://doi.org/10.1016/0264-8172(85)90012-1
44 C Lacasse, H Sigurdsson, S N Carey, H Jóhannesson, L E Thomas, N W Rogers (2007). Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas. Bull Volcanol, 69(4): 373–399
https://doi.org/10.1007/s00445-006-0082-5
45 C H Langmuir, R D Vocke Jr, G N Hanson, S R Hart (1978). A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett, 37(3): 380–392
https://doi.org/10.1016/0012-821X(78)90053-5
46 C S Lee, G G Shor Jr, L D Bibee, R S Lu, T W C Hilde (1980). Okinawa Trough: origin of a back-arc basin. Mar Geol, 35(1): 219–241
https://doi.org/10.1016/0025-3227(80)90032-8
47 J Letouzey, M Kimura (1985). Okinawa Trough genesis: structure and evolution of a backarc basin developed in a continent. Mar Pet Geol, 2(2): 111–130
https://doi.org/10.1016/0264-8172(85)90002-9
48 J Letouzey, M Kimura (1986). The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics, 125(1): 209–230
https://doi.org/10.1016/0040-1951(86)90015-6
49 W R Li, Z S Yang, Y J Wang (1997). The petrochemical features of the volcanic rocks in Okinawa Trough and their geological significance. Acta Petrologica Sinica, 13(4): 538–550 (in Chinese)
50 W X Li, X H Li, Z X Li (2005a). Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Res, 136(1): 51–66
https://doi.org/10.1016/j.precamres.2004.09.008
51 X H Li, C S Qi, Y Liu, X R Liang, X L Tu, L W Xie, Y H Yang (2005b). Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: new constraints from Hf isotopes and Fe/Mn ratios. Chin Sci Bull, 50(21): 2481–2486
https://doi.org/10.1360/982005-287
52 W J Luo, T Hou, M Santosh, S H Wen, Z C Zhang (2013). Petrogenesis of Early Cretaceous bimodal volcanic rocks in the Fanchang Basin, SE China: an energy-constrained assimilation–fractional crystallization model. Int Geol Rev, 55(8): 917–940
https://doi.org/10.1080/00206814.2012.751177
53 W L Ma, X L Wang, X L Jin (2004). Areal difference of middle and southern basalts from the Okinawa Trough and its genesis study. Acta Geol Sin, 78(6): 758–769 (in Chinese)
54 J B Mahoney (2005). Nd and Sr isotopic signatures of fine-grained clastic sediments: a case study of western Pacific marginal basins. Sediment Geol, 182(1): 183–199
https://doi.org/10.1016/j.sedgeo.2005.07.009
55 W F McDonough, S S Sun (1995). The composition of the Earth. Chem Geol, 120(3): 223–253
https://doi.org/10.1016/0009-2541(94)00140-4
56 D McKenzie, R K O’Nions (1991). Partial melt distributions from inversion of rare earth element concentrations. J Petrol, 32(5): 1021–1091
https://doi.org/10.1093/petrology/32.5.1021
57 E Melekhova, C Annen, J Blundy (2013). Compositional gaps in igneous rock suites controlled by magma system heat and water content. Nat Geosci, 6(5): 385–390
https://doi.org/10.1038/ngeo1781
58 X W Meng, D W Du, J L Wu, J Long (1999). Sr-Nd isotopic geochemistry and its geological significances of volcanic rock series from the middle part of Okinawa Trough. Sci China Earth Sci, 29(4): 367–371 (Series D)
59 C F Miller, E B Watson, T M Harrison (1988). Perspectives on the source, segregation and transport of granitoid magmas. Trans R Soc Edinb Earth Sci, 79(2–3): 135–156
https://doi.org/10.1017/S0263593300014176
60 J F Minster, C J Allègre (1978). Systematic use of trace elements in igneous processes. Contrib Mineral Petrol, 68(1): 37–52
https://doi.org/10.1007/BF00375445
61 A Miyashiro (1974). Volcanic rock series in island arcs and active continental margins. Am J Sci, 274(4): 321–355
https://doi.org/10.2475/ajs.274.4.321
62 O Müntener, P B Kelemen, T L Grove (2001). The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol, 141(6): 643–658
https://doi.org/10.1007/s004100100266
63 S Nakada, H Kamata (1991). Temporal change in chemistry of magma source under Central Kyushu, Southwest Japan: progressive contamination of mantle wedge. Bull Volcanol, 53(3): 182–194
https://doi.org/10.1007/BF00301229
64 E Nakamura, I H Campbell, S S Sun (1985). The influence of subduction processes on the geochemistry of Japanese alkaline basalts. Nature, 316(6023): 55–58
https://doi.org/10.1038/316055a0
65 R H Nandedkar, P Ulmer, O Müntener (2014). Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol, 167(6): 1015
https://doi.org/10.1007/s00410-014-1015-5
66 J E Otamendi, M N Ducea, G W Bergantz (2012). Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian arc, Argentina. J Petrol, 53(4): 761–800
https://doi.org/10.1093/petrology/egr079
67 A E Patiño Douce (1997). Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743–746
https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
68 A Peccerillo, M R Barberio, G Yirgu, D Ayalew, M Barbieri, T W Wu (2003). Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. J Petrol, 44(11): 2003–2032
https://doi.org/10.1093/petrology/egg068
69 A Peccerillo, S R Taylor (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol, 58(1): 63–81
https://doi.org/10.1007/BF00384745
70 M Pichavant, R Macdonald (2007). Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol, 154(5): 535–558
https://doi.org/10.1007/s00410-007-0208-6
71 R P Rapp, E B Watson (1995). Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol, 36(4): 891–931
https://doi.org/10.1093/petrology/36.4.891
72 R P Rapp, E B Watson, C F Miller (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res, 51(1): 1–25
https://doi.org/10.1016/0301-9268(91)90092-O
73 O Reubi, J Blundy (2009). A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461(7268): 1269–1273
https://doi.org/10.1038/nature08510
74 H R Rollinson (1993). Using geochemical data: evaluation, presentation, interpretation. London: Longman Scientific and Technical, 108–111
75 P Schiano, M Monzier, J P Eissen, H Martin, K T Koga (2010). Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol, 160(2): 297–312
https://doi.org/10.1007/s00410-009-0478-2
76 T Seno, S Maruyama (1984). Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102(1): 53–84
https://doi.org/10.1016/0040-1951(84)90008-8
77 T Seno, S Stein, A E Gripp (1993). A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. J Geophys Res Solid Earth, 98(B10): 17941–17948
https://doi.org/10.1029/93JB00782
78 R Shinjo, S L Chung, Y Kato, M Kimura (1999). Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin. J Geophys Res Solid Earth, 104(B5): 10591–10608
https://doi.org/10.1029/1999JB900040
79 R Shinjo, Y Kato (2000). Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos, 54(3): 117–137
https://doi.org/10.1016/S0024-4937(00)00034-7
80 H Shukuno, Y Tamura, K Tani, Q Chang, T Suzuki, R Fiske (2006). Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu–Bonin arc, Japan. J Volcanol Geotherm Res, 156(3): 187–216
https://doi.org/10.1016/j.jvolgeores.2006.03.018
81 J C Sibuet, B Deffontaines, S K Hsu, N Thareau, J P Le Formal , C S Liu (1998). Okinawa trough backarc basin: early tectonic and magmatic evolution. J Geophys Res Solid Earth, 103(B12): 30245–30267
https://doi.org/10.1029/98JB01823
82 J C Sibuet, S K Hsu, C T Shyu, C S Liu (1995). Structural and kinematic evolutions of the Okinawa Trough backarc basin. In: Taylor B, ed. Back Arc Basins. New York: Plenum Press, 343–379
83 J C Sibuet, J Letouzey, F Barbier, J Charvet, J P Foucher, T W Hilde, M Kimura, L Y Chiao, B Marsset, C Muller, J F Stéphan (1987). Back arc extension in the Okinawa Trough. J Geophys Res Solid Earth, 92(B13): 14041–14063
https://doi.org/10.1029/JB092iB13p14041
84 T W Sisson, T L Grove (1993). Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol, 113(2): 143–166
https://doi.org/10.1007/BF00283225
85 T W Sisson, T L Grove, D S Coleman (1996). Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol, 126(1–2): 81–108
https://doi.org/10.1007/s004100050237
86 R J Stern (1982). Strontium isotopes from circum-Pacific intra-oceanic island arcs and marginal basins: regional variations and implications for magmagenesis. Geol Soc Am Bull, 93(6): 477–486
https://doi.org/10.1130/0016-7606(1982)93<477:SIFCII>2.0.CO;2
87 D Takagi, H Sato, M Nakagawa (2005). Experimental study of a low-alkali tholeiite at 1–5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. Contrib Mineral Petrol, 149(5): 527–540
https://doi.org/10.1007/s00410-005-0666-7
88 Y Tamura, Y Tatsumi (2002). Remelting of an andesitic crust as a possible origin for rhyolitic magma in oceanic arcs: an example from the Izu–Bonin arc. J Petrol, 43(6): 1029–1047
https://doi.org/10.1093/petrology/43.6.1029
89 M Tiepolo, A Langone, T Morishita, M Yuhara (2012). On the recycling of amphibole-rich ultramafic intrusive rocks in the arc crust: evidence from Shikanoshima Island (Kyushu, Japan). J Petrol, 53(6): 1255–1285
https://doi.org/10.1093/petrology/egs016
90 M Tiepolo, R Tribuzio (2005). Slab-melting during Alpine orogeny: evidence from mafic cumulates of the Adamello batholith (Central Alps, Italy). Chem Geol, 216(3): 271–288
https://doi.org/10.1016/j.chemgeo.2004.11.014
91 M Tiepolo, R Tribuzio (2008). Petrology and U–Pb zircon geochronology of amphibole-rich cumulates with sanukitic affinity from Husky Ridge (Northern Victoria Land, Antarctica): insights into the role of amphibole in the petrogenesis of subduction-related magmas. J Petrol, 49(5): 937–970
https://doi.org/10.1093/petrology/egn012
92 M Tiepolo, R Tribuzio, A Langone (2011). High-Mg andesite petrogenesis by amphibole crystallization and ultramafic crust assimilation: evidence from Adamello hornblendites (Central Alps, Italy). J Petrol, 52(5): 1011–1045
https://doi.org/10.1093/petrology/egr016
93 M Tiepolo, R Tribuzio, R Vannucci (2002). The compositions of mantle-derived melts developed during the Alpine continental collision. Contrib Mineral Petrol, 144(1): 1–15
https://doi.org/10.1007/s00410-002-0387-0
94 M Tiepolo, R Vannucci (2014). The contribution of amphibole from deep arc crust to the silicate Earth’s Nb budget. Lithos, 208–209: 16–20
https://doi.org/10.1016/j.lithos.2014.07.028
95 T Trua, C Deniel, R Mazzuoli (1999). Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift (MER): geochemical and isotopic (Sr, Nd, Pb) evidence. Chem Geol, 155(3): 201–231
https://doi.org/10.1016/S0009-2541(98)00174-0
96 S P Verma (2001). Geochemical evidence for a rift-related origin of bimodal volcanism at Meseta Río San Juan, North-Central Mexican Volcanic Belt. Int Geol Rev, 43(6): 475–493
https://doi.org/10.1080/00206810109465027
97 W M White, A W Hofmann, H Puchelt (1987). Isotope geochemistry of Pacific mid-ocean ridge basalt. J Geophys Res Solid Earth, 92(B6): 4881–4893
https://doi.org/10.1029/JB092iB06p04881
98 M Wilson (1989). Igneous Petrogenesis: A Global Tectonic Approach. London: Unwin Hyman, 227–242
99 M Yamano, S Uyeda, J P Foucher, J C Sibuet (1989). Heat flow anomaly in the middle Okinawa Trough. Tectonophysics, 159(3): 307–318
https://doi.org/10.1016/0040-1951(89)90136-4
100 Q S Yan, X F Shi (2014). Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: a review. Acta Oceanol Sin, 33(4): 1–12
https://doi.org/10.1007/s13131-014-0400-2
101 S Zashu, I Kaneoka, K I Aoki (1980). Sr isotope study of mafic and ultramafic inclusions from Itinome-gata, Japan. Geochem J, 14(3): 123–128
https://doi.org/10.2343/geochemj.14.123
102 Z G Zeng, S X Yu, X Y Wang, Y T Fu, X B Yin, G L Zhang, X M Wang, S Chen (2010). Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough. Acta Oceanol Sin, 29(4): 48–61
https://doi.org/10.1007/s13131-010-0050-y
103 S K Zhai (1986). The distribution and mineralogical characteristics of the pumice in the Okinawa Trough. Oceanol Limnol Sin, 17(6): 504–512 (in Chinese)
104 S K Zhai, X Q Gan (1995). Study of basalt from the hydrothermal field of the Okinawa Trough. Oceanol Limnol Sin, 26(2): 115–123 (in Chinese)
105 C L Zhang, Z X Li, X H Li, H M Ye, A G Wang, K Y Guo (2006). Neoproterozoic bimodal intrusive complex in the southwestern Tarim Block, Northwest China: age, geochemistry, and implications for the rifting of Rodinia. Int Geol Rev, 48(2): 112–128
https://doi.org/10.2747/0020-6814.48.2.112
106 S H Zhang, Y Zhao, M Santosh (2012). Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Res, 222: 339–367
https://doi.org/10.1016/j.precamres.2011.06.003
107 X H Zhang, H F Zhang, Y J Tang, S A Wilde, Z C Hu (2008). Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chem Geol, 249(3): 262–281
https://doi.org/10.1016/j.chemgeo.2008.01.005
[1] FES-17638-OF-ZYX_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed