Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (4) : 740-750    https://doi.org/10.1007/s11707-017-0661-0
RESEARCH ARTICLE
Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level
Kaixuan AN1,2, Hanlin CHEN1,2, Xiubin LIN1,2(), Fang WANG1,2, Shufeng YANG1,2, Zhixin WEN3, Zhaoming WANG3, Guangya ZHANG3, Xiaoguang TONG4
1. School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
2. Research Center for Structures in Oil- and Gas-Bearing Basins, Ministry of Education, Hangzhou 310027, China
3. Research Institute of Petroleum Exploration and Development, PetroChina Co. Ltd, Beijing 100083, China
4. China National Oil and Gas Exploration and Development Corporation, Beijing 100083, China
 Download: PDF(6021 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The global rise in sea level during the Late Cretaceous has been an issue under discussion by the international geological community. Despite the significance, its impact on the deposition of continental basins is not well known. This paper presents the systematic review on stratigraphy and sedimentary facies compiled from 22 continental basins in northern Africa. The results indicate that the region was dominated by sediments of continental facies during Early Cretaceous, which were replaced by deposits of marine facies in Late Cretaceous. The spatio-temporal distribution of sedimentary facies suggests marine facies deposition reached as far south as Taoudeni-Iullemmeden-Chad-Al Kufra-Upper Egypt basins during Turonian to Campanian. These results indicate that northern Africa underwent significant transgression during Late Cretaceous reaching its peak during Turonian to Coniacian. This significant transgression has been attributed to the global high sea-level during this time. Previous studies show that global rise in sea level in Late Cretaceous may have been driven by an increase in the volume of ocean water (attributed to high CO2 concentration and subsequently warm climate) and a decrease in the volume of the ocean basin (attributed to rapid production of oceanic crust and seamounts). Tectonic mechanism of rapid production of oceanic crust and seamounts could play a fundamental role in driving the global rise in sea level and subsequent transgression in northern Africa during Late Cretaceous.

Keywords global sea-level changes      Late Cretaceous      transgression      sedimentary facies      northern Africa     
Corresponding Author(s): Xiubin LIN   
Just Accepted Date: 13 June 2017   Online First Date: 07 July 2017    Issue Date: 10 November 2017
 Cite this article:   
Kaixuan AN,Hanlin CHEN,Xiubin LIN, et al. Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level[J]. Front. Earth Sci., 2017, 11(4): 740-750.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0661-0
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I4/740
Fig.1  The locations of basins in northern Africa cited in the study; gray shaded regions indicate the basins with available stratigraphic data. The dark straight lines show the three stratigraphic sections described in this study. 1. Sierra Leone-Liberia Basin; 2. Senegal MSGBC (abbreviation of Mauritania-Senegal-Gambia-Guinea-Bissau-Cape Verde) Basin; 3. Aaiun-Tarfaya Basin; 4. Tindouf Basin; 5. Taoudeni Basin; 6. Reggane Basin; 7. Anhet Basin; 8. Oued Mya Basin; 9. Iullemmeden Basin; 10. Chad Basin; 11. Murzuq Basin; 12. Ghadames Basin; 13. Djefara Basin; 14. Pelagian Basin; 15. Sirte Basin; 16. Marmarica Basin; 17. Nile Delta Basin; 18. Upper Egypt Basin; 19. Al Kufra Basin; 20. Khartoum Basin; 21. Melut Basin; 22. Muglad Basin.
Fig.2  The W-E-direct stratigraphic section W-E in northern Africa, including the stratigraphic data from Senegal MSGBC, Taoudeni, Iullemmeden, Chad, and Al Kufra Basins from west to east. Stratigraphic data were obtained from the IHS energy database. Location of the section is shown in Fig. 1.
Fig.3  The N-S-direct stratigraphic section N-S-1 in northern Africa, including the stratigraphic data from Nile Delta, Upper Egypt, Khartoum, Melut and Muglad Basins from north to south. Stratigraphic data were obtained from the IHS energy database. Location of the section is shown in Fig. 1.
Fig.4  The N-S-direct stratigraphic section N-S-2 in northern Africa, including the stratigraphic data from Pelagian, Sirte, Ghadames, Murzuq and Chad Basins from north to south. Stratigraphic data were obtained from the IHS energy database. Location of the section is shown in Fig. 1.
Fig.5  Sedimentary facies distributions in northern Africa from Berriasian to Barremian, including time segments of (a) Berriasian, (b) Valanginian, (c) Hauterivian, and (d) Barremian. Sedimentary facies have been simplified into three types, including fluvo-alluvial, lacustrine, and marine facies. Number labels represent the same basins as in Fig. 1.
Fig.6  Sedimentary facies distributions in northern Africa from Aptian to Turonian, including time segments of (a) Aptian, (b) Albian, (c) Cenomanian, and (d) Turonian. Sedimentary facies have been simplified into three types, including fluvo-alluvial, lacustrine, and marine facies. Number labels represent the same basins as in Fig. 1.
Fig.7  Sedimentary facies distributions in northern Africa from Coniacian to Maastrichtian, including time segments of (a) Coniacian, (b) Santonian, (c) Campanian, and (d) Maastrichtian. Sedimentary facies have been simplified into three types, including fluvo-alluvial, lacustrine, and marine facies. Number labels represent the same basins as in Fig. 1.
Fig.8  The relative sea-level changes obtained in this study compared with eustatic curve (Haq, 2014). Average distance between continental coast line and tip of marine facies deposition was used to represent the relative sea-level curve.
13 Cazenave A, Llovel W (2010). Contemporary sea level rise. Annu Rev Mar Sci, 2(1): 145–173
https://doi.org/10.1146/annurev-marine-120308-081105
14 Coffin M F, Eldholm O (1994). Large igneous provinces: crustal structure, dimensions, and external consequences. Rev Geophys, 32(1): 1–36
https://doi.org/10.1029/93RG02508
15 DeConto R M, Pollard D (2003). Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421(6920): 245–249
https://doi.org/10.1038/nature01290
16 Fluteau F, Ramstein G, Besse J, Guiraud R, Masse J P (2007). Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate. Palaeogeogr Palaeoclimatol Palaeoecol, 247(3–4): 357–381
https://doi.org/10.1016/j.palaeo.2006.11.016
17 Friedrich O, Erbacher J, Moriya K, Wilson P A, Kuhnert H (2008). Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean. Nat Geosci, 1(7): 453–457
https://doi.org/10.1038/ngeo217
18 Friedrich O, Norris R D, Erbacher J (2012). Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth’s temperature and carbon cycle. Geology, 40(2): 107–110
https://doi.org/10.1130/G32701.1
1 Adatte T, Keller G, Stinnesbeck W (2002). Late Cretaceous to early Paleocene climate and sea-level fluctuations: the Tunisian record. Palaeogeogr Palaeoclimatol Palaeoecol, 178(3–4): 165–196
https://doi.org/10.1016/S0031-0182(01)00395-9
19 Gale A S, Hardenbol J, Hathway B, James Kennedy W, Young J R, Phansalkar V (2002). Global correlation of Cenomaian (Upper Cretaceous) sequences: evidence for Milankovitch control on sea level. Geology, 30(4): 291–294
https://doi.org/10.1130/0091-7613(2002)030<0291:GCOCUC>2.0.CO;2
20 Giorgioni M, Weissert H, Bernasconi S M, Hochuli P A, Keller C E, Coccioni R, Petrizzo M R, Lukeneder A, Garcia T I (2015). Paleoceanographic changes during the Albian-Cenomanian in the Tethys and North Atlantic and the onset of the Cretaceous chalk. Global Planet Change, 126: 46–61
https://doi.org/10.1016/j.gloplacha.2015.01.005
21 Goncuoglu M C, Kozlu H (2000). Early Paleozoic evolution of the NW Gondwanaland: data from southern Turkey and surrounding regions. Gondwana Res, 3(3): 315–324
https://doi.org/10.1016/S1342-937X(05)70290-2
22 Guiraud R, Bosworth W, Thierry J, Delplanque A (2005). Phanerozoic geological evolution of Northern and Central Africa: an overview. J Afr Earth Sci, 43(1-3): 83–143
https://doi.org/10.1016/j.jafrearsci.2005.07.017
23 Guiraud R, Maurin J C (1992). Early Cretaceous rifts of western and central Africa: an overview. Tectonophysics, 213(1–2): 153–168
24 Gurnis M (1990). Ridge spreading, subduction, and sea level fluctuations. Science, 250(4983): 970–972
https://doi.org/10.1126/science.250.4983.970
25 Haji T, Dhahri F, Marco I, Boukadi N (2014). New insights on the tectonic and paleogeographic evolution of the central Atlasic domain of Tunisia. Arab J Geosci, 7(4): 1605–1616
https://doi.org/10.1007/s12517-013-0848-y
26 Hancock J M, Kauffman E G (1979). The great transgressions of the Late Cretaceous. J Geol Soc London, 136(2): 175–186
https://doi.org/10.1144/gsjgs.136.2.0175
27 Haq B U (2014). Cretaceous eustasy revisited. Global Planet Change, 113(2): 44–58
https://doi.org/ 10.1016/j.gloplacha.2013.12.007
28 Haq B U, Al-Qahtani A M (2005). Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia, 10(2): 127–160
29 Haq B U, Hardenbol J, Vail P R (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793): 1156–1167
https://doi.org/10.1126/science.235.4793.1156
30 Hay W W, Floegel S (2012). New thoughts about the Cretaceous climate and oceans. Earth Sci Rev, 115(4): 262–272
https://doi.org/10.1016/j.earscirev.2012.09.008
31 Huber B T, Hodell D A, Hamilton C P (1995). Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol Soc Am Bull, 107(10): 1164–1191
https://doi.org/10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2
32 Huber B T, Norris R D, Macleod K G (2002). Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30(2): 123–126
https://doi.org/10.1130/0091-7613(2002)030<0123:DSPROE>2.0.CO;2
33 Husson L, Conrad C P (2006). Tectonic velocities, dynamic topography, and relative sea level. Geophys Res Lett, 33(18): L1830318 
https://doi.org/10.1029/2006GL026834
34 Jarvis I, Gale A S, Jenkyns H C, Pearce M A (2006). Secular variation in Late Cretaceous carbon isotopes: a new  d13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geol Mag, 143(05): 561–608
https://doi.org/10.1017/S0016756806002421
35 Jarvis I, Mabrouk A, Moody R T J, de Cabrera S (2002). Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeogr Palaeoclimatol Palaeoecol, 188(3–4): 215–248
https://doi.org/10.1016/S0031-0182(02)00578-3
36 Jenkyns H C, Forster A, Schouten S, Sinninghe Damsté J S (2004). High temperatures in the Late Cretaceous Arctic Ocean. Nature, 432(7019): 888–892
https://doi.org/10.1038/nature03143
37 Jones C E (2001). Seawater strontium isotopes, ocean anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am J Sci, 301(2): 112–149
https://doi.org/10.2475/ajs.301.2.112
38 Kauffman E G, Caldwell W G E (1993). The Western Interior basin in space and time.   Geological Association of Canada- Special Paper, 39
39 Keeley M L (1994). Phanerozoic evolution of the basins of Northern Egypt and adjacent areas. Geol Rundsch, 83(4): 728–742
https://doi.org/10.1007/BF00251071
40 Kerr A C (1998). Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? J Geol Soc London, 155(4): 619–626
https://doi.org/10.1144/gsjgs.155.4.0619
41 Kidder D L, Worsley T R (2010). Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol, 295(1–2): 162–191
https://doi.org/10.1016/j.palaeo.2010.05.036
42 Kominz M A, Browning J V, Miller K G, Sugarman P J, Mizintseva S, Scotese C R (2008). Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain boreholes: an error analysis. Basin Res, 20(2): 211–226
https://doi.org/10.1111/j.1365-2117.2008.00354.x
43 Kominz M A, Miller K G, Browning J V (1998). Long-term and short-term global Cenozoic sea-level estimates. Geology, 26(4): 311–314
https://doi.org/10.1130/0091-7613(1998)026<0311:LTASTG>2.3.CO;2
44 Larson R L (1991a). Geological consequences of superplumes. Geology, 19(10): 963–966
https://doi.org/10.1130/0091-7613(1991)019<0963:GCOS>2.3.CO;2
45 Larson R L (1991b). Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology, 19(6): 547–550
https://doi.org/10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2
46 Larson R L, Erba E (1999). Onset of the mid-Cretaceous greenhouse in the Barremian Aptian: igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography, 14(6): 663–678
https://doi.org/10.1029/1999PA900040
47 Meert J G (2003). A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362(1–4): 1–40
48 Miller K G, Mountain G S, Browning J V, Kominz M, Sugarman P J, Christie-Blick N, Katz M E, Wright J D (1998). Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling. Rev Geophys, 36(4): 569–601
https://doi.org/10.1029/98RG01624
49 Miller K G, Pekar S F (2005). The Phanerozoic record of global sea-level change. Science, 310(5752): 1293–1298
https://doi.org/10.1126/science.1116412
50 Miller K G, Sugarman P J, Browning J V, Kominz M A, Olsson R K, Feigenson M D, Hernández J C (2004). Upper Cretaceous sequences and sea-level history, New Jersey coastal plain. Geol Soc Am Bull, 116(3): 368–393 
https://doi.org/10.1130/B25279.1
51 Miller K G, Wright J D, Browning J V (2005). Visions of ice sheets in a greenhouse world. Mar Geol, 217(3–4): 215–231
https://doi.org/10.1016/j.margeo.2005.02.007
52 Miller K G, Wright J D, Katz M E, Browning J V, Cramer B S, Wade B S (2008). A View of Antarctic Ice-Sheet Evolution from Sea-Level and Deep-Sea Isotope Changes During the Late Cretaceous-Cenozoic. Proceedings of International Symposium on Antarctic Earth Sciences
53 Mosar J, Lewis G, Torsvik T (2002). North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea. J Geol Soc London, 159(5): 503–515
https://doi.org/10.1144/0016-764901-135
54 Moucha R, Forte A M, Mitrovica J X, Rowley D B, Quéré S, Simmons N A, Grand S P (2008). Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet Sci Lett, 271(1–4): 101–108
https://doi.org/10.1016/j.epsl.2008.03.056
55 Müller R D, Sdrolias M, Gaina C, Steinberger B, Heine C (2008). Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319(5868): 1357–1362
https://doi.org/10.1126/science.1151540
56 Price G D, Hart M B (2002). Isotopic evidence for Early to mid-Cretaceous ocean temperature variability. Mar Micropaleontol, 46(1–2): 45–58
https://doi.org/10.1016/S0377-8398(02)00043-9
57 Robson J, Dan H, Hawkins E, Sutton R (2014). Atlantic overturning in decline? Nat Geosci, 7(7): 2–3
58 Royer D L, Berner R A, Montañez I P, Tabor N J, Beerling D J (2004). CO2 as a primary driver of Phanerozoic climate. GSA Today, 14(3): 4 
https://doi.org/10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2
59 Sames B, Wagreich M, Wendler J E, Haq B U, Conrad C P, Melinte-Dobrinescu M C, Hu X, Wendler I, Wolfgring E, Yilmaz I Ö, Zorina S O (2016). Review: short-term sea-level changes in a greenhouse world-a view from the Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol, 441(part 3): 393–411
https://doi.org/10.1016/j.palaeo.2015.10.045
60 Santosh M, Maruyama S, Yamamoto S (2009). The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Res, 15(3-4): 324–341
https://doi.org/10.1016/j.gr.2008.11.004
61 Sestini G (1984). Tectonic and sedimentary history of the NE African margin (Egypt—Libya). Geol Soc Lond Spec Publ, 17(1): 161–175 
https://doi.org/10.1144/GSL.SP.1984.017.01.10
62 Sestini G (1989). Nile Delta: a review of depositional environments and geological history. Geol Soc Lond Spec Publ, 41(1): 99–127
https://doi.org/ 10.1144/GSL.SP.1989.041.01.09
63 Stoker M S, Praeg D, Hjelstuen B O, Laberg J S, Nielsen T, Shannon P M (2005). Neogene stratigraphy and the sedimentary and oceanographic development of the NW European Atlantic margin. Mar Pet Geol, 22(9–10): 977–1005
https://doi.org/10.1016/j.marpetgeo.2004.11.007
64 Stoll H M, Schrag D P (1996). Evidence for glacial control of rapid sea level changes in the Early Cretaceous. Science, 272(5269): 1771–1774
https://doi.org/10.1126/science.272.5269.1771
65 Stoll H M, Schrag D P (2000). High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: glacial episodes in a greenhouse planet? Geol Soc Am Bull, 112(2): 308–319
https://doi.org/10.1130/0016-7606(2000)112<308:HSIRFT>2.0.CO;2
66 Tejada M L G, Suzuki K, Kuroda J, Coccioni R, Mahoney J J, Ohkouchi N, Sakamoto T, Tatsumi Y (2009). Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology, 37(9): 855–858
https://doi.org/10.1130/G25763A.1
67 Torsvik T H, Rousse S, Labails C, Smethurst M A (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int, 177(3): 1315–1333
https://doi.org/10.1111/j.1365-246X.2009.04137.x
68 Veevers J J (2004). Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci Rev, 68(1–2): 1–132 
https://doi.org/10.1016/j.earscirev.2004.05.002
69 Viola G, Henderson I H C, Bingen B, Thomas R J, Smethurst M A, de Azavedo S (2008). Growth and collapse of a deeply eroded orogen: insights from structural, geophysical, and geochronological constraints on the Pan-African evolution of NE Mozambique. Tectonics, 27(5): TC5009
https://doi.org/10.1029/2008TC002284
70 Wagreich M, Sames B, Lein R (2014). Eustasy, its controlling factors, and the limno-eustatic hypothesis-concepts inspired by Eduard Suess. Mitt Osterr Geol Ges, 107: 115–131
71 Wang C S, Hu X M (2005). Cretaceous world and oceanic red beds. Earth Science Frontiers, 12(2): 11–21
72 Wang C S, Scott R W, Wan X Q, Graham S A, Huang Y, Wang P, Wu H, Dean W E, Zhang L (2013). Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata. Earth Sci Rev, 126(11): 275–299
https://doi.org/10.1016/j.earscirev.2013.08.016
73 Wang Y D, Huang C M, Sun B N, Quan C, Wu J, Lin Z (2014). Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth Sci Rev, 129(1): 136–147
https://doi.org/10.1016/j.earscirev.2013.11.001
74 Watts A B, Thorne J (1984). Tectonics, global changes in sea level and their relationship to stratigraphical sequences at the US Atlantic continental margin. Mar Pet Geol, 1(4): 319–339
https://doi.org/10.1016/0264-8172(84)90134-X
75 Wendler J E, Wendler I (2016). What drove sea-level fluctuations during the mid-Cretaceous greenhouse climate? Palaeogeogr Palaeoclimatol Palaeoecol, 441: 412–419
https://doi.org/10.1016/j.palaeo.2015.08.029
76 Wignall P B (2001). Large igneous provinces and mass extinctions. Earth Sci Rev, 53(1–2): 1–33
https://doi.org/10.1016/S0012-8252(00)00037-4
77 Wilson P A, Norris R D, Cooper M J (2002). Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology, 30(7): 607–610
https://doi.org/10.1130/0091-7613(2002)030<0607:TTCGHU>2.0.CO;2
2 Bachmann M, Hirsch F (2006). Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change. Cretac Res, 27(4): 487–512
https://doi.org/10.1016/j.cretres.2005.09.003
3 Badalini G, Redfern J, Carr I D (2002). A synthesis of current understanding of the structural evolution of North Africa. J Pet Geol, 25(3): 249–258
https://doi.org/10.1111/j.1747-5457.2002.tb00008.x
4 Barbero L, Teixell A, Arboleya M L, Río P, Reiners P W, Bougadir B (2007). Jurassic-to-present thermal history of the central High Atlas (Morocco) assessed by low-temperature thermochronology. Terra Nova, 19(1): 58–64
https://doi.org/10.1111/j.1365-3121.2006.00715.x
5 Berner R A (1992). Palaeo-CO2 and climate. Nature, 358(6382): 114
https://doi.org/10.1038/358114a0
6 Berner R A, Kothavala Z (2001). Geocarb III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci, 301(2): 182–204
https://doi.org/10.2475/ajs.301.2.182
7 Bice K L, Norris R D (2002). Possible atmospheric CO2 extremes of the middle Cretaceous (late Albian–Turonian). Paleoceanography, 17(4): 22-1–22-17
8 Bodin S, Meissner P, Janssen N M M, Steuber T, Mutterlose J (2015). Large igneous provinces and organic carbon burial: controls on global temperature and continental weathering during the early cretaceous. Global Planet Change, 133: 238–253
https://doi.org/10.1016/j.gloplacha.2015.09.001
9 Bosellini A, Morsilli M, Neri C (1999a). Long-term event stratigraphy of the apulia platform margin (Upper Jurassic to Eocene, Gargano, Southern Italy). J Sediment Res, 69(6): 1241–1252
https://doi.org/10.2110/jsr.69.1241
10 Bosellini A, Russo A, Schroeder R (1999b). Stratigraphic evidence for an early aptian sea-level fluctuation: the graua limestone of south-eastern ethiopia. Cretac Res, 20(6): 783–791
https://doi.org/10.1006/cres.1999.0183
11 Bosworth W (1992). Mesozoic and early Tertiary rift tectonics in east Africa. Tectonophysics, 209(1–4): 115–137
12 Bryan S E, Ferrari L (2013). Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geol Soc Am Bull, 125(7–8): 1053–1078 
https://doi.org/10.1130/B30820.1
[1] Meijun CHEN, Xiaomeng HU. Regression-transgression cycles of paleolakes in the Fen River Graben Basin during the mid to late Quaternary and their tectonic implication[J]. Front. Earth Sci., 2017, 11(4): 703-714.
[2] YIN Yong, ZOU Xinqin, ZHU Dakui, HUANG Jiaxiang. Sedimentary facies of the central part of radial tidal sand ridge system of the eastern China coast[J]. Front. Earth Sci., 2008, 2(4): 408-417.
[3] FU Qiang, LI Yi, ZHANG Guodong, LIU Yurui. Evidence of the transgression lake of the Subei basin during Late Cretaceous and Paleocene and its geological significance[J]. Front. Earth Sci., 2008, 2(1): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed