Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (3) : 531-543    https://doi.org/10.1007/s11707-017-0668-6
RESEARCH ARTICLE
Using isotope methods to study alpine headwater regions in the Northern Caucasus and Tien Shan*
E. RETS1(), J. CHIZHOVA2, N. LOSHAKOVA2, I. TOKAREV3, M. KIREEVA2, N. BUDANTSEVA2, Yu.K. VASILCHUK2, N. FROLOVA2, V. POPOVNIN2, P. TOROPOV2, E. TERSKAYA2, A. SMIRNOV2, E. BELOZEROV2, M. KARASHOVA2
1. Water Problems Institute, Russian Academy of Sciences, ul. Gubkina 3, Moscow 119333, Russia
2. Faculty of Geography, Lomonosov Moscow State University, Moscow 119991, Russia
3. Center for Geo-Environmental Research and Modelling (GEOMODEL) at St. Petersburg University, St. Petersburg 198504, Russia
 Download: PDF(1774 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High mountain areas provide water resources for a large share of the world’s population. The ongoing deglaciation of these areas is resulting in great instability of mountainous headwater regions, which could significantly affect water supply and intensify dangerous hydrological processes.

The hydrological processes in mountains are still poorly understood due to the complexity of the natural conditions, great spatial variation and a lack of observation. A knowledge of flow-forming processes in alpine areas is essential to predict future possible trends in hydrological conditions and to calculate river runoff characteristics. The goal of this study is to gain detailed field data on various components of natural hydrological processes in the alpine areas of the North Caucasus and Central Tien Shan, and to investigate the possibility that the isotopic method can reveal important regularities of river flow formation in these regions. The study is based on field observations in representative alpine river basins in the North Caucasus (the Dzhankuat river basin) and the Central Tien Shan (the Chon-Kyzyl-Suu river basin) during 2013–2015. A mixing-model approach was used to conduct river hydrograph separation. Isotope methods were used to estimate the contribution of different nourishment sources in total runoff and its regime. d18О, dD and mineralization were used as indicators. Two equation systems for the study sites were derived: in terms of water routing and runoff genesis. The Dzhankuat and Chon-Kyzyl-Suu river hydrographs were separated into 4 components: liquid precipitation/meltwaters, surface routed/subsurface routed waters.

Keywords isotope methods      mountain hydrology      hydrograph separation      Dzhankuat river      Chon-Kyzyl-Suu river      field data     
Corresponding Author(s): E. RETS   
Just Accepted Date: 19 May 2017   Online First Date: 05 July 2017    Issue Date: 12 July 2017
 Cite this article:   
E. RETS,J. CHIZHOVA,N. LOSHAKOVA, et al. Using isotope methods to study alpine headwater regions in the Northern Caucasus and Tien Shan*[J]. Front. Earth Sci., 2017, 11(3): 531-543.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0668-6
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I3/531
1 V B Aizen, E M Aizen, J M Melack, J Dozier (1997). Climatic and hydrologic changes in the Tien Shan, Central Asia. J Clim, 10(6): 1393–1404
https://doi.org/10.1175/1520-0442(1997)010<1393:CAHCIT>2.0.CO;2
2 V B Aizen, V A Kuzmichenok, A B Surazakov, E M Aizen (2007). Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Global Planet Change, 56(3‒4): 328–340
https://doi.org/10.1016/j.gloplacha.2006.07.016
3 A A Akbarov, V F Suslov (1984). Glacial runoff during dry years. J Works Central Asian Sci Res Inst, 87: 69–82 (in Russian)
4 AMAP (2011). Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway
5 D Baker, H Escher-Vetter, H Moser, H Oerter, O Reinwarth (1982). A glacier discharge model based on results from field studies of energy balance, water storage and flow. In: Glenn J W, ed. Hydrological Aspects of Alpine and High-Mountain Areas, IAHS Publ. No. 138. Wallingford. Oxfordshire UK: 103–112
6 R C Bales, N P Molotch, T H Painter, M D Dettinger, R Rice, J Dozier (2006). Mountain hydrology of the western United States. Water Resour Res, 42(8): W08432
https://doi.org/10.1029/2005WR004387
7 T P Barnett, J C Adam, D P Lettenmaier (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066): 303–309
https://doi.org/10.1038/nature04141
8 F K Barthold, C Tyralla, K Schneider, K B Vache, H G Frede, L Breuer (2011). How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resour Res, 47(8): W08519
https://doi.org/10.1029/2011WR010604
9 H Behrens, H Moser, H Oerter, W Rauert, W Stichler, W Ambach, P Kirchlechner (1979). Models for the runoff from a glaciated catchments area using measurements of environmental isotope contents. In: Isotope Hydrology 1978. IAEA, Vienna: 829–846
10 N N Bobrovitskaya, A V Kokorev (2014). Current problems of hydrological networks design and optimization. Background material for the fourteenth session of the Commission for Hydrology (CHy-14)
11 M V Bolgov, M D Trubetskova (2011). Elevation zoning of river runoff with a considerable contribution of glacier melt waters. Ice and snow, 1: 45–52 (in Russian)
12 J M Buttle (1994). Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog Phys Geogr, 18(1): 16–41
https://doi.org/10.1177/030913339401800102
13 J Cable, K Ogle, D Williams (2011). Contribution of glacier meltwater to streamflow in the Wind River Range, Wyoming, inferred via a Bayesian mixing model applied to isotopic measurements. Hydrol Processes, 25(14): 2228–2236
https://doi.org/10.1002/hyp.7982
14 A Chaponnière, G Boulet, A Chehbouni, M Aresmouk (2008). Understanding hydrological processes with scarce data in a mountain environment. Hydrol Processes, 22(12): 1908–1921
https://doi.org/10.1002/hyp.6775
15 Yu Chizhova, N Budantseva, E Rets, N Loshakova, V Popovnin, Yu Vasilchuk (2014). Isotope variations of melt flow of Dzhankuat glacier in Central Caucasus. Moscow University Journal. Series 5. Geography, (6): 48–56 (in Russian)
16 W Dansgaard (1964). Stable isotopes in precipitation. Tellus, 16(4): 436–468
https://doi.org/10.3402/tellusa.v16i4.8993
17 D R DeWalle, A Rango (2008). Principles of Snow Hydrology. Cambridge University Press, 1–428
18 T Dinçer, B R Payne, T Florkowski, J Martinec, E Tongiorgi (1970). Snowmelt runoff from measurements of tritium and oxygen-18. Water Resour Res, 6(1): 110–124
https://doi.org/10.1029/WR006i001p00110
19 D Farinotti, L Longuevergne, G Moholdt, D Duethmann, T Mölg, T Bolch, S Vorogushyn, A Güntner (2015). Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience. Nature Publishing Group, 8(9): 716–722
20 P Fritz, J Cherry, K Weyer, M Sklash (1976). Storm runoff analyses using environmental isotopes and major ions. In: Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater, Panel Proc. Ser. – Int. Atomic Energy Agency, Vienna: Int. Atomic Energy Agency: 111–130
21 G Gietl (1990). Collection and processing of hydrometeorological and hydrological data in mountainous areas. Hydrology of Mountainousylreas. Proceedings of the âtrbské Pleso Workshop, Czechoslovakia, June 1988. IAHS Publ. no. 190
22 G N Golubev (1976). Hydrology of Glaciers. Leningrad: Gidrometeoizdat, 1–248 (in Russian)
23 A Herrmann, J Martinec, W Stichler (1978). Study of snowmelt-runoff components using isotope measurements. In: Colbeck S C, Ray M, eds. Proceedings of Modeling of Snow Cover Runoff. U.S. Army CRREL Special Report79–36, 288–296
24 A Herrmann, W Stichler (1980). Groundwater-runoff relationships. Catena, 7(1): 251–263
https://doi.org/10.1016/S0341-8162(80)80017-8
25 R L Hooke (2005). Principles of Glacier Mechanics. Cambridge University Press, 1–448
26 P Hubert, E Marin, M Meybeck, P Olive, E Siwertz (1969). Aspects hydrologique, geochimique et sedimentologique de la crue exceptionnelle de la Dranse du Chablais du 22 Septembre 1968. Archives des Sci. (Geneve), 22(3): 581–604
27 IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: 1535
28 T Jacob, J Wahr, W T Pfeffer, S Swenson (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386): 514–518
https://doi.org/10.1038/nature10847
29 P Jansson, R Hock, P Schneider (2003). The concept of glacier storage: A review. J Hydrol (Amst), 282(1‒4): 116–129
https://doi.org/10.1016/S0022-1694(03)00258-0
30 A V Khristoforov (1994). Theory of stochastic processes in hydrology. Moscow, MGU Publ.: 143
31 V Klemes (1988). Foreword.  In: Molnar L, ed. Hydrology of Mountainous Areas. IAHS Publication, 90
32 E Klok, K Jasper, K Roelofsma, J Gurtz, A Badoux (2001). Distributed hydrological modeling of a heavily glaciated Alpine river basin. Hydrol Sci J, 46(4): 553–570
https://doi.org/10.1080/02626660109492850
33 Y Kong, Z Pang (2012). Evaluating the sensitivity of glacier rivers to climate change based on hydrograph separation. J Hydrol (Amst), 434: 121–129
https://doi.org/10.1016/j.jhydrol.2012.02.029
34 S Kutuzov, M Shahgedanova (2009). Glacier retreat and climatic variability in the eastern Terskey-Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century. Global Planet Change, 69(1‒2): 59–70
https://doi.org/10.1016/j.gloplacha.2009.07.001
35 N T Kuznezov (1968). Water of Central Asia. Nauka Publishing: 271 (in Russian)
36 B Ladouche, A Probst, D Viville, S Idir, D Baqué, M Loubet, J L Probst, T Bariac (2001). Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France). J Hydrol (Amst), 242(3‒4): 255–274
https://doi.org/10.1016/S0022-1694(00)00391-7
37 F Liu, M W Williams, N Caine (2004). Source waters and flow paths in an alpine catchment, Colorado Front Range, United States. Water Resour Res, 40(9): W09401
https://doi.org/10.1029/2004WR003076
38 J Liu, T Liu, A Bao, P De Maeyer, X Feng, S N Miller, X Chen (2016). Assessment of different modelling studies on the spatial hydrological processes in an arid Alpine catchment. Water Resour Manage, 30(5): 1757–1770
https://doi.org/10.1007/s11269-016-1249-2
39 D M Mamatkanov, L V Bazhanova, V V Romanovsky (2006). Present water resources of Kyrgyzstan. Bishkek: Ilim (in Russian)
40 J Martinec, U Siegenthaler, H Oeschger, E Tongiorgi (1974). New insights into the run-off mechanism by environmental isotopes. In: Proc. Sympos. Isotope Tech. in Groundwater Hydrol., Vienna: Int. Atomic Energy Agency, 4: 129–143.
41 J Meiman, I Friedman, K Hardcastle (1973). Deuterium as a tracer in snow hydrology, The Role of Snow and Ice in Hydrology. In: Proc. Banff Symp., September, 1972, UNESCO-WHO-IASH, Int. Association of Sci. Hydrol. Association, Publ. 107: 39–50.
42 W G Mook, D J Groeneveld, A E Brouwn, A J Van Ganswijk (1974). Analysis of a runoff hydrograph by means of natural 18O, in Isotope Techniques in Groundwater Hydrology. In: Proc. I.A.E.A. Symp., Vienna: Int. Atomic Energy Agency:145–156
43 J Oerlemans (2005). Extracting a Climate Signal from 169 Glacier Records Science 308: 675–677.
https://doi.org/10.1126/science.1107046
44 D Petrakov, A Shpuntova, A Aleinikov, A Kaab, S Kutuzov, I Lavrentiev, M Stoffel, O Tutubalina, R Usubaliev (2016). Accelerated glacier shrinkage in the ak-shyirak massif, inner Tien Shan, during 2003‒2013. Sci Total Environ, 562: 364–378
https://doi.org/10.1016/j.scitotenv.2016.03.162
45 E Rets, M Kireeva (2010). Hazardous hydrological processes in mountainous areas under the impact of recent climate change: case study of Terek River basin. In: Global Change: Facing Risks and Threats to Water Resources: proc. of the Sixth World FRIEND Conference. IAHS Publ. 340: 126–134
46 E P Rets, M B Kireeva, N A Loshakova (2014). Using energy balance model in studies of the glacial river runoff formation (Djancuat basin case study). Eurasian Union of Scientists, 4: 97–103 (in Russian)
47 B Schaefli, B Hingray, M Niggli, A Musy (2005). A conceptual glacio-hydrological model for high mountainous catchments. Hydrol Earth Syst Sci, 9(1/2): 95–109
https://doi.org/10.5194/hess-9-95-2005
48 I B Seynova (2008). Climatic and glaciological conditions of debris flow formation in the Central Caucasus at a stage of regress of the little ice age. In: Chernomorets S S, ed. Debris Flows: Disasters, Risk, Forecast, Protection: 121–124
49 M Shahgedanova, G Nosenko, S Kutuzov, O Rototaeva, T Khromova (2014). Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography. Cryosphere, 8(6): 2367–2379
https://doi.org/10.5194/tc-8-2367-2014
50 M Shahgedanova, V Popovnin, A Aleynikov, D A Petrakov, C R Stokes (2007). Long-term change, interannual and intra-seasonal variability in climate and glacier mass balance in the central greater Caucasus. Ann Glaciol, 46(1): 355–361
https://doi.org/10.3189/172756407782871323
51 P Singh, N K Bhatnagar, N Kumar (1999). Status and problems related with mountain hydrology. National Institute of Hydrology
52 M G Sklash, R N Farvolden (1979). The role of groundwater in storm runoff. J Hydrol (Amst), 43(1–4): 45–65
https://doi.org/10.1016/0022-1694(79)90164-1
53 Y K Vasil’chuk, E P Rets, J N Chizhova, I V Tokarev, N L Frolova, N A Budantseva, M B Kireeva, N A Loshakova (2016). Hydrograph separation of the Dzhankuat river, north Caucasus, with the use of isotope methods. Water Resour, 43(6): 847–861
https://doi.org/10.1134/S0097807816060087
54 N A Volodicheva, K F Voitkovskiy (2004). Evolution of Elbrus glacial system. In: Konischev V N, Safyanov G A, eds. Geography, Society and Environment. Volume 1. Structure, Dynamics and Evolution of Natural Geosystems. Moscow: Gorodets, 377–394 (in Russian)
55 D G Williams, J C Kiona Ogle (2009). Tracing glacial ice and snow meltwater with isotopes. WRP final report
56 WMO (2008).  Guide to Hydrological Practices, Volume I: Hydrology – From Measurement to Hydrological Information. WNO-No.168. Geneva
57 M Zemp, J Van Woerden, I Roer, A Kaab, M Hoelzle, F Paul (2008). Wilfried Haeberli Global Glacier Changes: facts and figures. UNEP/WGMS scientific report: 88
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed