Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (2) : 361-372    https://doi.org/10.1007/s11707-017-0673-9
RESEARCH ARTICLE
Exploring the heavy air pollution in Beijing in the fourth quarter of 2015: assessment of environmental benefits for red alerts
Teng NIE1, Lei NIE1, Zhen ZHOU1, Zhanshan WANG2(), Yifeng XUE1(), Jiajia GAO3, Xiaoqing WU1, Shoubin FAN1, Linglong CHENG1
1. National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
2. Beijing Municipal Environmental Monitoring Center, Beijing 100048, China
3. Department of Air Pollution Control, Beijing Municipal Institute of Labour Protection, Beijing 100054, China
 Download: PDF(2367 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, Beijing has experienced severe air pollution which has caused widespread public concern. Compared to the same period in 2014, the first three quarters of 2015 exhibited significantly improved air quality. However, the air quality sharply declined in the fourth quarter of 2015, especially in November and December. During that time, Beijing issued the first red alert for severe air pollution in history. In total, 2 red alerts, 3 orange alerts, 3 yellow alerts, and 3 blue alerts were issued based on the adoption of relatively temporary emergency control measures to mitigate air pollution. This study explored the reasons for these variations in air quality and assessed the effectiveness of emergency alerts in addressing severe air pollution. A synthetic analysis of emission variations and meteorological conditions was performed to better understand these extreme air pollution episodes in the fourth quarter of 2015. The results showed that compared to those in the same period in 2014, the daily average emissions of air pollutants decreased in the fourth quarter of 2015. However, the emission levels of primary pollutants were still relatively high, which was the main intrinsic cause of haze episodes, and unfavorable meteorological conditions represented important external factors. Emergency control measures for heavy air pollution were implemented during this red alert period, decreasing the emissions of primary air pollutants by approximately 36% and the PM2.5 concentration by 11%?21%.

Keywords heavy air pollution      red alert      emissions variation      meteorological conditions      emergency control measures     
Corresponding Author(s): Zhanshan WANG,Yifeng XUE   
Just Accepted Date: 13 September 2017   Online First Date: 31 October 2017    Issue Date: 09 May 2018
 Cite this article:   
Teng NIE,Lei NIE,Zhen ZHOU, et al. Exploring the heavy air pollution in Beijing in the fourth quarter of 2015: assessment of environmental benefits for red alerts[J]. Front. Earth Sci., 2018, 12(2): 361-372.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0673-9
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I2/361
Fig.1  Monitoring sites in this study.
VariableMBMAGERMSEIOA
Temperature0.51 K1.15 K-0.79
Humidity?2.50 g/kg1.50 g/kg-0.68
Wind speed0.22 m/s-0.39 m/s0.81
Wind direction2.66 deg20.61 deg--
Tab.1  Performance of the WRF-simulated meteorological fields
Fig.2  Comparison of simulated (SIM) and observed (OBS) daily average concentrations of PM2.5 in Beijing.
Fig.3  Comparison of variations in air pollutant emission from October to December of 2014 and 2015 in Beijing.
Fig.4  Meteorological conditions from October to December of 2014 and 2015.
MonthAir quality grades (concentration range/mg·m?3)
Grade I (0?35)Grade II
(35?75)
Grade III
(75?115)
Grade IV
(115?150)
Grade V
(150?250)
Grade VI
(>250)
October1583023
November4104354
December563476
Tab.2  Days of different air quality grades from October to December 2015
Fig.5  Daily average concentrations of PM2.5 at national control sites in Beijing during the fourth quarter of 2015.
Fig.6  Average cumulative PM2.5 concentrations and their variations in 2014 and 2015.
Fig.7  Average concentrations of PM2.5 on HAP days and NHAP days during the fourth quarter of 2015.
Fig.8  Spatial distribution of PM2.5 concentrations on HAP days (a) and NHAP days (b) during the fourth quarter of 2015.
Fig.9  Variations in the PM2.5 concentrations with and without the emergency control measures that were implemented during the two red alerts.
Fig.10  Spatial distribution of the PM2.5 concentration averaged from December 7 to 10 in SIM2 (a) and SIM1 (b), as well as the difference between SIM2 and SIM1 (c).
Fig.11  Spatial distribution of the PM2.5 concentration averaged from December 19 to 22 in SIM2 (a) and SIM1 (b), as well as the difference between SIM2 and SIM1 (c).
1 Amil N, Latif M T, Khan M F, Mohamad M (2015). Meteorological-gaseous influences on seasonal PM2.5 variability in the Klang valley urban-industrial environment. Atmos Chem Phys Discuss, 15(18): 26423–26479
https://doi.org/10.5194/acpd-15-26423-2015
2 Andersson A, Deng J, Du K, Zheng M, Yan C, Sköld M, Gustafsson Ö (2015). Regionally-varying combustion sources of the January 2013 severe haze events over eastern China. Environ Sci Technol, 49(4): 2038–2043
https://doi.org/10.1021/es503855e
3 Bei N, Xiao B, Meng N, Feng T (2016). Critical role of meteorological conditions in a persistent haze episode in the Guanzhong basin, China. Sci Total Environ, 550: 273–284
https://doi.org/10.1016/j.scitotenv.2015.12.159
4 BJEPB (Beijing Municipal Environmental Protection Bureau) (2015a). Beijing Environmental Statement 2014
https://doi.org/http://119.90.25.48/www.bjepb.gov.cn/bjepb/resource/cms/2015/04/2015041609380279715.pdf
5 BJEPB (Beijing Municipal Environmental Protection Bureau) (2015b). Emergency plan for heavy air pollution in Beijing
https://doi.org/http://zhengwu.beijing.gov.cn/yjgl/yjya/t1384974.htm
6 BJEPB (Beijing Municipal Environmental Protection Bureau) (2016). Beijing Environmental Statement 2015
https://doi.org/http://119.90.25.30/www.bjepb.gov.cn/bjepb/resource/cms/2016/04/2016041514503583104.pdf
7 BMRIEP (Beijing Municipal Research Institute of Environmental Protection) (2016). Technical Report for Emission Inventory of Primary Air Pollutants in Beijing, 2015
8 Byun D, Schere K L (2006). Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev, 59(2): 51–77
https://doi.org/10.1115/1.2128636
9 Chen W, Yan L, Zhao H (2015). Seasonal variations of atmospheric pollution and air quality in Beijing. Atmosphere, 6(12): 1753–1770
https://doi.org/10.3390/atmos6111753
10 Cheng N, Li Y, Zhang D, Chen T, Xu W, Sun F, Dong X (2015). Analysis about the characteristics and formation mechanisms of a serious pollution event in October 2014 in Beijing. Research of Environmental Sciences, 28: 163–170
11 Djalalova I, Delle Monache L, Wilczak J (2015). PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos Environ, 108: 76–87
https://doi.org/10.1016/j.atmosenv.2015.02.021
12 Emery C, Tai E, Yarwood G (2001). Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Prepared for The Texas Natural Resource Conservation Commission by ENVIRON International Corporation. 2001
13 Foley K M, Hogrefe C, Pouliot G, Possiel N, Roselle S J, Simon H, Timin B (2015). Dynamic evaluation of CMAQ Part I: separating the effects of changing emissions and changing meteorology on ozone levels between 2002 and 2005 in the eastern US. Atmospheric Environment 103: 247–255
https://doi.org/10.1016/j.atmosenv.2014.12.038
14 Gan C M, Binkowski F, Pleim J, Xing J, Wong D, Mathur R, Gilliam R (2015). Assessment of the aerosol optics component of the coupled WRF–CMAQ model using CARES field campaign data and a single column model. Atmos Environ, 115: 670–682
https://doi.org/10.1016/j.atmosenv.2014.11.028
15 Gao J, Tian H, Cheng K, Lu L, Zheng M, Wang S, Hao J, Wang K, Hua S, Zhu C, Wang Y (2015). The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmos Environ, 107: 1–8
https://doi.org/10.1016/j.atmosenv.2015.02.022
16 Guo S, Hu M, Guo Q, Zhang X, Schauer J J, Zhang R (2013). Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics. Atmos Chem Phys, 13(16): 8303–8314
https://doi.org/10.5194/acp-13-8303-2013
17 Hogrefe C, Pouliot G, Wong D, Torian A, Roselle S, Pleim J, Mathur R (2015). Annual application and evaluation of the online coupled WRF–CMAQ system over North America under AQMEII phase 2. Atmos Environ, 115: 683–694
https://doi.org/10.1016/j.atmosenv.2014.12.034
18 Hsu C Y, Chiang H C, Chen M J, Chuang C Y, Tsen C M, Fang G C, Tsai Y I, Chen N T, Lin T Y, Lin S L, Chen Y C (2017). Ambient PM2.5 in the residential area near industrial complexes: spatiotemporal variation, source apportionment, and health impact. Sci Total Environ, 590–591: 204–214
https://doi.org/10.1016/j.scitotenv.2017.02.212
19 Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I E, Prévôt A S H (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521): 218–222
https://doi.org/10.1038/nature13774
20 Ji D, Zhang J, He J, Wang X, Pang B, Liu Z, Wang L, Wang Y (2016). Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmos Environ, 125: 293–306
https://doi.org/10.1016/j.atmosenv.2015.11.020
21 Li J, Du H Y, Wang Z F, Sun Y L, Yang W Y, Li J J, Tang X, Fu P F (2017). Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain. Environ Pollut, 223: 605–615
https://doi.org/10.1016/j.envpol.2017.01.063
22 Li J, Xie S D, Zeng L M, Li L Y, Li Y Q, Wu R R (2015). Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic cooperation China 2014. Atmos Chem Phys, 15(14): 7945–7959
https://doi.org/10.5194/acp-15-7945-2015
23 Li Z, Gu X, Wang L, Li D, Xie Y, Li K, Dubovik O, Schuster G, Goloub P, Zhang Y, Li L, Ma Y, Xu H (2013). Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmos Chem Phys, 13(20): 10171–10183
https://doi.org/10.5194/acp-13-10171-2013
24 Liu X G, Li J, Qu Y, Han T, Hou L, Gu J, Chen C, Yang Y, Liu X, Yang T, Zhang Y, Tian H Z, Hu M (2013). Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China. Atmos Chem Phys, 13(9): 4501–4514
https://doi.org/10.5194/acp-13-4501-2013
25 Lv B, Cai J, Xu B, Bai Y Q (2017). Understanding the rising phase of the PM2.5 concentration evolution in Large China cities. Sci Rep, 7: 46456
https://doi.org/10.1038/srep46456
26 Park S U, Lee I H, Joo S J (2016). Spatial and temporal distributions of aerosol concentrations and depositions in Asia during the year 2010. Science of the Total Environment, 542(A): 210–222
https://doi.org/10.1016/j.scitotenv.2015.10.084
27 Porter W C, Heald C L, Cooley D, Russell B (2015). Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression. Atmos Chem Phys, 15(18): 10349–10366
https://doi.org/10.5194/acp-15-10349-2015
28 Schleicher N J, Schäfer J, Blanc G, Chen Y, Chai F, Cen K, Norra S (2015). Atmospheric particulate mercury in the megacity Beijing: spatio-temporal variations and source apportionment. Atmos Environ, 109: 251–261
https://doi.org/10.1016/j.atmosenv.2015.03.018
29 Simon H, Baker K R, Phillips S (2012). Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos Environ, 61: 124–139
https://doi.org/10.1016/j.atmosenv.2012.07.012
30 Sun Y, Du W, Wang Q, Zhang Q, Chen C, Chen Y, Chen Z, Fu P, Wang Z, Gao Z, Worsnop D R (2015). Real-time characterization of aerosol particle composition above the urban canopy in Beijing: insights into the interactions between the atmospheric boundary layer and aerosol chemistry. Environ Sci Technol, 49(19): 11340–11347
https://doi.org/10.1021/acs.est.5b02373
31 Sun Y, Jiang Q, Wang Z, Fu P, Li J, Yang T, Yin Y (2014). Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J Geophys Res D Atmospheres, 119(7): 4380–4398
https://doi.org/10.1002/2014JD021641
32 Sun Y, Zhuang G, Tang A A, Wang Y, An Z (2006). Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ Sci Technol, 40(10): 3148–3155
https://doi.org/10.1021/es051533g
33 Syrakov D, Prodanova M, Georgieva E, Etropolska I, Slavov K (2016). Simulation of European air quality by WRF–CMAQ models using AQMEII-2 infrastructure. J Comput Appl Math, 293: 232–245
https://doi.org/10.1016/j.cam.2015.01.032
34 Tian H Z, Zhu C Y, Gao J J, Cheng K, Hao J M, Wang K, Hua S B, Wang Y, Zhou J R (2015). Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys, 15(17): 10127–10147
https://doi.org/10.5194/acp-15-10127-2015
35 Wang L, Wei Z, Wei W, Fu J S, Meng C, Ma S (2015a). Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmos Environ, 122: 723–736
https://doi.org/10.1016/j.atmosenv.2015.10.041
36 Wang N, Guo H, Jiang F, Ling Z H, Wang T (2015b). Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model. Sci Total Environ, 505: 939–951
https://doi.org/10.1016/j.scitotenv.2014.10.070
37 Wang X, Zhang Y, Hu Y, Zhou W, Lu K, Zhong L, Zeng L, Shao M, Hu M, Russell A G (2010). Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the community multiscale air quality modeling system. Atmos Chem Phys, 10(9): 4423–4437
https://doi.org/10.5194/acp-10-4423-2010
38 Xue Y, Tian H, Yan J, Zhou Z, Wang J, Nie L, Pan T, Zhou J, Hua S, Wang Y, Wu X (2016a). Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China. Environ Pollut, 213: 717–726
https://doi.org/10.1016/j.envpol.2016.03.047
39 Xue Y F, Zhou Z, Nie T, Pan T, Qi J, Nie L, Wang Z S, Li Y T, Li X F, Tian H Z (2016b). Exploring the severe haze in Beijing during December, 2015: pollution process and emissions variation. Environmental Science, 37(5): 1593–1601
40 Yang Y, Zhou R, Wu J, Yu Y, Ma Z, Zhang L, Di Y A (2015). Seasonal variations and size distributions of water-soluble ions in atmospheric aerosols in Beijing, 2012. J Environ Sci (China), 34: 197–205
https://doi.org/10.1016/j.jes.2015.01.025
41 Zhang W, Capps S L, Hu Y, Nenes A, Napelenok S L, Russell A G (2012). Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models. Geosci Model Dev, 5(2): 355–368
https://doi.org/10.5194/gmd-5-355-2012
42 Zhang X Y, Wang J Z, Wang Y Q, Liu H L, Sun J Y, Zhang Y M (2015). Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors. Atmos Chem Phys, 15(22): 12935–12952
https://doi.org/10.5194/acp-15-12935-2015
43 Zhao Y, Qiu L P, Xu R Y, Xie F J, Zhang Q, Yu Y Y, Nielsen C P, Qin H X, Wang H K, Wu X C, Li W Q, Zhang J (2015). Advantages of a city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in the Yangtze River Delta, China. Atmos Chem Phys, 15(21): 12623–12644
https://doi.org/10.5194/acp-15-12623-2015
44 Zheng G J, Duan F K, Su H, Ma Y L, Cheng Y, Zheng B, Zhang Q, Huang T, Kimoto T, Chang D, Pöschl U, Cheng Y F, He K B (2015). Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmos Chem Phys, 15(6): 2969–2983
https://doi.org/10.5194/acp-15-2969-2015
45 Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, Li Y, Wang L, Liu Y, Yin P, Liu J, Yu S, Tan F, Barber R M, Coates M M, Dicker D, Fraser M, González-Medina D, Hamavid H, Hao Y, Hu G, Jiang G, Kan H, Lopez A D, Phillips M R, She J, Vos T, Wan X, Xu G, Yan L L, Yu C, Zhao Y, Zheng Y, Zou X, Naghavi M, Wang Y, Murray C J, Yang G, Liang X (2016). Cause-specific mortality for 240 causes in China during 1990‒2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet, 387(10015): 251–272
https://doi.org/10.1016/S0140-6736(15)00551-6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed