Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2019, Vol. 13 Issue (1) : 191-208    https://doi.org/10.1007/s11707-018-0694-z
RESEARCH ARTICLE
Geological significance of the former Xiong’er Volcanic Belt on the southwestern margin of the North China Craton
Guanxu CHEN, Jinhai LUO(), Huan XU, Jia YOU, Yifei LI, Zichen CHE
State Key Laboratory of Continental Dynamics (Northwest University), Department of Geology, Northwest University, Xi’an 710069, China
 Download: PDF(7154 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The rock association of low-grade metasedimentary rocks and greenschists located within the Meso-Cenozoic Liupanshan Fault system on the southwestern margin of the North China Craton (NCC) is regarded as part of the Paleoproterozoic Xiong’er Group. These low-grade rocks are separated by normal faults, with the greenschist located in the hanging walls. Zircon LA–ICP–MS U–Pb ages of the greenschists range from 2455 to 423 Ma, suggesting that they are not Paleoproterozoic in age. The protolith ages (206–194 Ma) of the greenschists were determined by LA–ICP–MS U–Pb dating of zircons from two siltstone interlayers. The petrology and geochemistry of the greenschists reveal that their protolith was continental tholeiitic basalt that formed in an extensional environment such as a continental rift. Thus, it is proposed that the protolith of the greenschists was a mafic volcanic rock of Late Triassic–Early Jurassic age and was metamorphosed during the Jurassic due to tectonism within the Liupanshan tectonic belt. These results show that the greenschists should be reclassified and removed from the Xiong’er Group, and explains why they differ so much from those of typical Xiong’er Group successions in other areas. The formation of the mafic volcanic rocks under conditions of continental rifting differs from that of coeval granitic rocks in the western Qinling Orogen, where the extension occurred during a post-collisional stage in the Late Triassic, which further suggests that the southwestern margin of the NCC became an extensional setting after the Late Triassic.

Keywords southwestern margin of the NCC      Paleoproterozoic Xiong’er Group      greenschist      detrital zircon U–Pb geochronology      Late Triassic to Early Jurassic     
Corresponding Author(s): Jinhai LUO   
Just Accepted Date: 14 May 2018   Online First Date: 21 June 2018    Issue Date: 25 January 2019
 Cite this article:   
Guanxu CHEN,Jinhai LUO,Huan XU, et al. Geological significance of the former Xiong’er Volcanic Belt on the southwestern margin of the North China Craton[J]. Front. Earth Sci., 2019, 13(1): 191-208.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-018-0694-z
https://academic.hep.com.cn/fesci/EN/Y2019/V13/I1/191
Fig.1  Geological map around the former Xiong’er Group in the southwestern margin of the North China Craton (modified from the 1:200,000 Baoji Geological Map (1966), 1:250,000 Baojishi Geological Map (2003), and this paper). (a) Tectonic map of China, showing the location of the study area; (b) geological map of the study area; (c) geological map of the Xiong’er Group; (d) enlarged geological map of greenschists in the Xiong’er Group. F1-Shangdan suture, F2-Liupanshan fault system.
Fig.2  Cross-section of the Xiong’er Group in the study area. The location of the cross-section is shown in Fig. 1(d).
Fig.3  Outcrop photographs of greenschists in Fengjiashan. (a) Normal fault between greenschist and calcareous slate at outcrop No. 1; (b) contact relationships between greenschists and calcareous slates at outcrop No. 2; (c) enlarged photograph of the brecciated fault zone at outcrop No. 2; (d) greenschists at outcrop No. 3, where samples for geochemical analysis were collected; (e)–(f) interbedded siltstone and greenschist at outcrops Nos. 4 and 5. Locations of outcrops Nos. 1–5 are shown in Fig. 1(d) and Fig. 2.
Fig.4  Microphotographs of the greenschists. (a) Plane-polarized light; (b) cross-polarized light. Ab-albite, Act-actinolite, Chl-chlorite, Ep-epidote.
Composition 14LP05 14LP06 14LP07 14LP08 14LP09 14LP10 14LP11 14LP12 14LP13 14LP14
SiO2 46.06 45.00 48.63 44.75 47.71 45.56 44.33 46.52 47.28 46.50
TiO2 1.28 2.03 1.81 1.58 1.70 1.85 2.02 1.86 1.72 1.77
Al2O3 10.18 14.10 13.13 12.38 12.83 13.78 15.57 13.26 13.00 13.89
TFe2O3 9.43 15.98 14.85 12.22 14.23 14.50 16.24 15.05 15.07 14.28
MnO 0.15 0.22 0.19 0.17 0.20 0.18 0.19 0.20 0.21 0.20
MgO 3.67 7.01 6.56 4.23 5.58 5.25 4.87 7.04 6.57 6.37
CaO 15.33 9.05 9.35 14.00 10.64 10.52 11.38 9.84 9.88 11.11
Na2O 2.58 2.61 1.93 2.18 2.59 2.35 1.06 2.12 2.22 2.25
K2O 0.34 0.23 0.39 0.30 0.32 0.20 0.14 0.38 0.20 0.20
P2O5 0.10 0.15 0.14 0.12 0.13 0.14 0.16 0.14 0.13 0.13
LOI 10.95 3.46 3.15 8.29 3.82 5.81 3.84 3.09 3.59 3.05
Total 100.11 99.84 100.13 100.23 99.75 100.14 99.80 99.50 99.87 99.75
Mg# 40.06 43.07 43.24 37.38 40.34 38.44 34.09 44.65 42.92 43.48
Rb 3.72 2.56 4.44 3.90 4.93 2.24 2.25 4.29 2.16 2.08
Ga 13.6 20.3 20.7 17.9 18.6 19.9 24.4 20.9 19.9 21.6
Sr 171 393 408 297 205 206 467 306 348 573
Y 22.7 34.1 30.3 27.0 27.9 30.0 33.8 30.7 27.2 29.4
Zr 72.1 112 102 87.5 94.5 101 111 101 94.4 96.1
Nb 3.70 5.90 5.30 4.55 4.88 5.24 5.78 5.24 4.88 5.02
Cs 0.250 0.075 0.052 0.530 0.430 0.092 0.370 0.055 0.064 0.063
Ba 55.6 65.2 107 82.6 79.2 52.1 67.0 101 52.8 43.0
Hf 1.83 2.91 2.65 2.27 2.44 2.58 2.89 2.62 2.43 2.46
Ta 0.25 0.38 0.35 0.30 0.32 0.35 0.38 0.35 0.32 0.33
Pb 0.81 0.94 1.29 1.27 1.35 1.17 2.16 0.97 1.62 1.90
Th 0.43 0.64 0.58 0.49 0.54 0.61 0.63 0.58 0.53 0.55
U 0.12 0.18 0.18 0.14 0.16 0.17 0.19 0.16 0.15 0.16
La 4.91 6.89 5.96 5.26 5.42 5.77 6.50 6.04 5.32 5.75
Ce 12.5 18.2 16.0 13.8 14.7 15.8 17.4 15.9 14.3 15.1
Pr 1.92 2.88 2.52 2.18 2.30 2.50 2.75 2.53 2.27 2.39
Nd 9.67 14.4 12.6 11.0 11.7 12.6 13.8 12.7 11.4 12.0
Sm 2.92 4.50 4.01 3.48 3.76 4.01 4.36 4.07 3.63 3.85
Eu 0.96 1.52 1.44 1.27 1.30 1.39 1.55 1.49 1.28 1.36
Gd 3.36 5.23 4.66 4.08 4.36 4.70 5.14 4.72 4.25 4.49
Tb 0.60 0.94 0.84 0.73 0.77 0.84 0.92 0.84 0.77 0.81
Dy 3.86 5.97 5.36 4.77 5.01 5.36 5.95 5.41 4.88 5.10
Ho 0.79 1.22 1.11 0.98 1.03 1.10 1.24 1.12 1.01 1.06
Er 2.28 3.46 3.13 2.77 2.86 3.05 3.45 3.16 2.84 2.96
Tm 0.33 0.49 0.45 0.40 0.42 0.44 0.50 0.45 0.40 0.43
Yb 2.08 3.09 2.89 2.62 2.63 2.80 3.25 2.94 2.67 2.82
Lu 0.32 0.46 0.42 0.38 0.39 0.41 0.47 0.43 0.39 0.41
SREE 46.45 69.20 61.44 53.82 56.61 60.75 67.30 61.80 55.48 58.51
(La/Yb)N 1.59 1.50 1.39 1.35 1.39 1.39 1.35 1.38 1.34 1.37
dEu 0.94 0.95 1.02 1.03 0.98 0.98 1.00 1.04 1.00 1.00
Tab.1  Major-element (wt%) and trace-element (ppm) compositions of greenschists of the former Xiong’er Group in the southwestern margin of the NCC
Fig.5  TAS diagram (after Le Bas et al., 1986) for the greenschists.
Fig.6  (a) Chondrite-normalized REE pattern for the greenschists (chondrite data from Boynton, 1984), (b) primitive-mantle-normalized spider diagram for the greenschists of the Xiong’er Group (primitive mantle data from Sun and McDonough, 1989).
Fig.7  (a) SiO2–ALK discrimination diagram (after Irvine and Baragar, 1971) for the greenschists. (b) AFM discrimination diagram for the greenschists.
Fig.8  (a) Log Th/Hf–Ta/Hf and (b) Log La/Zr–Nb/Zr discrimination diagrams for the greenschists. I-divergent margin; II-convergent margin; II1-oceanic island arc basalt; II2-continental margin island arc; III-oceanic intraplate oceanic island, seamount basalt area, and T-MORB and E-MORB; IV-continental plate; IV1-intracontinental rift and continental marginal rift tholeiite; IV2-intracontinental rift alkaline basalt; IV3-continental extensional or initial rift basalt; V-mantle plume basalt (after Li et al., 2013).
Fig.9  Cathodoluminescence (CL) images of zircons from the greenschists. Circles indicate analysis sites, and figures within the circles are analysis numbers; the ages are given below the corresponding zircons.
Fig.10  Concordia diagrams for the greenschist samples. Interpreted ages are 206Pb/238U for zircons with ages of<1.0 Ga and 207Pb/206Pb for zircons with ages of>1.0 Ga.
Sample Spot Pb* 232Th 238U Th/U Isotopic ratios Ages/Ma
no. /ppm /ppm /ppm 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
          ratios 1s ratios 1s ratios 1s Ages 1s Ages 1s Ages 1s
16LP05
(Collected at ⑥ observation spot)
1 32.4 86.59 69.82 1.24 0.1119 0.003 4.803 0.097 0.311 0.004 1830 18 1785 17 1747 21
3 250.4 64.66 647.74 0.1 0.1236 0.001 5.615 0.04 0.33 0.002 2008 17 1918 6 1837 10
5 30.2 24.66 71.44 0.35 0.1159 0.002 5.479 0.073 0.343 0.003 1894 12 1897 11 1900 16
6 13.9 106.72 158.65 0.67 0.0562 0.002 0.529 0.017 0.068 0.001 460 44 431 11 425 6
7 40.4 298.58 503.76 0.59 0.0551 0.001 0.478 0.009 0.063 0.001 417 24 397 6 393 4
8 158.9 21.85 316.53 0.07 0.1392 0.002 7.968 0.071 0.415 0.003 2218 7 2227 8 2238 14
10 164.2 31.69 404.52 0.08 0.1231 0.001 5.944 0.044 0.35 0.002 2001 18 1968 6 1936 10
11 160.1 35.68 380 0.09 0.1227 0.001 6.133 0.046 0.362 0.002 1996 6 1995 7 1994 11
12 152 12.69 363.01 0.03 0.1237 0.001 6.221 0.047 0.365 0.002 2010 6 2007 7 2005 11
15 28.3 316.27 283.31 1.12 0.06 0.001 0.583 0.011 0.071 0.001 602 24 467 7 439 4
16 108.6 179.66 249.83 0.72 0.1145 0.001 5.166 0.047 0.327 0.002 1872 8 1847 8 1825 12
17 155.2 33.66 356.57 0.09 0.1216 0.001 6.097 0.051 0.364 0.002 1980 19 1990 7 1999 11
20 41.5 458.05 383.82 1.19 0.0617 0.003 0.629 0.025 0.074 0.001 662 90 495 15 460 5
22 17.4 131.52 189.93 0.69 0.0591 0.002 0.589 0.014 0.072 0.001 570 32 470 9 450 5
24 122.3 24.67 285.36 0.09 0.1248 0.001 6.408 0.051 0.372 0.003 2026 6 2033 7 2041 12
28 143.3 27.82 370.5 0.08 0.1235 0.001 5.717 0.048 0.336 0.002 2008 20 1934 7 1866 11
29 216.4 121.64 363.69 0.33 0.16 0.002 10.53 0.082 0.478 0.003 2455 6 2483 7 2517 14
33 192.2 57.87 435.42 0.13 0.1256 0.001 6.618 0.049 0.382 0.002 2038 6 2062 6 2086 12
34 34.6 59.81 87.79 0.68 0.1049 0.002 4.408 0.076 0.305 0.004 1713 16 1714 14 1715 17
35 22.5 92.07 280.15 0.33 0.0554 0.002 0.518 0.017 0.068 0.001 427 80 424 11 423 5
36 206.2 76.41 524.39 0.15 0.1214 0.001 5.674 0.046 0.339 0.002 1976 19 1927 7 1882 11
14LP03
(Collected at ⑤ observation spot)
1 8.17 79.34 84.52 0.94 0.0571 0.0031 0.5651 0.0285 0.0717 0.0011 496 85 455 19 446 6
2 125.4 133.87 747.28 0.18 0.0708 0.0016 1.4757 0.02 0.1511 0.0015 951 13 920 8 907 8
4 86.82 548.29 1273.57 0.43 0.0622 0.0016 0.4923 0.0085 0.0574 0.0006 525 64 381 8 358 4
5 25.06 43 62.53 0.69 0.1163 0.0034 4.9619 0.1129 0.3092 0.0042 1900 22 1813 19 1737 21
6 11.7 31.95 30.67 1.04 0.11 0.0039 4.1077 0.1232 0.2707 0.0042 1799 32 1656 24 1544 22
8 224.32 232.55 411.77 0.56 0.1606 0.0035 9.2603 0.1048 0.418 0.0042 2462 9 2364 10 2251 19
9 12.19 133.01 134.62 0.99 0.0609 0.0027 0.5615 0.022 0.0669 0.0009 634 61 453 14 417 5
10 26.05 42.42 64.54 0.66 0.1145 0.0031 4.9062 0.1014 0.3107 0.0039 1872 20 1803 17 1744 19
11 12.73 179.92 132.62 1.36 0.1182 0.0046 0.9433 0.0309 0.0579 0.0008 656 225 380 31 337 6
13 29.66 235.37 190.39 1.24 0.0742 0.0023 1.0371 0.0252 0.1014 0.0012 1046 30 722 13 622 7
15 28.1 234.81 298.24 0.79 0.0581 0.0019 0.584 0.0151 0.0729 0.0008 534 36 467 10 453 5
16 23.24 309.58 243.32 1.27 0.055 0.0019 0.5082 0.0149 0.067 0.0008 412 44 417 10 418 5
17 12.67 118.83 139.4 0.85 0.057 0.0025 0.5438 0.0208 0.0691 0.0009 493 61 441 14 431 5
18 8.4 59.99 80.82 0.74 0.0673 0.0034 0.6943 0.0321 0.0748 0.0012 503 174 467 28 459 7
19 44.65 727.02 432.77 1.68 0.063 0.0018 0.5776 0.0128 0.0665 0.0007 709 29 463 8 415 4
20 26.36 328.09 592.02 0.55 0.0755 0.0028 0.3487 0.011 0.0335 0.0004 224 146 207 12 206 3
21 28.62 196.15 261.53 0.75 0.0674 0.0022 0.7793 0.02 0.0839 0.001 850 34 585 11 519 6
22 19.75 44 45.86 0.96 0.1124 0.0042 4.8325 0.1603 0.3119 0.0054 1838 35 1791 28 1750 27
28 37.73 405.57 438.11 0.93 0.0561 0.0017 0.5 0.0122 0.0647 0.0007 456 34 412 8 404 4
29 37.96 512.81 374.67 1.37 0.0715 0.0021 0.6627 0.0151 0.0672 0.0008 537 134 432 20 412 5
30 23.02 196.75 249.1 0.79 0.0599 0.002 0.5926 0.0166 0.0718 0.0009 601 40 473 11 447 5
31 20.9 150.63 227.75 0.66 0.075 0.0025 0.7091 0.0192 0.0686 0.0008 555 116 441 18 419 5
32 128.77 82.79 334.95 0.25 0.1203 0.0027 5.4246 0.0685 0.3273 0.0034 1960 10 1889 11 1825 17
14LP04
(Collected at ④ observation spot)
1 35.53 199.78 280.24 0.71 0.0801 0.0026 1.1174 0.0286 0.1012 0.0012 1059 87 721 21 617 8
2 13 202.75 130.53 1.55 0.0592 0.0026 0.5453 0.0212 0.0668 0.0009 575 61 442 14 417 5
4 44.78 400.66 496.53 0.81 0.0579 0.0016 0.5661 0.0116 0.0709 0.0008 525 26 455 8 442 5
5 57.09 27.81 179.09 0.16 0.1222 0.0032 4.5711 0.0853 0.2712 0.0033 1859 45 1674 17 1530 17
6 10.34 98.29 117.24 0.84 0.0601 0.0026 0.5694 0.0222 0.0687 0.0009 608 60 458 14 428 6
7 69.24 156.11 158.28 0.99 0.1206 0.0029 5.4044 0.0817 0.3249 0.0036 1965 13 1886 13 1814 18
8 27.4 259.06 294.82 0.88 0.0636 0.002 0.6194 0.0153 0.0706 0.0008 729 33 489 10 440 5
9 69.12 168.46 158.28 1.06 0.1239 0.0032 5.7232 0.1079 0.3348 0.0042 2014 17 1935 16 1862 20
10 10.53 108.53 116.18 0.93 0.0585 0.0026 0.5599 0.0228 0.0694 0.001 550 64 451 15 432 6
11 21.41 183.74 242.59 0.76 0.0569 0.002 0.551 0.0158 0.0702 0.0008 489 42 446 10 437 5
12 19.11 158.12 220.33 0.72 0.056 0.002 0.54 0.0167 0.0699 0.0009 454 47 438 11 435 5
13 138.91 269.57 163.69 1.65 0.2281 0.0051 18.4964 0.2458 0.5878 0.0067 3039 10 3016 13 2981 27
14 11.81 91.98 142.44 0.65 0.0569 0.0024 0.5274 0.0199 0.0672 0.0009 488 60 430 13 419 5
15 11.33 22.16 29.45 0.75 0.1079 0.0043 4.3776 0.158 0.2941 0.0053 1675 105 1662 43 1651 28
18 38.88 274.83 291.65 0.94 0.0715 0.0032 0.5879 0.0238 0.0596 0.0009 511 173 387 24 367 6
19 12.11 194.73 240.07 0.81 0.0813 0.0032 0.4076 0.0139 0.0364 0.0005 337 171 232 15 222 3
20 99.05 244.12 212.18 1.15 0.1213 0.0028 5.5012 0.0784 0.3289 0.0036 1975 12 1901 12 1833 17
21 55.48 211.45 332.88 0.64 0.0691 0.0018 1.2796 0.0231 0.1342 0.0015 902 20 837 10 812 8
22 21.48 469.62 451.89 1.04 0.0495 0.0019 0.2465 0.008 0.0361 0.0004 173 54 224 7 229 3
23 20.39 381.03 440.83 0.86 0.0493 0.0019 0.2447 0.0079 0.036 0.0004 163 53 222 6 228 3
24 15.3 146.76 175.59 0.84 0.0542 0.0022 0.5087 0.0178 0.0681 0.0009 379 55 418 12 425 5
25 16.12 101.39 194.07 0.52 0.0565 0.0021 0.5425 0.0174 0.0697 0.0009 471 49 440 11 434 5
26 70.1 559.16 849.72 0.66 0.0561 0.0014 0.5165 0.0091 0.0668 0.0007 455 21 423 6 417 4
27 43.29 87.78 591.28 0.15 0.0568 0.0015 0.5299 0.0105 0.0677 0.0007 482 25 432 7 422 4
29 43.95 439.95 489.38 0.9 0.0565 0.0016 0.5314 0.0115 0.0682 0.0008 472 29 433 8 425 5
30 27 265.3 302.29 0.88 0.059 0.0019 0.5526 0.0143 0.068 0.0008 565 36 447 9 424 5
33 26.03 12.71 68.24 0.19 0.1173 0.0032 5.4684 0.114 0.3382 0.0045 1915 20 1896 18 1878 22
34 27.77 323.26 284.38 1.14 0.0566 0.0019 0.5575 0.0155 0.0714 0.0009 477 41 450 10 445 5
36 106.83 102.37 374.38 0.27 0.0952 0.0022 3.2884 0.0462 0.2505 0.0027 1471 39 1450 13 1436 14
37 23.73 246.02 252.5 0.97 0.0548 0.0019 0.5275 0.0156 0.0699 0.0009 402 44 430 10 435 5
38 25.07 359.3 243.87 1.47 0.0561 0.0019 0.5328 0.0155 0.0689 0.0008 455 43 434 10 430 5
39 11.29 117.82 263.15 0.45 0.0903 0.0042 0.4013 0.0169 0.0322 0.0005 107 185 187 14 194 3
40 52.6 17.97 130.48 0.14 0.121 0.0029 5.9466 0.0978 0.3565 0.0042 1971 14 1968 14 1966 20
Tab.2  LA-ICP-MS U–Pb data for zircons from greenschists and the interbedded siltstones within greenschists
Fig.11  Cathodoluminescence (CL) images of zircons from the siltstones interbedded with the greenschists. Circles indicate analysis sites, and figures within the circles are analysis numbers; the ages are given below the corresponding zircons.
Fig.12  Concordia diagrams for the siltstones interlayered with the greenschists. Interpreted ages are 206Pb/238U for zircons with ages of<1.0 Ga and 207Pb/206Pb for zircons with ages of>1.0 Ga.
Position Rock type Method Age/Ma References
Shangdan suture in the Qinling orogenic belt Lamprophyre 40Ar/39Ar 219±2 Wang et al., 2007
Western Qinling orogenic belt Rhyolite Zircon U-Pb LA-ICP-MS 211±6 Xu et al., 2007
Western Qinling orogenic belt Medium-fine-grained two mica granite Zircon U-Pb LA-ICP-MS 213+2~214+1 Wang et al, 2011
Longshan Monzogranite Zircon U-Pb SHRIMP 229±7 Zhang et al., 2006
Western Qinling orogenic belt Monzogranite Zircon U-Pb LA-ICP-MS 213±3 Qin et al, 2009
Qinling Granitoids, diorite Zircon U-Pb SHRIMP 227~218 Jiang et al., 2010
Western Qinling orogenic belt Rhyolite Zircon U-Pb LA-ICP-MS 214.6±8 Qiu, 2011
Western Qinling orogenic belt quartz monzodiorite Zircon U-Pb LA-ICP-MS 214.5±1.6 Li et al., 2013
Western Qinling orogenic belt Quartz orthophyre Zircon U-Pb LA-ICP-MS 209.3±5.8 Ding et al., 2015
Tab.3  Magmatic rocks of Late Triassic in the western Qinling orogen and Longshan area
Rock type Method Age/Ma References
Metamorphic intermediate- acidic volcanic rocks Zircon U-Pb LA-ICP-MS 461.2±3.1 Wei, 2013
Metamorphic intermediate- acidic volcanic rocks Zircon U-Pb LA-ICP-MS 462.4±3.4 Wei, 2013
Basalt Zircon U-Pb LA-ICP-MS 443.4±1.7 He et al., 2007
Granodiorite Zircon U-Pb LA-ICP-MS 457.0±3.2 Wei, 2013
Granodiorite Zircon U-Pb LA-ICP-MS 440.5±4.4 Wei et al., 2012
Quartz diorite Zircon U-Pb LA-ICP-MS 454.7±1.7 Chen et al., 2007
Diorite Zircon U-Pb SHRIMP 441±10 Zhang et al., 2006
Diorite Zircon U-Pb LA-ICP-MS 440.2±0.92 Pei et al., 2007a
Monzogranite Zircon U-Pb SHRIMP 434±10 Zhang et al., 2006
Medium-coarse grained gabbro Zircon U-Pb LA-ICP-MS 434.6±1.5 Pei et al., 2007b
Medium-coarse grained porphyroid syenogranite Zircon U-Pb LA-ICP-MS 413.8±2.1 Wang, 2013
Syenogranite Zircon U-Pb LA-ICP-MS 423.8±2.8 Wang, 2013
Syenogranite Zircon U-Pb LA-ICP-MS 438.1±2.6 Wang, 2013
Tab.4  Magmatic rocks with formation ages of 413? 452 Ma in the Longshan area
Fig.13  Discrimination diagram for the greenschists (after Wood, 1980). A= N-MORB; B= E-MORB and intraplate tholeiite; C= intraplate alkaline basalt; D= volcanic arc basalt.
1 S MBai, C G Lu (2009). The characteristics and age of south section of Helanshan Dazhangchang granodiorite. NingXia Enginering Technology, 8: 282–286 (in Chinese)
2 Baoji Geological Map (1966). Shaanxi Institute of Geological Survey
3 Baojishi Geological Map (2003). Shaanxi Institute of Geological Survey
4 W WBoynton (1984). Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry: Developments in Geochemistry 2. Amsterdam: Elsevier, 63–114
5 Bureau of Geology and Mineral Resources of Ningxia Hui Autonomous Region (1990). Regional geology of Ningxia Hui Autonomous Region. Beijing: Geological Publishing House, p. 331 (in Chinese)
6 Bureau of Geology and Mineral Resources of Shaanxi Province (1989).Regional Geology of Shaanxi Province. Beijing: Geological Publishing House, p. 243 (in Chinese)
7 J LChen, H B Li, H L Wang, S P He, Z X Zeng, X Y Xu, X M Li (2007). LA-ICPMS Zircon U-Pb dating of a quartz diorite pluton from Wangjiacha, the junction area between the Qinling and Qilian orogenic belts and its tectonic significance. Journal of Jilin University (Earth Science Edition), 37: 423–431
8 M LCui, B L Zhang, L C Zhang (2011). U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton: constrains on the timing and tectonic setting of the Paleoproterozoic Xiong’er Group. Gondwana Res, 20(1): 184–193
https://doi.org/10.1016/j.gr.2011.01.010
9 X HDeng, Y J Chen, M Santosh, J MYao (2013). Genesis of the 1.76 Ga Zhaiwa Mo-Cu and its link with the Xiong’er volcanics in the North China Craton: implications for accretionary growth along the margin of the Columbia supercontinent. Precambrian Res, 227: 337–348
https://doi.org/10.1016/j.precamres.2012.02.014
10 X QDeng, F X Lin, X Y Liu, J L Pang, J W Lu, S X Li, X Liu (2008). Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin. Journal of Paleogeography, 102: 159–166 (in Chinese)
11 S ZDing, J H Luo, J X Cheng, K Han, S DWang, JYou (2014). Geochemistry and chronology of quartz orthophyre in Boyang of the western Qinling orogenic belt, and their geological significance. Earth Sci Front, 22: 247–254 (in Chinese)
12 S BFeng, X Q Yuan, J He, C YWang, PHan, W C Li, T Y Li (2009). Sedimentary tectonic setting of Upper Triassic Yaoshan Formation of Liupanshan area of western Ordos basin. Low Permeability Oil & Gas Fields, 3: 1–5 (in Chinese)
13 F AFrey, D H Green, S D Roy (1978). Integrated models of basalt petrogenesis: a study of quartze tholeiites to olivine molarities from south eastern Australia utilizing geochemical and experimental petrological data. J Petrol, 19(3): 463–513
https://doi.org/10.1093/petrology/19.3.463
14 DGünther, B Hattendorf (2005). Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry: TrAC. Trends Analyt Chem, 24(3): 255–265
https://doi.org/10.1016/j.trac.2004.11.017
15 PHan, S B Feng, X M Li, K L Wang, X Q Yuan, J He, A PHu (2014). Geological evidence of “the archaic uplift” of Late Triassic in western margin of Ordos basin and identification of original boundary in the west of basin. Journal of Oil and Gas Technology, 36: 1–5 (in Chinese)
16 S PHe, H L Wang, X Y Xu, H F Zhang, G M Ren (2007). A LA-ICP-MS U-Pb chronological study of zircons from Hongtubu basic volcanic rocks and its geological significance in the east segment of north Qilian orogenic belt. Advances in Earth Science, 22: 143–151 (in Chinese)
17 Y HHe, Y Sun, LChen, H PLi, H LYuan, X MLiu (2005). Zircon U-Pb chronology of Longshan complex by LA-ICP-MS and its geological significance. Acta Petrologica Sinica, 21: 125–134 (in Chinese)
18 Y HHe, G C Zhao, M Sun, X PXia (2009). SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Res, 168(3–4): 213–222
https://doi.org/10.1016/j.precamres.2008.09.011
19 G THou, J H Li, Y L Liu, L Qian Xi (2008). The late Paleoproterozoic extension event: aulacogens and dyke swarms in the North China Craton. Prog Nat Sci, 16(2): 201–208
20 F XHuang, X X Mo, X H Yu, X W Li, Y Ding, PWei, W YHe (2013). Zircon U-Pb chronology,geochemistry of the Late Triassic acid volcanic rocks in Tanchang area,West Qinling and their geological significance. Acta Petrologica Sinica, 29: 3968–3980 (in Chinese)
21 T N,Irvine W R A Baragar (1971). A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci, 8: 523–548
22 Y HJiang, G D Jin, S Y Liao, Q Zhou, PZhao (2010). Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent-continent collision. Lithos, 117(1–4): 183–197
https://doi.org/10.1016/j.lithos.2010.02.014
23 M JLe Bas, R WLe Maitre, AStreckeisen, AStreckeisen, BZanettin (1986). A chemical classification of volcanic rocks based on the total alkali-sillica diagram. J Petrol, 27(3): 745–750
https://doi.org/10.1093/petrology/27.3.745
24 Z CLi, X Z Pei, R B Li, L Pei, BHu, C JLiu, G CChen, Y XChen (2013). LA-ICP-MS zircon U-Pb dating, geochemistry of the Mishuling intrusion in western Qinling and their tectonic significance. Acta Petrologica Sinica, 29: 2617–2634 (in Chinese)
25 S FLiu, S Su, G WZhang (2013). Early Mesozoic basin development in North China: indications of cratonic deformation. J Asian Earth Sci, 62(30): 221–236
https://doi.org/10.1016/j.jseaes.2012.09.011
26 Y QLiu, H W Kuang, N Peng, HXu, PZhang, N SWang, WAn, Y Wang, MLiu, X FHu (2015). Mesozoic basins and associated paleogeographic evolution in North China. Journal of Palaeogeography, 4(2): 189–202
https://doi.org/10.3724/SP.J.1261.2015.00073
27 S NLu, C L Yang, H K Li, H M Li (2002). A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Res, 5(1): 123–131
https://doi.org/10.1016/S1342-937X(05)70896-0
28 K RLudwig (2001). Users Manual for Isoplot/Ex Rev. 2.49. Berkeley Geochronology Centre Special Publication (No. 1a), 1–56
29 J APearce (1982). Trace element characteristics of lave from destructive plate boundaries. Chichester: Wiley,525–548
30 X ZPei, S P Ding, G W Zhang, H B Liu, Z C Li, G Y Li, Z Q Liu, Y Meng (2007b). The LA-ICP-MS zircons U-Pb ages and geochemistry of the Baihua basic igneous complexes in Tianshui area of West Qinling. Sci China Earth Sci, 50(S2): 264–276
https://doi.org/10.1007/s11430-007-6028-8
31 X ZPei, R Q Sun, S P Ding, H B Liu, Z C Li, Z Q Liu, Y Meng (2007a). LA-ICP-MS zircon U-Pb dating of the Yanjiadian diorite in the eastern Qilian Mountains and its geological significance. Geology in China, 34: 8–16 (in Chinese)
32 PPeng, X P Wang, Y Lai, CWang, FWindley B (2015). Large-scale liquid immiscibility and fractional crystallixation in the 1780 Ma Taihang dyke swarm: implications for genesis of the bimodal Xiong’er volcanic province. Lithos, 236 – 237: 106–122
https://doi.org/10.1016/j.lithos.2015.08.015
33 PPeng, M G Zhai, E Richard (2008). A 1.78 Ga large igneous province in the North China Craton: The Xiong’er Volcanic Province and the North China dyke swarm. Lithos, 101(3–4): 260–280
https://doi.org/10.1016/j.lithos.2007.07.006
34 J FQin, S C Lai, R Grapes, C RDiwu, Y JJu, Y FLi (2009). Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China). Lithos, 112(3–4): 259–276
https://doi.org/10.1016/j.lithos.2009.03.007
35 X WQiu (2011). Characteristic and dynamic settings of Yanchang period hydrocarbon-rich depression in Ordos basin, China. Dissertation for PhD degree. Xi’an: Northwest University, 1–80 (in Chinese)
36 X WQiu, C Y Liu, G Z Mao, Y Deng, F FWang, J QWang (2014). Late Triassic tuff intervals in the Ordos basin, Central China: their depositional, petrographic, geochemical characteristics and regional implications. J Asian Earth Sci, 80(5): 148–160
https://doi.org/10.1016/j.jseaes.2013.11.004
37 S SSun, W F McDonough (1989). Chemical and isotope systematics of ocean baslt: implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society Special Publication, 42: 313–345
38 FWang, C Y Liu, X K Yang, C Q Su (2005). Geologic geochemical features of basalt in Ruqi clough of Helan Mountain and its structural environmental significance. Petroleum Geology & Oilfield Development in Daqing, 24: 25–27 (in Chinese)
39 T GWang, P Ni, W DSun, K DZhao, X DWang (2011). Zircon U-Pb ages of granites at Changba and Huangzhuguan in western Qinling and implications for source nature. Science Bulletin, 56(7): 659–669
https://doi.org/10.1007/s11434-010-4319-5
40 X LWang, S Y Jiang, B Z Dai (2010). Melting of enriched Archean subcontinental lithospheric mantle: evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton. Precambrian Res, 182(3): 204–216
https://doi.org/10.1016/j.precamres.2010.08.007
41 X XWang, T Wang, B MJahn, N GHu, WChen (2007). Tectonic significance of Late Triassic post-collisional lamprophyre dykes from the Qinling Mountains (China). Geol Mag, 114: 837–848
42 Y CWang (2013). Geological characteristics and tectonic significance of Caledonian collision-post collision type granite at the conjunction of Qinling and Qilian.Dissertation for Master degree. Xi’an: Chang’an University, 1–68 (in Chinese)
43 F HWei (2013). Composition, structural characteristics and geological evolution of north Qilian orogen (the eastern) in Early Paleozoic. Dissertation for Master degree.Xi’an: Chang’an University, 1–65 (in Chinese)
44 F HWei, X Z Pei, R B Li, Z C Li, L Pei, J MGao, Y CWang, C JLiu, S KWu, Y XChen (2012). LA-ICP-MS zircon U-Pb dating of Early Paleozoic Huangmenchuan granodiorite in Tianshui area of Gansu Province and its tectonic significance. Geological Bulletin of China, 31: 1496–1509 (in Chinese)
45 MWiedenbeck, P Allé, FCorfu, W LGriffin, MMeier, FOberli, AVonquadt, J CRoddick, WSpeigel (1995). 3 natural zircon standards for U-Th-Pb, Lu-Hf, traceelement and REE analyses. Geostand Newsl, 19(1): 1–23
https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
46 MWiedenbeck, J M Hanchar, W H Peck, P Sylvester, JValley, MWhitehouse, Z AKron, YMorishita, LNasdala, JFiebig, IFranchi, J PGirard, R CGreenwood, RHinton, NKita, P R D Mason, M Norman, MOgasawara, P MPiccoli, DRhede, HSatoh, BSchulz-Dobrick, OSkår, M JSpicuzza, KTerada, ATindle, STogashi, TVennemann, QXie, Y F Zheng (2004). Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res, 28(1): 9–39
https://doi.org/10.1111/j.1751-908X.2004.tb01041.x
47 D AWood (1980). The application of a Th–Hf–Ta diagram to problems of tectono-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet Sci Lett, 50(1): 11–30
https://doi.org/10.1016/0012-821X(80)90116-8
48 X YXu, H L Wang, J L Chen, X H Su, P Wu, TGao (2007). Zircon U-Pb age, element geochemistry of Mesozoic acid volcanic rocks at Yindaoshi area in western Qinling. Acta Petrologica Sinica, 23: 2845–2856 (in Chinese)
49 HYang, J H Fu, Z J Ouyang, L Y Sun, Z R Ma (2010). U-Pb Zircon Dating of the Daling-Gugutai Basalt in Rujigou on the Western Margin of Ordos Basin. Acta Geoscientica Sinica, 31: 229–236 (in Chinese)
50 X HYu, X X Mo, Z D Zhao, W Y He, Y Li (2011). Cenozoic bimodal volcanic rocks of the West Qinling: implication for the genesis and nature of the rifting of north-south tectonic belt. Acta Petrologica Sinica, 27: 2195–2202 (in Chinese)
51 M GZhai, B Hu, T PZhao, PPeng, Q R Meng (2015). Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance: a study advance and review. Tectonophysics, 662: 153–166
https://doi.org/10.1016/j.tecto.2015.01.019
52 H FZhang, B R Zhang, H Harris , LZhang, Y LChen, N SChen, Z DZhao (2006). U-Pb zircon SHRIMP ages, geochemical and Sr–Nd–Pb isotopic compositions of intrusive rocks from the Longshan–Tianshui area in the southeast corner of the Qilian orogenic belt, China: constraints on petrogenesis and tectonic affinity. J Asian Earth Sci, 27(6): 751–764
https://doi.org/10.1016/j.jseaes.2005.07.008
53 ZZhang, S Z Li, H H Cao, I D Somerville, S J Zhao, S Yu (2015). Origin of the North Qinling Microcontinent and Proterozoic geotectonic evolution of the Kuanping Ocean, Central China. Precambrian Res, 266: 179–193
https://doi.org/10.1016/j.precamres.2015.05.024
54 G CZhao, Y H He, M Sun (2009). The Xiong’er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Res, 16(2): 170–181
https://doi.org/10.1016/j.gr.2009.02.004
55 T PZhao, Y H Xu, M G Zhai(2007). Origin and tectonic setting of the Proterozoic Xiong’er Group volcanic rocks in the southern part of the North China Craton; Facts and controversies. Geological Journal of China Universities, 13(2): 191–206
56 T PZhao, M G Zhai, B Xia, H MLi, Y XZhang, Y SWan (2004). Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: constraints on the initial formation age of the cover of the North China Craton. Science Bulletin, 49(23): 2495–2502
https://doi.org/10.1007/BF03183721
57 T PZhao, M F Zhou, M G Zhai, B Xia (2002). Palaeoproterozoic rift-related volcanism of the Xiong’er Group in the North China Craton: implications for the break-up of Columbia. Int Geol Rev, 44(4): 336–351
https://doi.org/10.2747/0020-6814.44.4.336
58 W ZZhao, X M Wang, Y R Guo, H Q Liu, Y L Bai (2006). Restoration and tectonic reworking of the Late Triassic basin in western Ordos Basin. Petroleum Exploration and Development, 33: 6–13 (in Chinese)
59 D WZhou, C Y Zhao, Y D Li, W C Jian, J Ye, GChen (1994). Geological features of southwest margin of Ordos basin and its relationships with Qinling orogenic belt. Beijing: Geological Publishing House, 98–110 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed