Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2019, Vol. 13 Issue (1) : 209-228    https://doi.org/10.1007/s11707-018-0708-x
RESEARCH ARTICLE
Lithotectonic elements of Archean basement on the Liaodong Peninsula and its vicinity, North China Craton, China
Zhuang LI1,2(), Bin CHEN3
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
2. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
3. Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, China
 Download: PDF(15022 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Liaodong Peninsula, in the northeastern part of the Eastern Block in the North China Craton, China, consists of lithologic units from Archean to Cenozoic in age. The basement rocks consist of widespread amphibolite- to granulite-facies Archean supracrustal assemblages and granitoid gneisses, as well as Paleoproterozoic volcano-sedimentary successions that were intruded by granitic–mafic complexes, and then metamorphosed under greenschist- to amphibolite-facies conditions. The basement rocks are overlain by thick Mesoproterozoic–Cenozoic sedimentary sequences. A synthesis of the available petrological and geochronological data allowed us to establish a geological framework for the Precambrian basement on the Liaodong Peninsula and its vicinity. The basement can be subdivided into three tectonic units: the Neoarchean Liaonan Block, the Eo–Neoarchean Longgang Block, and the intervening Paleoproterozoic Jiao–Liao–Ji Belt. In this paper we delineate the characteristics of an Archean tectonothermal event, and in a companion paper we examine the Paleoproterozoic lithotectonic assemblages. Rock samples of the Hadean eon are rare worldwide, but Hadean zircons have been identified in rocks of the Liaodong Peninsula, and they provide one of the oldest known mineralogical records on Earth. The Archean gneisses in the Liaonan Block are dominated by quartz dioritic–granodioritic gneisses that were emplaced between 2.55 and 2.44 Ga, and these rocks later underwent a lower-amphibolite-facies metamorphism. On the other hand, the Archean basement in the Longgang Block is dominated by TTG (tonalitic–trondhjemitic–granodioritic) and granitic gneisses, charnockites, and small amounts of supracrustal sequences with much older protolith ages of up to 3.85 Ga, and these rocks have undergone amphibolite- to granulite-facies metamorphism. Post-tectonic magmatism (ca. 2.5 Ga) marked the end of the Archean tectonothermal event in the Eastern Block of the North China Craton.

Keywords Archean      basement      Liaodong Peninsula      North China Craton     
Corresponding Author(s): Zhuang LI   
Just Accepted Date: 07 June 2018   Online First Date: 02 August 2018    Issue Date: 25 January 2019
 Cite this article:   
Zhuang LI,Bin CHEN. Lithotectonic elements of Archean basement on the Liaodong Peninsula and its vicinity, North China Craton, China[J]. Front. Earth Sci., 2019, 13(1): 209-228.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-018-0708-x
https://academic.hep.com.cn/fesci/EN/Y2019/V13/I1/209
Fig.1  (a) Schematic map of reconstructed 1.8 Ga Nuna showing the location of the NCC. (b) Geological sketch map of the Liaodong Peninsula and its vicinity. Stars indicate the known locations of Hadean zircons on the Liaodong Peninsula. See Figs. 3 and 4 for more details. (modified after Zhao et al., 2005; Li et al., 2011, 2016b, c)
Fig.2  Geological map of the Archean–Paleoproterozoic basement and post-Paleoproterozoic cover rocks of the Liaodong Peninsula and its vicinity (modified after Li et al., 2005, 2011, 2016a; Pei et al., 2011).
Fig.3  (a) Photographs showing detailed lithological assemblages in Anshan. The thick lines mark the contacts between different rocks. (b) U–Pb concordia diagram for zircons from the fine-grained amphibolite in Anshan City. Insets in Fig. 3(b) show CL and reflected light images of the structure in a 4174 Ma zircon xenocryst, and U–Pb concordia diagrams of magmatic zircons (blue circles) and metamorphic zircons (red circles) (modified after Cui et al., 2013).
Fig.4  (a) Field photograph showing that the staurolite–garnet–mica schist (d) is intercalated with dolomitic marbles (b) and (c) at Dashiqiao. (e) Microphotograph of the staurolite–garnet–mica schist (LHZ1). (f) U–Pb concordia diagram for zircons from the schist. Insets in Fig. 4(f) show a CL image and a schematic of the 4087 Ma detrital zircon, and the U–Pb concordia diagram for the youngest detrital zircons (modified after Li et al., 2016b). Pl= plagioclase; Q= quartz; Ga= garnet; St= staurolite; Bt= biotite.
Fig.5  Regional distribution of Eoarchean to Neoarchean basement in Anshan (modified after Wu et al., 1998; Wan et al., 2001, 2012a, 2015). Each star represents a locality for the ca. 3.8 Ga trondhjemitic gneiss. Legend: 1= Cenozoic cover; 2= Mesozoic granite; 3= Neoproterozoic quartzite; 4= Liaohe Group; 5= BIF in the Anshan Group; 6= ca. 2.5 Ga Qidashan potassium granite; 7= ca. 3.0 Ga Dongshan Granite; 8= ca. 3.0 Ga Tiejiashan Granite; 9= ca. 3.1 Ga Chentaigou Granite; 10= ca. 3.3 Ga Chentaigou supracrustal rocks; 11= 3.8–3.3 Ga Baijiafen, Dongshan, Shengousi, and Guodishan complexes; 12= ultramafic rocks; 13= ca. 3.3 Ga Chentaigou supracrustal rocks; 14= ca. 3.1 Ga Lishan Trondhjemite.
Fig.6  Photographs of representative Eoarchean rocks (a–c), Paleoarchean rocks (d–f), and Mesoarchean rocks (g–i) in Anshan (see Supplementary materials Table S1 and references therein). Pl= plagioclase; Q= quartz; Mi= microcline; Bt= biotite.
Fig.7  Field photographs of representative Mesoarchean rocks in Luanjiajie.
Fig.8  Geological sketch map of the Qingyuan granite–greenstone terrane (modified after Li and Shen, 2000; Wan et al., 2005a; Peng et al., 2015).
Fig.9  (a–i) Photographs of representative Neoarchean supracrustal rocks in Qingyuan. (j) Measured section of the Neoarchean supracrustal sequence along the Fangniugou section. The stars represent the locations of selected samples, and the numbers by each star give the SiO2 content for each sample. Pl = plagioclase; Hb = hornblende; Bt = biotite; Q = quartz.
Fig.10  Photographs of representative Neoarchean granitoids in Qingyuan. Pl= plagioclase; Opx= orthopyroxene; Bt= biotite; Q= quartz.
Fig.11  Digital topographic map of Liaoning Province and its vicinity, showing the relationship between metamorphic grade and basement age.
Fig.12  Regional distribution of Neoarchean basement around Dalian and Changhai in the Liaonan Block (modified after Meng et al., 2013).
Fig.13  Photographs of representative Neoarchean rocks at Dalian (a–c) and Changhai (d–i). Pl= plagioclase; Hb= hornblende; Bt= biotite; Q= quartz; kfs= K-feldspar; Ep= epidote; Ms= muscovite.
1 JBai (1993). The Precambrian Geology and Pb–Zn Mineralization in the Northern Margin of North China Platform. Beijing: Geological Publishing House, 132 (in Chinese)
2 XBai, S W Liu, M Yan, L FZhang, WWang, R R Guo, B R Guo (2014). Geological event series of Early Precambrian metamorphic complex in South Fushun area, Liaoning Province. Acta Petrological Sinica, 30: 2905–2924 (in Chinese)
3 A JCavosie, J W Valley, S Wilde (2007). The oldest terrestrial mineral record: a review of 4400 to 4000 Ma detrital zircons from Jack Hills, Western Australia. Developments in Precambrian Geology, 15: 91–111
https://doi.org/10.1016/S0166-2635(07)15025-8
4 BChen, Z Li, J LWang, LZhang, X LYan (2016). ~2.2 Ga magmatic event in the Liaodong Peninsula and its geological significance. Journal of Jilin University(Earth Science Edition), 461: 1–14
5 WCompston, R T Pidgeon (1986). Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature, 321(6072): 766–769
https://doi.org/10.1038/321766a0
6 K CCondie, C O’Neill, R CAster (2009). Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet Sci Lett, 282(1‒4): 294–298
https://doi.org/10.1016/j.epsl.2009.03.033
7 P LCui, J G Sun, D M Sha, X J Wang, P Zhang, A LGu, Z YWang (2013). Oldest zircon xenocryst (4.17 Ga) from the North China Craton. Int Geol Rev, 55(15): 1902–1908
https://doi.org/10.1080/00206814.2013.805925
8 MFaure, P Trap, WLin, PMonie, OBruguier (2007). Polyorogenic evolution of the Paleoproterozoic Trans–North China Belt, new insights from the Lvliangshan–Hengshan–Wutaishan and Fuping massifs. Episodes, 30: 1–12
9 SGao, R L Rudnick, H L Yuan, X M Liu, Y S Liu, W L Xu, W L Ling, J Ayers, X CWang, Q HWang (2004). Recycling lower continental crust in the North China Craton. Nature, 432(7019): 892–897
https://doi.org/10.1038/nature03162
10 M LGrant, S A Wilde, F Wu, JYang (2009). The application of zircon cathodolumi–nescence imaging, Th–U–Pb chemistry and U–Pb ages in interpreting discretemagmatic and high–grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chem Geol, 261(1‒2): 155–171
https://doi.org/10.1016/j.chemgeo.2008.11.002
11 B RGuo, S W Liu, J Zhang, WWang, J HFu, M JWang (2016). Neoarchean Andean–type active continental margin in the northeastern North China Craton: geochemical and geochronological evidence from metavolcanic rocks in the Jiapigou granite–greenstone belt, Southern Jilin Province. Precambrian Res, 285: 147–169
https://doi.org/10.1016/j.precamres.2016.09.025
12 B RGuo, S W Liu, J Zhang, MYan (2015). Zircon U–Pb–Hf isotope systematics and geochemistry of Helong granite–greenstone belt in Southern Jilin Province, China: implications for Neoarchean crustal evolution of the northeastern margin of North China Craton. Precambrian Res, 271: 254–277
https://doi.org/10.1016/j.precamres.2015.10.009
13 BGuo, S W Liu, M Santosh, WWang (2017). Neoarchean arc magmatism and crustal growth in the north–eastern North China Craton: evidence from granitoid gneisses in the Southern Jilin Province. Precambrian Res, 303: 30–53
https://doi.org/10.1016/j.precamres.2016.12.009
14 J HGuo, M Sun, F KChen, M GZhai (2005). Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision. J Asian Earth Sci, 24 (5): 629–642 doi:
15 D FHao, S Z Li, G C Zhao, M Sun, Z ZHan, G TZhao (2004). Origin and its constraint to tectonic evolution of Paleoproterozoic granitoids in the eastern Liaoning and Jilin province, North China. Acta Petrological Sinica, 20: 1409–1416 (in Chinese)
16 T MHarrison (2009). The Hadean crust: evidence from>4 Ga zircons. Annu Rev Earth Planet Sci, 37(1): 479–505
https://doi.org/10.1146/annurev.earth.031208.100151
17 TIizuka, T Komiya, S PJohnson, YKon, S Maruyama, THirata (2009). Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: evidence from in–situ Lu–Hf isotope analysis of zircon. Chem Geol, 259(3‒4): 230–239
https://doi.org/10.1016/j.chemgeo.2008.11.007
18 A F MKisters, R WBelcher, MPoujol, ADziggel (2010). Continental growth and convergence–related arc plutonism in the Mesoarchaean: evidence from the Barberton granitoid–greenstone terrain, South Africa. Precambrian Res, 178(1‒4): 15–26
https://doi.org/10.1016/j.precamres.2010.01.002
19 T MKusky (2011). Comparison of results of recent seismic profiles with tectonic models of the North China Craton. J Earth Sci, 22(2): 250–259
https://doi.org/10.1007/s12583-011-0178-5
20 J JLi, B F Shen (2000). Geochronology of Precambrian continental crust in Liaoning Province and Jilin Province. Progess in Precambrian Research, 23: 249–255 (in Chinese)
21 S ZLi, D F Hao, G C Zhao, M Sun, Z ZHan, X YGuo (2004a). Geochemical features and origin of Dandong granite. Acta Petrological Sinica, 20: 1417–1423 (in Chinese)
22 S ZLi, G C Zhao (2007). SHRIMP U–Pb zircon geochronology of the Liaoji granitoids: constraints on the evolution of the Paleoproterozoic Jiao–Liao–Ji belt in the Eastern Block of the North China Craton. Precambrian Res, 158(1‒2): 1–16
https://doi.org/10.1016/j.precamres.2007.04.001
23 S ZLi, G C Zhao, M Santosh, XLiu, L MDai (2011). Palaeoproterozoic tectono–thermal evolution and deep crustal processes in the Jiao–Liao–Ji Belt, North China Craton: a review. Geol J, 46(6): 525–543
https://doi.org/10.1002/gj.1282
24 S ZLi, G C Zhao, M Santosh, XLiu, L MDai, Y HSuo, Tam P Y, M CSong, P CWang (2012). Paleoproterozoic structural evolution of the southern segment of the Jiao–Liao–Ji Belt, North China Craton. Precambrian Res, 200–203: 59–73
https://doi.org/10.1016/j.precamres.2012.01.007
25 S ZLi, G C Zhao, M Sun, Z ZHan, YLuo, D Hao, X PXia (2005). Deformation history of the Paleoproterozoic Liaohe assemblages in the Eastern Block of the North China Craton. J Asian Earth Sci, 24(5): 659–674
https://doi.org/10.1016/j.jseaes.2003.11.008
26 S ZLi, G C Zhao, M Sun, Z ZHan, G TZhao, D FHao (2006). Are the South and North Liaohe Groups of North China Craton different exotic terrains? Nd isotope constraints. Gondwana Res, 9(1‒2): 198–208 doi:10.1016/j.gr.2005.06.011
27 S ZLi, G C Zhao, M Sun, F YWu, J ZLiu, D FHao, Z ZHan, YLuo (2004b). Mesozoic, not Paleoproterozoic SHRIMP U–Pb zircon ages of two Liaoji granites, Eastern Block, North China Craton. Int Geol Rev, 46(2): 162–176
https://doi.org/10.2747/0020-6814.46.2.162
28 X HLi, X M Liu, Y S Liu, L Su, W DSun, H QHuang, KYi (2015d). Accuracy of LA–ICPMS zircon U–Pb age determination: an inter–laboratory comparison. Sci China Earth Sci, 58(10): 1722–1730
https://doi.org/10.1007/s11430-015-5110-x
29 ZLi, B Chen (2014). Geochronology and geochemistry of the Paleoproterozoic meta–basalts from the Jiao–Liao–Ji Belt, North China Craton: implications for petrogenesis and tectonic setting. Precambrian Res, 255: 653–667
https://doi.org/10.1016/j.precamres.2014.07.003
30 ZLi, B Chen (2015). Geochronological framework of the early Precambrian rocks in the Liaodong Peninsula and their geodynamic implications. Journal of Jilin University (Earth Science Edition), 45: 1503–1507
31 ZLi, B Chen (2016). Geochronological framework and geodynamic implications of mafic dykes in the Liaodong Peninsula, North China Craton. Acta Geol Sin (English Edition), 90(s1): 76–77
https://doi.org/10.1111/1755-6724.12897
32 ZLi, B Chen, J WLiu, LZhang, CYang (2015a). Zircon U–Pb ages and their implications for the South Liaohe Group in the Liaodong Peninsula, Northeast China. Acta Petrologica Sinica, 31: 1589–1605 (in Chinese)
33 ZLi, B Chen, J LWang (2016a). Geochronological framework and geodynamic implications of mafic magmatism in the Liaodong Peninsula and adjacent regions, North China Craton. Acta Geol Sin(English Edition), 90(1): 138–153
https://doi.org/10.1111/1755-6724.12647
34 ZLi, B Chen, C JWei (2016b). Hadean detrital zircon in the North China Craton. J Mineral Petrol Sci, 111(4): 283–291
https://doi.org/10.2465/jmps.150929
35 ZLi, B Chen, C JWei (2017). Is the Paleoproterozoic Jiao–Liao–Ji Belt (North China Craton) a rift? International Journal of Earth Sciences, 106(1): 355–375
https://doi.org/10.1007/s00531-016-1323-2
36 ZLi, B Chen, C JWei, C XWang, WHan (2015b). Provenance and tectonic setting of the Paleoproterozoic metasedimentary rocks from the Liaohe Group, Jiao–Liao–Ji Belt, North China Craton: insights from detrital zircon U–Pb geochronology, whole–rock Sm–Nd isotopes, and geochemistry. J Asian Earth Sci, 111: 711–732
https://doi.org/10.1016/j.jseaes.2015.06.003
37 ZLi, E Meng, F PPei, J WLiu, LZhang (2016d). Geochronology, geochemistry and origin of the Early Cretaceous Jianyi Pluton in Dashaiqiao, Laioning Province. Geology and Resource, 25: 101–107
38 ZLi, F P Pei, E Meng (2014a). Zircon U–Pb age, geochemical and Nd isotopic data of the Middle Jurassic high–Mg dioritic dike in the Liaodong Peninsula, NE China. Global Geology, 17: 143–154
39 ZLi, J L Wang, M Wang, LZhang, J WLiu, J HQian, H LYu (2014b). Redefinition of the Langzishan Formation in the North Liaohe Group. Adv Geosci, 4(06): 397–403 (in Chinese)
https://doi.org/10.12677/AG.2014.46047
40 ZLi, C J Wei (2017). Two types of Neoarchean basalts from Qingyuan greenstone belt, North China Craton: petrogenesis and tectonic implications. Precambrian Res, 292: 175–193
https://doi.org/10.1016/j.precamres.2017.01.014
41 ZLi, C J Wei, B Chen (2016c). Hadean detrital zircon in China. Abstract Volume of Annual Meeting of Chinese Geoscience Union (CGU), Beijing, 199
42 ZLi, C J Wei, Y P Chen (2015c). Petrogenesis of the TTG gneiss: a case study and discussion. Abstact Volume of Annual Meeting of Chinese Geoscience Union (CGU), Beijing, 328–329
43 D YLiu (1991). The discovery of 3.8 Ga paleocontinental crust in China. China Geology, 5: 30 (in Chinese)
44 D YLiu, A P Nutman, W Compston, J SWu, Q HShen (1992). Remnants of ≥3800 Ma crust in the Chinese part of the Sino–Korean Craton. Geology, 20(4): 339–342
https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
45 D YLiu, S A Wilde, Y S Wan, J S Wu, H Y Zhou, C Y Dong, X Y Yin (2008). New U–Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. Am J Sci, 308(3): 200–231
https://doi.org/10.2475/03.2008.02
46 JLiu, Z H Liu, C Zhao, C JWang, Y BPeng, HZhang (2017). Petrogenesis and zircon LA–ICP–MS U–Pb dating of newly discovered Mesoarchean gneiss on the northern margin of the North China Craton. Int Geol Rev, 59(12): 1575–1589
https://doi.org/10.1080/00206814.2017.1285729
47 X PLu, F Y Wu, J H Guo, S A Wilde, J H Yang, X M Liu, X O Zhang (2006). Zircon U–Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern Block in the North China Craton. Precambrian Res, 146(3‒4): 138–164
https://doi.org/10.1016/j.precamres.2006.01.009
48 X PLu, F Y Wu, J Q Lin, D Y Sun, Y B Zhang, C L Guo (2004). Geochronological successions of the Early Precambrian granitic magmatism in southern Liaoning Peninsula and its constraints on tectonic evolution of the North China Craton. Chinese Journal of Geology, 39: 123–139 (in Chinese)
49 K RLudwig (2003). ISOPLOT 3: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Centre Special Publication, 4: 74
50 YLuo, M Sun, G CZhao, S ZLi , J CAyers, X PXia, J HZhang (2008). A comparison of U–Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Res, 163: 279–306
https://doi.org/10.1016/j.precamres.2008.01.002
51 YLuo, M Sun, G CZhao, S ZLi, P Xu, KYe, X PXia (2004). LA-ICP-MS U–Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Res, 134: 349–371
https://doi.org/10.1016/j.precamres.2004.07.002
52 EMeng, F L Liu, J H Liu, P H Liu, Y Cui, C HLiu, HYang, F Wang, J RShi, Q BKong, TLian (2013). Zircon U–Pb and Lu–Hf isotopic constraints on Archean crustal evolution in the Liaonan Complex of northeast China. Lithos, 177: 164–183
https://doi.org/10.1016/j.lithos.2013.06.020
53 EMeng, F L Liu, P H Liu, C H Liu, H Yang, FWang, J RShi, JCai(2014). Petrogenesis and tectonic significance of Paleoproterozoic meta–mafic rocks from central Liaodong Peninsula, northeast China: evidence from zircon U–Pb dating and in situ Lu–Hf isotopes, and whole-rock geochemistry. Precambrian Res, 247: 92–109 doi:10.1016/j.precamres.2014.03.017
54 Q RMeng (2003). What drove late Mesozoic extension of the northern China–Mongolia tract. Tectonophysics, 369(3‒4): 155–174 doi:10.1016/S0040-1951(03)00195-1
55 S JMojzsis, T M Harrison (2002). Establishment of a 3.83 Ga magmatic age for the Akilia tonalite (southern West Greenland). Earth Planet Sci Lett, 202(3‒4): 563–576
https://doi.org/10.1016/S0012-821X(02)00825-7
56 SNabhan, T Luber, FScheffler, CHeubeck (2016). Climatic and geochemical implications of Archean pedogenic gypsum in the Moodies Group (~3.2 Ga), Barberton Greenstone Belt, South Africa. Precambrian Res, 275: 119–134
https://doi.org/10.1016/j.precamres.2016.01.011
57 ONebel, R P Rapp, G M Yaxley (2014). The role of detrital zircons in Hadean crustal research. Lithos, 190–191: 313–327
https://doi.org/10.1016/j.lithos.2013.12.010
58 J LPaquette, J S F Barbosa, S Rohais, S C PCruz, PGoncalves, J JPeucat, A B MLeal, MSantos–Pinto, HMartin (2015). The geological roots of South America: 4.1 Ga and 3.7 Ga zircon crystals discovered in N.E. Brazil and N.W. Argentina. Precambrian Res, 271: 49–55
https://doi.org/10.1016/j.precamres.2015.09.027
59 F PPei, W L Xu, D B Yang, Y Yu, WWang, Q GZhao (2011). Geochronology and geochemistry of Mesozoic mafic–ultramafic complexes in the southern Liaoning and southern Jilin provinces, NE China: constraints on the spatial extent of destruction of the North China Craton. J Asian Earth Sci, 40: 636–650 doi:10.1016/j.jseaes.2010.10.015
60 PPeng, J H Guo, B F Windley, X H Li (2011). Halaqin volcano–sedimentary succession in the central–northern margin of the North China Craton: products of Late Paleoproterozoic ridge subduction. Precambrian Res, 187(1‒2): 165–180 doi:10.1016/j.precamres.2011.03.006
61 PPeng, J H Guo, M G Zhai, W Bleeker (2010). Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: evidence of crust–mantle interaction. Precambrian Res, 183(3): 635–659
https://doi.org/10.1016/j.precamres.2010.08.015
62 PPeng, C Wang, X PWang, S YYang (2015). Qingyuan high–grade granite–greenstone terrain in the Eastern North China Craton: root of a Neoarchaean arc. Tectonophysics, 662: 7–21
https://doi.org/10.1016/j.tecto.2015.04.013
63 PPeng, X P Wang, B F Windley, J H Guo, M G Zhai, Y Li (2014). Spatial distribution of ~1950–1800 Ma metamorphic events in the North China Craton: implications for tectonic subdivision of the craton. Lithos, 202–203: 250–266
https://doi.org/10.1016/j.lithos.2014.05.033
64 APolat, T Kusky, J HLi, BFryer, RKerrich, KPatrick (2005). Geochemistry of Neoarchean (ca. 2.55–2.50) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: implications for deodynamic setting and continental growth. Geol Soc Am Bull, 117(11): 1387–1399
https://doi.org/10.1130/B25724.1
65 B FShen, J J Li, D B Mao (1997). Geological features types and evolution of greenstone belts in the North China Platform. Progress in Precambrian Research, 20: 2–11 (in Chinese)
66 BShen, H Luo, GHan, XDai, W Jin, XHu, SLi, S Bi (1994). Archean Geology and Metallization in North Liaoning Province and South Jilin Province. Beijing: Geological Publishing House, 255 (in Chinese)
67 Q HShen, H F Xu, Z Q Zhang, J F Gao, J S Wu, C L Ji (1992). Precambrian Granulites in China. Beijing: Geological Publishing House, 223 (in Chinese)
68 BSong, A P Nutman, D Y Liu, J S Wu (1996). 3800 to 2500 Ma crust in the Anshan area of Liaoning Province, northeastern China. Precambrian Res, 78(1‒3): 79–94
https://doi.org/10.1016/0301-9268(95)00070-4
69 PTrap, M Faure, WLin, N LBreton, PMonie (2012). The Paleoproterozoic evolution of the Trans–North China Orogen: toward a synthetic tectonic model. Precambrian Res, 222–223: 450–473
70 J WValley, A J Cavosie, T Ushikubo, D AReinhard, D FLawrence, D JLarson, P HClifton, T FKelly, S AWilde, D EMoser, M JSpicuzza (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci, 7: 219–223 doi: 10.1038/ngeo2075
71 Y SWan, C Y Dong, D Y Liu, A Kr�ner, C HYang, WWang, L L Du, H Q Xie, M Z Ma (2012b). Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: a review. Precambrian Res, 222–223: 265–289
https://doi.org/10.1016/j.precamres.2011.05.001
72 Y SWan, D Y Liu, A Nutman, H YZhou, C YDong, X YYin, M ZMa (2012a). Multiple 3.8–3.1 Ga tectono–magmatic events in a newly discovered area of ancient rocks (the Shengousi Complex), Anshan, North China Craton. J Asian Earth Sci, 54–55: 18–30
https://doi.org/10.1016/j.jseaes.2012.03.007
73 Y SWan, D Y Liu, B Song, J SWu, C HYang, Z QZhang, Y SGeng (2005c). Geochemical and Nd isotopic compositions of 3.8 Ga meta–quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. J Asian Earth Sci, 24(5): 563–575
https://doi.org/10.1016/j.jseaes.2004.02.009
74 Y SWan, M Z Ma, C Y Dong, H Q Xie, S W Xie, P Ren, D YLiu (2015). Widespread late Neoarchean reworking of Meso– to Paleoarchean continental crust in the Anshan–Benxi area, North China Craton, as documented by U–Pb–Nd–Hf–O isotopes. Am J Sci, 315(7): 620–670
https://doi.org/10.2475/07.2015.02
75 Y SWan, B Song, Y SGeng, D YLiu (2005a). Geochemical characteristics of Archaean basement in the Fushun–Qingyuan area, Northern Liaoning Province and its geological significance. Geological Review, 51: 128–137 (in Chinese)
76 Y SWan, B Song, D YLiu, H MLi, CYang, Q D Zhang, C H Yang, Y S Geng, Q H Shen (2001). Geochronology and Geochemistry of 3.8~2.5 Ga Ancient Rock Belt in the Dongshan Scenic Park, Anshan Area. Acta Geol Sin, 75: 363–370 (in Chinese)
77 Y SWan, B Song, D YLiu, S AWilde, J SWu, Y RShi, X YYin, H YZhou (2006a). SHRIMP U–Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Paleoproterozoic tectonothermal event. Precambrian Res, 149(3‒4): 249–271
https://doi.org/10.1016/j.precamres.2006.06.006
78 Y SWan, B Song, CYang, D YLiu (2005b). Zircon SHRIMP U–Pb geochronology of Archaean rocks from the Fushun–Qingyuan area, Liaoning province and its geological significance. Acta Geol Sin, 79: 78–87 (in Chinese)
79 Y SWan, S A Wilde, D Y Liu, C X Yang, B Song, X YYin (2006b). Further evidence for ~1.85 Ga metamorphism in the central zone of the North China Craton: SHRIMP U–Pb dating of zircons from metamorphic rocks in the Lushan area, Henan Province. Gondwana Res, 9(1‒2): 189–197
https://doi.org/10.1016/j.gr.2005.06.010
80 G HWang, C H Zhang, G S Wang, Z W Wu (2001). Tectonic framework of Western Liaoning Province and its evolution during Mesozoic. Geoscience, 15: 1–7 (in Chinese)
81 M JWang, S W Liu, W Wang, KWang, MYan, B R Guo, X Bai, R RGuo (2016a). Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic–trondhjemitic gneisses of the North China Craton, North China. J Asian Earth Sci, 131: 12–39
https://doi.org/10.1016/j.jseaes.2016.09.012
82 WWang, S W Liu, X Bai, P TYang, Q GLi, L FZhang (2011). Geochemistry and zircon U–Pb–Hf isotopic systematics of the Neoarchean Yixian–Fuxin greenstone belt, northern margin of the North China Craton: implications for petrogenesis and tectonic setting. Gondwana Res, 20(1): 64–81
https://doi.org/10.1016/j.gr.2011.02.012
83 WWang, S W Liu, P A Cawood, X Bai, R RGuo, B RGuo, KWang (2016b). Late Neoarchean subduction–related crustal growth in the Northern Liaoning region of the North China Craton: evidence from ~2.55 to 2.50 Ga granitoid gneisses. Precambrian Res, 281: 200–223
https://doi.org/10.1016/j.precamres.2016.05.018
84 Y FWang, X H Li, W Jin, J HZhang (2015). Eoarchean ultra–depleted mantle domains inferred from ca. 3.81 Ga Anshan trondhjemitic gneisses, North China Craton. Precambrian Res, 263: 88–107
https://doi.org/10.1016/j.precamres.2015.03.005
85 S AWilde, J W Valley, W H Peck, C M Graham (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409(6817): 175–178
https://doi.org/10.1038/35051550
86 F YWu, J H Yang, X M Liu (2005a). Geochronological framework of the Mesozoic granitic magmatism in the Liaodong Peninsula, Northeast China. Geology Journal of China University, 11: 305–317 (in Chinese)
87 F YWu, J H Yang, X M Liu, T S Li, L W Xie, Y H Yang (2005b). Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: implications for early crustal evolution of the North China Craton. Chin Sci Bull, 50(21): 2473–2480
https://doi.org/10.1360/982005-629
88 F YWu, Y B Zhang, J H Yang, L W Xie, Y H Yang (2008). Zircon U–Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Res, 167(3‒4): 339–362
https://doi.org/10.1016/j.precamres.2008.10.002
89 F YWu, Y B Zhang, J H Yang, L W Xie, Y H Yang (2009). Are there any 3.8 Ga rock at Anshan in the North China Craton? Reply to comments on Zircon U–Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton by Nutman et al. Precambrian Res, 172: 361–363
https://doi.org/10.1016/j.precamres.2009.05.003
90 J SWu, Y S Geng, Q H Shen, D Y Liu, B Song (1998). Archean Geology Characteristics and Tectonic Evolution of Sino–Korean Paleo–Continent. Beijing: Geological Publishing House, 220
91 K KWu, G C Zhao, M Sun, C QYin, Y HHe, P YTam (2013). Metamorphism of the northern Liaoning Complex: implications for the tectonic evolution of Neoarchaean basement of the Eastern Block, North China Craton. Geoscience Frontiers, 4(3): 305–320
https://doi.org/10.1016/j.gsf.2012.11.005
92 M LWu, S F Lin, Y S Wan, J F Gao (2016). Crustal evolution of the Eastern Block in the North China Craton: constraints from zircon U–Pb geochronology and Lu–Hf isotopes of the Northern Liaoning Complex. Precambrian Res, 275: 35–47
https://doi.org/10.1016/j.precamres.2015.12.013
93 Z PWu, X B Hou, W Li (2007). Discussion on Mesozoic basin patterns and evolution in the eastern North China Block. Geotectonica et Metallogenia, 31: 385–399 (in Chinese)
94 L LYuan, X H Zhang, F H Xue, C M Han, H H Chen, M G Zhai (2015). Two episodes of Paleoproterozoic mafic intrusions from Liaoning province, North China Craton: petrogenesis and tectonic implications. Precambrian Res, 264: 119–139
https://doi.org/10.1016/j.precamres.2015.04.017
95 M GZhai, M Santosh (2013). Metallogeny of the North China Craton: link with secular changes in the evolving Earth. Gondwana Res, 24(1): 275–297
https://doi.org/10.1016/j.gr.2013.02.007
96 M GZhai, R Y Yang, W J Lu, J E Zhou (1985). Geochemistry and evolution of the Qingyuan Archaean granite–greenstone terrain, NE China. Precambrian Res, 27(1‒3): 37–62
https://doi.org/10.1016/0301-9268(85)90005-1
97 Q SZhang, Z S Yang (1988). Early Crust and Mineral Deposits of Liaodong Peninsula. Beijing: Geological Publishing House, 450 (in Chinese)
98 S HZhang, Y Zhao, MSantosh (2012). Mid–Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Res, 222–223: 339–367
https://doi.org/10.1016/j.precamres.2011.06.003
99 X HZhang, Y B Zhang, M G Zhai, F Y Wu, Q L Hou, L L Yuan (2017). Decoding Neoarchaean to Palaeoproterozoic tectonothermal events in the Rangnim Massif, North Korea: regional correlation and broader implications. Int Geol Rev, 59(1): 16–28
https://doi.org/10.1080/00206814.2016.1198995
100 G CZhao (2014). Precambrian Evolution of the North China Craton. Amsterdam: Elsevier, 194
101 G CZhao, L Cao, S AWilde, MSun, Choe W J, S ZLi (2006). Implications based on the first SHRIMP U–Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth Planet Sci Lett, 251(3‒4): 365–379
https://doi.org/10.1016/j.epsl.2006.09.021
102 G CZhao, J H Guo (2012). Precambrian Geology of China: preface. Precambrian Res, 222–223: 1–12
https://doi.org/10.1016/j.precamres.2012.09.018
103 G CZhao, M Sun, S AWilde, S ZLi (2005). Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res, 136(2): 177–202
https://doi.org/10.1016/j.precamres.2004.10.002
104 G CZhao, S A Wilde, J H Guo, P A Cawood, M Sun, X PLi (2010). Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Res, 177(3‒4): 266–276
https://doi.org/10.1016/j.precamres.2009.12.007
105 G CZhao, M G Zhai (2013). Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Res, 23(4): 1207–1240
https://doi.org/10.1016/j.gr.2012.08.016
[1] FES-18708-OF-LZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed