Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (1) : 77-89    https://doi.org/10.1007/s11707-018-0727-7
RESEARCH ARTICLE
Integrating logistic regression with ant colony optimization for smart urban growth modelling
Shifa MA1(), Feng LIU2, Chunlei MA3, Xuemin OUYANG3
1. School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou 510090, China
2. Shenzhen Longhua District Development Research Institute, Shenzhen 518110, China
3. School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
 Download: PDF(1990 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Urban growth does not always strictly follow historical trends; the government may reshape urban growth patterns with considerations of ecological conservation or other plans. Both urban dynamic rules and landscape characteristics are the two main factors influencing the spatial patterns of cities, and obtaining an optimized spatial pattern is very important for sustainable urban growth. Therefore, in this study, we integrated logistic regression (LR) with the ant colony optimization (ACO) model to analyze the optimal scenario for smart urban growth. The LR model was used to discuss the relationship between urban patterns and environmental variables such as topography, development centers, and traffic conditions. Then, the urban growth probability was generated using the parameters obtained from LR. The ACO model was further integrated to optimize urban land allocation, which can meet the requirement of high growth probability, and a connected and compacted landscape pattern. This can solve the problem of urban land only being allocated by LR from being distributed fragmentarily in the space. With this integrated model, Guangzhou City, a rapidly developing area in China, was selected as a case study. The urban patterns derived from LR, as well as a simulation scenario using logistic regression-based cellular automata (LR-CA), were used in the comparison. Six landscape metrics were chosen to validate the performance of this proposed model at the pattern level. The results show that the LR-ACO model has a better performance in urban land allocation. This study demonstrated that models that couple dynamic rules and planning objectives can provide plausible scenarios for smart urban growth planning.

Keywords logistic regression      ant colony optimization      smart growth      urban planning     
Corresponding Author(s): Shifa MA   
Just Accepted Date: 11 September 2019   Online First Date: 07 November 2019    Issue Date: 24 March 2020
 Cite this article:   
Shifa MA,Feng LIU,Chunlei MA, et al. Integrating logistic regression with ant colony optimization for smart urban growth modelling[J]. Front. Earth Sci., 2020, 14(1): 77-89.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-018-0727-7
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I1/77
1 C Abbott, J Margheim (2008). Imagining Portland’s urban growth boundary: planning regulation as cultural icon. J Am Plann Assoc, 74(2): 196–208
https://doi.org/10.1080/01944360801944997
2 J C J H Aerts, E Eisinger, G B M Heuvelink, T J Stewart (2003). Using linear integer programming for multi-site land-use allocation. Geogr Anal, 35(2): 148–169
https://doi.org/10.1111/j.1538-4632.2003.tb01106.x
3 M Aljoufie, M Zuidgeest, M Brussel, J van Vliet, M van Maarseveen (2013). A cellular automata-based land use and transport interaction model applied to Jeddah, Saudi Arabia. Landsc Urban Plan, 112: 89–99
https://doi.org/10.1016/j.landurbplan.2013.01.003
4 K Cao, M Batty, B Huang, Y Liu, L Yu, J Chen (2011). Spatial multi-objective land use optimization: extensions to the non-dominated sorting genetic algorithm-II. Int J Geogr Inf Sci, 25(12): 1949–1969
https://doi.org/10.1080/13658816.2011.570269
5 K Cao, B Huang, S Wang, H Lin (2012). Sustainable land use optimization using boundary-based fast genetic algorithm. Comput Environ Urban Syst, 36(3): 257–269
https://doi.org/10.1016/j.compenvurbsys.2011.08.001
6 M Cerreta, P De Toro (2012). Urbanization suitability maps: a dynamic spatial decision support system for sustainable land use. Earth Syst Dynam, 3(2): 157–171 doi:10.5194/esd-3-157-2012
7 Y M Chen, X Li, X P Liu, Y L Liu (2010). An agent based model for optimal land allocation (Agent LA) with a contiguity constraint. Int J Geogr Inf Sci, 24(8): 1269–1288
https://doi.org/10.1080/13658810903401024
8 K C Clarke, L J Gaydos (1998). Loose-coupling a cellular automata model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. Int J Geogr Inf Sci, 12(7): 699–714 doi:10.1080/136588198241617
9 M Dorigo, V Maniezzo, A Colorni (1996). The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern A Syst Hum, 26(1): 1–13
10 Y Feng, Y Liu, X Tong, M Liu, S Deng (2011). Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landsc Urban Plan, 102(3): 188–196
https://doi.org/10.1016/j.landurbplan.2011.04.004
11 D R Godschalk (2004). Land use planning challenges: coping with conflicts in visions of sustainable development and livable communities. J Am Plann Assoc, 70(1): 5–13
https://doi.org/10.1080/01944360408976334
12 D Gounaridis, I Chorianopoulos, S Koukoulas (2018). Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: the case of Athens. Appl Geogr, 90: 134–144
https://doi.org/10.1016/j.apgeog.2017.12.001
13 P M Hess, A Sorensen (2015). Compact, concurrent, and contiguous: smart growth and 50 years of residential planning in the Toronto region. Urban Geogr, 36(1): 127–151
https://doi.org/10.1080/02723638.2014.947859
14 A Holzkämper, R Seppelt (2007). A generic tool for optimizing land-use patterns and landscape structures. Environ Model Softw, 22(12): 1801–1804
https://doi.org/10.1016/j.envsoft.2007.02.008
15 K Huang, X Liu, X Li, J Liang, S He (2013). An improved artificial immune system for seeking the Pareto front of land-use allocation problem in large areas. Int J Geogr Inf Sci, 27(5): 922–946
https://doi.org/10.1080/13658816.2012.730147
16 C A Jantz, S J Goetz, D Donato, P Claggett (2010). Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Comput Environ Urban Syst, 34(1): 1–16
https://doi.org/10.1016/j.compenvurbsys.2009.08.003
17 J Jokar Arsanjani, M Helbich, W Kainz, A Darvishi Boloorani (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf, 21: 265–275
https://doi.org/10.1016/j.jag.2011.12.014
18 E F Lambin, P Meyfroidt (2011). Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci USA, 108(9): 3465–3472
https://doi.org/10.1073/pnas.1100480108
19 J J Lawler, D J Lewis, E Nelson, A J Plantinga, S Polasky, J C Withey, D P Helmers, S Martinuzzi, D Pennington, V C Radeloff (2014). Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci USA, 111(20): 7492–7497
https://doi.org/10.1073/pnas.1405557111
20 F Li, Y Gong, L Cai, C Sun, Y Chen, Y Liu, P Jiang (2018). Sustainable land-use allocation: a multiobjective particle swarm optimization model and application in Changzhou, China. J Urban Plann Dev, 144(2): 04018010
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000425
21 X Li, Y Chen, X Liu, D Li, J He (2011). Concepts, methodologies, and tools of an integrated geographical simulation and optimization system. Int J Geogr Inf Sci, 25(4): 633–655
https://doi.org/10.1080/13658816.2010.496370
22 X Li, J He, X Liu (2009). Intelligent GIS for solving high-dimensional site selection problems using ant colony optimization techniques. Int J Geogr Inf Sci, 23(4): 399–416
https://doi.org/10.1080/13658810801918491
23 X Li, C Lao, X Liu, Y Chen (2011). Coupling urban cellular automata with ant colony optimization for zoning protected natural areas under a changing landscape. Int J Geogr Inf Sci, 25(4): 575–593
https://doi.org/10.1080/13658816.2010.481262
24 X Li, A G Yeh (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci, 16(4): 323–343
https://doi.org/10.1080/13658810210137004
25 A Ligmann-Zielinska, R Church, P Jankowski (2008). Spatial optimization as a generative technique for sustainable multi-objective land-use allocation. Int J Geogr Inf Sci, 22(6): 601–622
https://doi.org/10.1080/13658810701587495
26 R Liu, K Zhang, Z Zhang, A G L Borthwick (2014). Land-use suitability analysis for urban development in Beijing. J Environ Manage, 145: 170–179
https://doi.org/10.1016/j.jenvman.2014.06.020
27 Y Liu, H Wang, Y Ji, Z Liu, X Zhao (2012). Land use zoning at the county level based on a multi-objective particle swarm optimization algorithm. Int J Environ Res Public Health, 9(8): 2801–2826
https://doi.org/10.3390/ijerph9082801
28 S Ma, X Li, Y Cai (2017). Delimiting the urban growth boundaries with a modified ant colony optimization model. Comput Environ Urban Syst, 62: 146–155
https://doi.org/10.1016/j.compenvurbsys.2016.11.004
29 Z Masoomi, M S Mesgari, M Hamrah (2013). Allocation of urban land uses by multi-objective particle swarm optimization algorithm. Int J Geogr Inf Sci, 27(3): 542–566
https://doi.org/10.1080/13658816.2012.698016
30 D Mitsova, W Shuster, X Wang (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan, 99(2): 141–153
https://doi.org/10.1016/j.landurbplan.2010.10.001
31 L M Olsen, V H Dale, T Foster (2007). Landscape patterns as indicators of ecological change at Fort Benning, Georgia, USA. Landsc Urban Plan, 79(2): 137–149
https://doi.org/10.1016/j.landurbplan.2006.02.007
32 C Persson (2013). Deliberation or doctrine? Land use and spatial planning for sustainable development in Sweden. Land Use Policy, 34: 301–313
https://doi.org/10.1016/j.landusepol.2013.04.007
33 P Klepeis, II B L Turner (2001). Integrated land history and global change science: the example of the Southern Yucatán Peninsular Region project. Land Use Policy, 18(1): 27–39
https://doi.org/10.1016/S0264-8377(00)00043-0
34 L Poelmans, A Van Rompaey (2010). Complexity and performance of urban expansion models. Comput Environ Urban Syst, 34(1): 17–27
https://doi.org/10.1016/j.compenvurbsys.2009.06.001
35 R R Rindfuss, S J Walsh, B L Turner, J Fox, V Mishra (2004). Developing a science of land change: challenges and methodological issues. Proc Natl Acad Sci USA, 101(39): 13976–13981
https://doi.org/10.1073/pnas.0401545101
36 I Santé, A M García, D Miranda, R Crecente (2010). Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc Urban Plan, 96(2): 108–122
https://doi.org/10.1016/j.landurbplan.2010.03.001
37 I Santé-Riveira, M Boullón-Magán, R Crecente-Maseda, D Miranda-Barrós (2008). Algorithm based on simulated annealing for land-use allocation. Comput Geosci, 34(3): 259–268
https://doi.org/10.1016/j.cageo.2007.03.014
38 E A Silva, J Ahern, J Wileden (2008). Strategies for landscape ecology: an application using cellular automata models. Prog Plann, 70(4): 133–177
https://doi.org/10.1016/j.progress.2008.05.002
39 T J Stewart, R Janssen (2014). A multiobjective GIS-based land use planning algorithm. Comput Environ Urban Syst, 46: 25–34
https://doi.org/10.1016/j.compenvurbsys.2014.04.002
40 T J Stewart, R Janssen, M van Herwijnen (2004). A genetic algorithm approach to multiobjective land use planning. Comput Oper Res, 31(14): 2293–2313 doi:10.1016/S0305-0548(03)00188-6
41 S Tudes, N D Yigiter (2010). Preparation of land use planning model using GIS based on AHP: case study Adana-Turkey. Bull Eng Geol Environ, 69(2): 235–245
https://doi.org/10.1007/s10064-009-0247-5
42 M A Turner (2007). A simple theory of smart growth and sprawl. J Urban Econ, 61(1): 21–44
https://doi.org/10.1016/j.jue.2006.05.004
43 P H Verburg, G H J de Koning, K Kok, A Veldkamp, J Bouma (1999). A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol Modell, 116(1): 45–61 doi:10.1016/S0304-3800(98)00156-2
44 Y Wei, X Ye (2014). Urbanization, urban land expansion and environmental change in China. Stochastic Environ Res Risk Assess, 28(4): 757–765
https://doi.org/10.1007/s00477-013-0840-9
45 F Wu (2002). Calibration of stochastic cellular automata: the application to rural-urban land conversions. Int J Geogr Inf Sci, 16(8): 795–818
https://doi.org/10.1080/13658810210157769
46 F Wu, C J Webster (1998). Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ Plann B Plann Des, 25(1): 103–126
https://doi.org/10.1068/b250103
[1] Yingzhi LIN,Xiangzheng DENG,Xing LI,Enjun MA. Comparison of multinomial logistic regression and logistic regression: which is more efficient in allocating land use?[J]. Front. Earth Sci., 2014, 8(4): 512-523.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed