Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (3) : 615-624    https://doi.org/10.1007/s11707-019-0801-9
RESEARCH ARTICLE
Comparison of different chain n-fatty acids in modern plants on the Loess Plateau of China
Jinzhao LIU1,2(), Zhisheng AN1
1. State key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, CAS Center for Excellence in Quaternary Science and Global Change, Xi’an 710061, China
2. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(1340 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

n-Fatty acids (n-FAs) are widely investigated in lake sediments, yet less attention has been given to soil sedimentary n-FAs primarily derived from terrestrial plants. In this study, we performed an analysis of n-FA distributions in modern plants on the Loess Plateau, China. It showed that n-FAs were generally dominated by n-C16, and that short-chain (C16–C20), medium-chain (C22–C26) and long-chain (C28–C32) n-FAs accounted for 49.7%, 33.7% and 16.6%, respectively. The LTR (long-chain/total ratio), and medium-chain EOP (even/odd predominance) are likely to differentiate between dicots and monocots in modern plants. It is believed that this study will promote the paleo-application of soil sedimentary n-FAs on the Loess Plateau.

Keywords n-fatty acids      terrestrial higher plants      Chinese Loess Plateau     
Corresponding Author(s): Jinzhao LIU   
Online First Date: 17 January 2020    Issue Date: 04 December 2020
 Cite this article:   
Jinzhao LIU,Zhisheng AN. Comparison of different chain n-fatty acids in modern plants on the Loess Plateau of China[J]. Front. Earth Sci., 2020, 14(3): 615-624.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0801-9
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I3/615
Fig.1  Study site of Qiushui valley on the central Chinese Loess Plateau.
Species Elev./m Latitude Longitude Plant life forms Plant types ACLa EOPb Concentration/(μg·g−1)
Short Medium Long Short Medium Long Short Medium Long
Stipa bungeana 1299 36°01'06"N 108°06'00"E Grass Monocot 16.7 23.6 29.7 22.8 5.0 10.1 9.0 4.5 7.2
Artemisisa vestita 1299 36°01'06"N 108°06'00"E Shrub Dicot 17.1 23.6 28.8 26.7 10.0 18.6 19.0 18.0 4.0
Armeniaca sibirica 1299 36°01'06"N 108°06'00"E Tree Dicot 16.7 24.2 29.8 51.8 13.1 11.2 66.3 15.3 5.2
Bryophyte 1299 36°01'06"N 108°06'00"E Moss 16.9 24.1 29.0 29.5 10.4 23.9 3.2 3.3 2.0
Stipa bungeana 1281 36°01'01"N 108°06'01"E Grass Monocot 16.5 23.6 29.8 26.1 5.3 11.3 22.1 3.9 5.7
Artemisisa vestita 1281 36°01'01"N 108°06'01"E Shrub Dicot 17.6 23.6 28.8 32.0 10.5 9.7 15.4 14.1 2.5
Ziziphus jujuba Mill. 1281 36°01'01"N 108°06'01"E Shrub Dicot 17.9 24.4 29.1 34.1 10.5 4.1 4.2 14.7 4.8
Stipa bungeana 1266 36°01'08"N 108°06'01"E Grass Monocot 17.1 23.5 29.8 21.6 6.0 7.8 10.0 7.0 9.3
Artemisisa vestita 1266 36°01'08"N 108°06'01"E Shrub Dicot 18.9 23.4 28.8 32.5 15.5 13.3 5.1 13.3 1.5
Stipa bungeana 1252 36°01'10"N 108°05'59"E Grass Monocot 16.9 23.5 29.7 22.8 5.7 9.7 15.2 9.7 13.8
Artemisisa vestita 1252 36°01'10"N 108°05'59"E Shrub Dicot 17.8 23.4 29.2 9.5 11.7 4.4 10.2 26.9 5.7
Bothriochloa ischaemum 1252 36°01'10"N 108°05'59"E Grass Monocot 17.6 23.7 30.1 15.8 3.5 6.8 3.1 1.8 1.4
Stipa bungeana 1246 36°01'11"N 108°06'00"E Grass Monocot 16.5 23.6 29.6 28.7 4.7 8.1 19.9 5.3 7.6
Artemisisa vestita 1246 36°01'11"N 108°06'00"E Shrub Dicot 19.1 23.8 29.3 15.2 12.6 5.0 1.7 11.6 3.4
Ziziphus jujuba Mill. 1246 36°01'11"N 108°06'00"E Shrub Dicot 16.7 23.9 28.5 59.5 25.3 4.0 59.1 27.2 15.2
Stipa bungeana 1230 36°01'12"N 108°06'01"E Grass Monocot 16.7 24.4 30.0 56.8 11.1 9.8 50.6 16.2 4.9
Artemisisa vestita 1230 36°01'12"N 108°06'01"E Shrub Dicot 17.8 23.4 28.8 61.7 17.1 20.0 35.9 31.8 4.4
Ziziphus jujuba Mill. 1230 36°01'12"N 108°06'01"E Shrub Dicot 16.6 23.3 28.5 41.2 27.7 33.4 22.7 23.6 2.7
unidentified 1210 36°01'12"N 108°06'01"E 16.8 23.9 29.0 37.7 5.5 9.4 37.0 12.6 4.5
Stipa bungeana 1210 36°01'12"N 108°06'01"E Grass Monocot 17.1 23.4 29.6 20.9 7.1 5.6 10.2 8.2 6.7
Artemisisa vestita 1210 36°01'12"N 108°06'01"E Shrub Dicot 17.2 23.7 29.5 25.5 10.3 10.6 14.7 14.9 6.6
Stipa bungeana 1203 36°01'13"N 108°06'01"E Grass Monocot 16.5 23.5 30.2 26.5 4.5 8.2 18.8 5.2 8.9
Artemisisa vestita 1203 36°01'13"N 108°06'01"E Shrub Dicot 17.1 23.8 28.7 11.6 10.0 10.1 5.5 10.8 2.4
Ziziphus jujuba Mill. 1203 36°01'13"N 108°06'01"E Shrub Dicot 17.0 24.0 29.3 20.9 12.8 10.0 15.0 24.1 2.3
Pteridophyta 1203 36°01'13"N 108°06'01"E 20.0 24.5 29.5 6.1 9.5 0.1 2.1 2.9
Stipa bungeana 1196 36°01'14"N 108°06'02"E Grass Monocot 16.5 23.7 29.8 18.2 3.7 7.2 52.2 12.7 23.6
Artemisisa vestita 1196 36°01'14"N 108°06'02"E Shrub Dicot 17.0 23.5 28.9 30.4 13.4 29.4 19.1 10.1 2.6
Bothriochloa ischaemum 1257 36°01'14"N 108°06'15"E Grass Monocot 17.8 23.8 29.4 16.2 3.4 2.7 96.8 32.0 7.1
Artemisisa vestita 1257 36°01'14"N 108°06'15"E Shrub Dicot 17.1 23.4 29.1 9.4 14.6 14.8 97.4 54.4 14.3
Stipa bungeana 1257 36°01'14"N 108°06'15"E Grass Monocot 16.5 23.5 29.6 22.5 4.8 4.9 91.1 16.5 31.4
Artemisisa vestita 1240 36°01'13"N 108°06'14"E Shrub Dicot 17.1 23.4 28.8 12.3 17.2 15.2 71.6 65.7 15.3
Ziziphus jujuba Mill. 1240 36°01'13"N 108°06'13"E Shrub Dicot 16.6 23.5 28.4 58.6 4.4 1.8 163.1 14.1 2.0
Bothriochloa ischaemum 1240 36°01'13"N 108°06'13"E Grass Monocot 17.5 23.6 29.9 14.6 3.4 1.6 69.9 20.8 6.2
Bothriochloa ischaemum 1225 36°01'14"N 108°06'12"E Grass Monocot 17.0 23.6 29.8 19.6 3.3 1.5 116.1 26.9 9.3
Artemisisa vestita 1225 36°01'14"N 108°06'12"E Shrub Dicot 16.9 23.4 29.3 23.9 12.5 9.8 101.5 62.3 22.7
Bothriochloa ischaemum 1214 36°01'14"N 108°06'11"E Grass Monocot 17.6 23.7 29.9 19.6 3.9 1.8 117.6 36.9 12.0
Bothriochloa ischaemum 1198 36°01'14"N 108°06'10"E Grass Monocot 17.4 23.5 30.4 17.2 3.3 1.2 82.1 22.3 11.4
Artemisisa 1198 36°01'14"N 108°06'10"E Shrub Dicot 17.5 23.3 29.1 41.0 16.4 3.6 72.9 43.8 8.7
unidentified 1198 36°01'14"N 108°06'10"E Shrub Dicot 17.1 22.7 29.7 74.2 14.4 5.8 146.2 25.1 5.3
Artemisisa 1195 36°01'13"N 108°06'10"E Shrub Dicot 17.4 23.5 28.9 11.8 18.8 16.3 113.1 124.5 19.1
Stipa capillata Linn. 1195 36°01'13"N 108°06'10"E Grass Monocot 16.5 23.4 29.6 19.2 4.7 5.1 168.3 38.9 42.3
Tab.1  Concentration and distributions of n-FAs in terrestrial higher plants on the Chinese Loess Plateau
Fig.2  Distributions of terrestrial n-FAs in modern plants on the Loess Plateau of China. The ratios of short-chain (C16–C20), medium-chain (C21–C26) and long-chain (C27–C32) to total n-FAs (C16–C32) were 49.7%, 33.7% and 16.6%, respectively. (Pink: short-chain; Yellow: medium-chain; Blue: Long-chain).
Fig.3  Distributions of n-FAs in dicots vs. monocots (a), dicots (b), monocots (c) and other groups (d). (Pink: short-chain; Yellow: medium-chain; Blue: Long-chain).
Fig.4  Comparison of different chain lengths (short-, medium- and long-chain) with regard to ACL (a), EOP (b) and concentration (c). Red boxes represent dicots, and green boxes indicate monocots. Each value is the mean of all samples±the standard deviation.
Fig.5  Ratios of long-chain to total n-FAs (LTR; a) and n-C16 to total n-FAs (STR16, b).
Fig.6  Log-log plots of n-FA concentrations vs. EOP for short- (a), medium- (b) and long-chain FAs (c), and ACL for short- (d), medium- (e) and long-chain FAs (f).
1 B Aichner, S J Feakins, J E Lee, U Herzschuh, X Liu (2015). High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia. Clim Past, 11(4): 619–633
https://doi.org/10.5194/cp-11-619-2015
2 Z S An, G J Kukla, S C Porter, J Xiao (1991). Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130000 years. Quat Res, 36(1): 29–36
https://doi.org/10.1016/0033-5894(91)90015-W
3 N Ardenghi, A Mulch, J Pross, E M Niedermeyer (2017). Leaf wax n-alkane extraction: an optimized procedure. Org Geochem, 113: 283–292
https://doi.org/10.1016/j.orggeochem.2017.08.012
4 T Badewien, A Vogts, J Rullkötter (2015). n-Alkane distribution and carbon stable isotope composition in leaf waxes of C3 and C4 plant from Angola. Org Geochem, 89–90: 71–79
https://doi.org/10.1016/j.orggeochem.2015.09.002
5 B Buggle, G L B Wiesenberg, B Glaser (2010). Is there a possibility to correct fossil n-alkane data for postsedimentary alteration effects? Appl Geochem, 25(7): 947–957
https://doi.org/10.1016/j.apgeochem.2010.04.003
6 R T Bush, F A McInerney (2013). Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta, 117: 161–179
https://doi.org/10.1016/j.gca.2013.04.016
7 Y Chikaraishi, H Naraoka (2007). d13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants. Org Geochem, 38(2): 198–215
https://doi.org/10.1016/j.orggeochem.2006.10.003
8 P A Cranwell, G Eglinton, N Robinson (1987). Lipids of aquatic organisms as potential contributors to lacustrine sediments–II. Org Geochem, 11(6): 513–527
https://doi.org/10.1016/0146-6380(87)90007-6
9 A F Diefendorf, K H Freeman, S L Wing, H V Graham (2011). Production of n-alkyl lipids in living plants and implications for the geologic past. Geochim Cosmochim Acta, 75(23): 7472–7485
https://doi.org/10.1016/j.gca.2011.09.028
10 A F Diefendorf, E J Freimuth (2017). Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review. Org Geochem, 103: 1–21
https://doi.org/10.1016/j.orggeochem.2016.10.016
11 P M J Douglas, M Pagani, M Brenner, D A Hodell, J H Curtis (2012). Aridity and vegetation composition are important determinants of leaf-wax δD values in southeastern Mexico and Central America. Geochim Cosmochim Acta, 97: 24–45
https://doi.org/10.1016/j.gca.2012.09.005
12 T I Eglinton, G Eglinton (2008). Molecular proxies for paleoclimatology. Earth Planet Sci Lett, 275(1-2): 1–16
https://doi.org/10.1016/j.epsl.2008.07.012
13 J Fang, F Wu, Y Xiong, F Li, X Du, D An, L Wang (2014). Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China. Sci Total Environ, 473–474: 410–421
https://doi.org/10.1016/j.scitotenv.2013.10.066 pmid: 24384073
14 S J Feakins, L P Bentley, N Salinas, A Shenkin, B Blonder, G R Goldsmith, C Ponton, L J Arvin, M S Wu, T Peters, A J West, R E Martin, B J Enquist, G P Asner, Y Malhi (2016). Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. Geochim Cosmochim Acta, 182: 155–172
https://doi.org/10.1016/j.gca.2016.03.018
15 K J Ficken, B Li, D L Swain, G Eglinton (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 31(7-8): 745–749
https://doi.org/10.1016/S0146-6380(00)00081-4
16 K J Ficken, F A Street-Perrot, R A Perrot, D O Swain, G Olago, G Eglinton (1998). Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt Kenya, East Africa. Org Geochem, 29(5-7): 1701–1719
https://doi.org/10.1016/S0146-6380(98)00109-0
17 E J Freimuth, A F Diefendorf, T V Lowell (2017). Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords. Geochim Cosmochim Acta, 206: 166–183
https://doi.org/10.1016/j.gca.2017.02.027
18 L Gao, E J Edwards, Y Zeng, Y Huang (2014). Major evolutionary trends in hydrogen isotope fractionation of vascular plant leaf waxes. PLoS One, 9(11)
https://doi.org/10.1371/journal.pone.0112610 pmid: 25402476
19 L Gao, J Hou, J Toney, D MacDonald, Y Huang (2011). Mathematical modeling of the aquatic macrophyte inputs of mid-chain n-alkyl lipids to lake sediments: implications for interpreting compound specific hydrogen isotopic records. Geochim Cosmochim Acta, 75(13): 3781–3791
https://doi.org/10.1016/j.gca.2011.04.008
20 C R Gong, D J Hollander (1997). Differential contribution of bacteria to sedimentary organic matter in oxic and anoxic environments, Santa Monica Basin, California. Org Geochem, 26(9-10): 545–563
https://doi.org/10.1016/S0146-6380(97)00018-1
21 Y He, C Zhao, Z Liu, H Wang, W Liu, Z Yu, Y Zhao, E Ito (2016). Holocene climate controls on water isotopic variations on the northeastern Tibetan Plateau. Chem Geol, 440: 239–247
https://doi.org/10.1016/j.chemgeo.2016.07.024
22 B R Helliker, J R Ehleringer (2000). Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses. Proc Natl Acad Sci USA, 97(14): 7894–7898
https://doi.org/10.1073/pnas.97.14.7894 pmid: 10884421
23 T W Horton, W F Defliese, A K Tripati, C Oze (2016). Evaporation induced 18O and 13C enrichment in lake systems: a global perspective on hydrologic balance effects. Quat Sci Rev, 131: 365–379
https://doi.org/10.1016/j.quascirev.2015.06.030
24 J Hou, W J D’ Andrea, M Wang, Y He, J Liang (2017). Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene. Quat Sci Rev, 163: 84–94
https://doi.org/10.1016/j.quascirev.2017.03.013
25 J Hou, W J D’Andrea, Y Huang (2008). Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments. Geochim Cosmochim Acta, 72(14): 3503–3517
https://doi.org/10.1016/j.gca.2008.04.030
26 J Hou, W J D’Andrea, D MacDonald, Y Huang (2007). Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA). Org Geochem, 38(6): 977–984
https://doi.org/10.1016/j.orggeochem.2006.12.009
27 X Huang, P A Meyers, J Xue, Y Zhang, X Wang (2016). Paleoclimate significance of n-alkane molecular distributions and δ2H values in surface peats across the monsoon region of China. Palaeogeogr Palaeocl, 461: 77–86
https://doi.org/10.1016/j.palaeo.2016.08.011
28 R Ishiwatari, S Yamamoto, S Shinoyama (2006). Lignin and fatty acid records in Lake Baikal sediments over the last 130 kyr: a comparison with pollen records. Org Geochem, 37(12): 1787–1802
https://doi.org/10.1016/j.orggeochem.2006.10.005
29 R Ishiwatari, S Yamamoto, H Uemura (2005). Lipid and lignin/cutin compounds in Lake Baikal sediments over the last 37 kyr: implications for glacial-interglacial palaeoenvironmental change. Org Geochem, 36(3): 327–347
https://doi.org/10.1016/j.orggeochem.2004.10.009
30 L Kunst, A L Samuels (2003). Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res, 42(1): 51–80
https://doi.org/10.1016/S0163-7827(02)00045-0 pmid: 12467640
31 J Z Liu, W G Liu, Z S An, H Yang (2016). Different hydrogen isotope fractionations during lipid formation driving n-alkane D/H ratios in higher plants: implications for paleohydrology reconstruction at a global scale. Sci Rep, 6: 19711
https://doi.org/10.1038/srep19711 pmid: 26806719
32 J Z Liu, Z An, Z Wang, H Wu (2017). Using δDn-alkane as a proxy for paleo-environmental reconstruction: a good choice to sample at the site dominated by woods. Sci Total Environ, 599-600: 554–559
https://doi.org/10.1016/j.scitotenv.2017.05.004 pmid: 28494281
33 J Z Liu, Z S An, H Liu (2018a). Leaf wax n-alkane distributions across plant types in the central Chinese Loess Plateau. Org Geochem, 125: 260–269
https://doi.org/10.1016/j.orggeochem.2018.09.006
34 J Z Liu, Z S An (2018). A hierarchical framework for disentangling different controls on leaf wax δDn-alkane values in terrestrial higher plants. Quat Sci Rev, 201: 409–417
https://doi.org/10.1016/j.quascirev.2018.10.026
35 J Z Liu, Z S An, H Wu, Y Yu (2019). Comparison of n-alkane concentrations and δD values between leaves and roots in modern plants on the Chinese Loess Plateau. Org Geochem, 138: 103913
https://doi.org/10.1016/j.orggeochem.2019.103913
36 H Liu, H Yang, Y Cao, Q Leng, W G Liu (2018b). Inter-molecular variations of fatty acid δD in algae and submerged plants from the north-eastern Tibetan Plateau. Org Geochem, 122: 17–28
https://doi.org/10.1016/j.orggeochem.2018.05.004
37 H Naraoka, R Ishiwatari (1999). Carbon isotopic compositions of individual long-chain n-fatty acids and n-alkanes in sediment from river open to ocean: multiple origins for their occurrence. Geochem J, 33(4): 215–235
https://doi.org/10.2343/geochemj.33.215
38 H Naraoka, R Ishiwatari (2000). Molecular and isotopic abundances of long-chain n-fatty acids in open marine sediments of the western North Pacific. Chem Geol, 165(1–2): 23–36
https://doi.org/10.1016/S0009-2541(99)00159-X
39 X Ouyang, F Guo, H Bu (2015). Lipid biomarkers and pertinent indices from aquatic environment record paleoclimate and paleoenvironment changes. Quat Sci Rev, 123: 180–192
https://doi.org/10.1016/j.quascirev.2015.06.029
40 E J Pearson, P Farrimond, S Juggins (2007). Lipid geochemistry of lake sediments from semi-arid Spain: relationships with source inputs and environmental factors. Org Geochem, 38(7): 1169–1195
https://doi.org/10.1016/j.orggeochem.2007.02.007
41 D Sachse, I Billault, G J Bowen, Y Chikaraishi, T E Dawson, S J Feakins, K H Freeman, C R Magill, F A McInerney, M T J van der Meer, P Polissar, R J Robins, J P Sachs, H L Schmidt, A L Sessions, J W C White, J B West, A Kahmen (2012). Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Planet Sci, 40(1): 221–249
https://doi.org/10.1146/annurev-earth-042711-105535
42 L Samuels, L Kunst, R Jetter (2008). Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol, 59(1): 683–707
https://doi.org/10.1146/annurev.arplant.59.103006.093219 pmid: 18251711
43 O Seki, K Kawamura, R Ishiwatari (2012). Assessment of hydrogen isotopic compositions of n-fatty acids as paleoclimate proxies in Lake Biwa sediments. J Quaternary Sci, 27(9): 884–890
https://doi.org/10.1002/jqs.2577
44 H Wang, W G Liu, C Zhang (2014). Dependence of the cyclization of branched tetraethers on soil moisture in alkane soil from arid-subhumid China: implications for paleorainfall reconstructions on the Chinese Loess Plateau. Biogeosciences, 11(23): 6755–6768
https://doi.org/10.5194/bg-11-6755-2014
45 Z Wang, H Liu, Y N Cao (2018). Choosing a suitable εw-p by distinguishing the dominant plant sources in sediment records using a new Pta index and estimating the paleo-δDp spatial distribution in China. Org Geochem, 121: 161–168
https://doi.org/10.1016/j.orggeochem.2018.01.002
46 Z Wang, W G Liu (2012). Carbon chain length distribution in n-alkyl lipids: a process for evaluating source inputs to Lake Qinghai. Org Geochem, 50: 36–43
https://doi.org/10.1016/j.orggeochem.2012.06.015
47 M Zech, T Krause, S Meszner, D Faust (2013). Incorrect when uncorrected: reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences–a case study from the Saxonian loess region, Germany. Quat Int, 296: 108–116
https://doi.org/10.1016/j.quaint.2012.01.023
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed