Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (4) : 738-757    https://doi.org/10.1007/s11707-019-0810-8
RESEARCH ARTICLE
Chemical geothermometry: application to mud volcanic waters of the Caucasus region
Olga E. KIKVADZE1,2(), Vasilii Yu. LAVRUSHIN1,2, Boris G. POLYAK1
1. Geological Institute, Russian Academy of Sciences, Moscow 119017, Russia
2. V.S.Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, Novosibirsk 630090, Russia
 Download: PDF(4411 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The generation temperatures of gas-water fluids released from mud volcanoes in different provinces of the Caucasian region have been constrained using Mg/Li (ТMg/Li) chemical geothermometry. Mud volcanic fluids in the Taman Peninsula (Kerch-Taman mud volcanic province) were generated at temperatures (ТMg/Li) from 41 to 137°С. The depths of the respective mud reservoirs estimated from ТMg/Li values and local geothermal gradient are in a range of 1.0 to 3.4 km which spans the Maykop Formation of marine shale. For the South Caspian province, the ТMg/Li values of waters vary from 18 to 137°C and the respective root depths НMg/Li of mud volcanoes range from ~ 0.85 to 6.5 km. The obtained TMg/Li values for the analyzed mud volcanic waters from Caucasian provinces are in positive correlation with НСО3 contents and water oxygen isotope compositions (δ 18OH2O and Δδ 18OH2O) and in high negative correlation with Cl. The increase of ТMg/Li toward the Greater Caucasus Range, as well as the lateral TMg/Li patterns in the Taman and South Caspian mud volcanic provinces, support the idea that mud volcanic fluids generate at temperatures increasing progressively toward the Alpine orogenic belt.

Keywords mud volcano      fluid      chemical geothermometry      stable isotopes      Caucasus region     
Corresponding Author(s): Olga E. KIKVADZE   
Online First Date: 03 June 2020    Issue Date: 08 January 2021
 Cite this article:   
Olga E. KIKVADZE,Vasilii Yu. LAVRUSHIN,Boris G. POLYAK. Chemical geothermometry: application to mud volcanic waters of the Caucasus region[J]. Front. Earth Sci., 2020, 14(4): 738-757.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0810-8
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I4/738
Fig.1  Tectonic sketch map of Caucasus, simplified after (Milanovskii and Koronovskii, 1973). 1 – Scythian Plate; 2 – Indol-Kuban (IKF) and Terek-Caspian (TCF) foredeeps; 3 – Greater Caucasus orogen; 4 – Rioni (RB) and Kura (KB) intermontane basins; 5 – Lesser Caucasus orogen; 6 – centers of recent Ca-alkaline volcanism; 7 – Kerch-Taman (I), South Caspian (II) and Kakhety (III) MV provinces.
Fig.2  Location map of mud volcanoes in the Taman peninsula, Kerch-Taman MV province, according to (Shnyukov et al., 1986). 1-2 – sampled (1) and non-sampled (2) mud volcanoes. Sampling sites numbers are same as in Table 1.
Fig.3  Location map of mud volcanoes in the South Caspian MV province, Azerbaijan. 1 – mud volcanoes; 2 – Neftechala oil well; 3-6 –petroleum areas: Fore-Caspian (3), Apsheron (4), Shemakha-Gobustan (5), ForeKura (6), according to (Jakubov et al., 1971). Sampling sites numbers are same as in Table 1.
MV No. ºN lat. ºE long. Sampling site Sample number* VSMOW/‰ Data source***
δ18O δD 18О**
Kerch-Taman Province (see Fig. 2)
1 44.90111 37.59833 Semigor MV 14-1/09 10.3 −25 14.7 1
1 44.90111 37.59833 Semigor MV 14-3/09 10.0 −27 14.6 1
2 45.00561 37.72372 Gladkov MV, seepage 4 2/09BG 5.0 −21 8.9 1
3 45.07058 37.61042 Shugo MV, seepage 1 3-1/09BG 5.2 −31 10.3 1
4 45.02836 37.58561 Vostok MV, central seepage 15/09 3.3 −29 8.2 1
5 45.11867 36.89775 Bugaz MV, central seepage 4-1/09 10.1 −26 14.6 1
5 45.11867 36.89775 Bugaz MV, flank seepage 4-2/09 10.2 −28 15.0 1
5 45.11867 36.89775 Bugaz MV, eastern seepage 4-3/09 8.9 −27 13.5 1
7 45.20233 36.78258 Karabetova Gora MV, western seepage 1/09 14.2 −24 18.5 1
8 45.26925 36.96256 Shapur MV, central seepage 6-1/09 3.2 −33 8.6 1
9 45.18939 37.18353 Yuzhno-Neftyanoi MV, seepage with oil films 7/09 −3.2 −33 2.2 1
10 45.27808 37.38744 Miska MV, central seepage 10/09 1.2 −34 6.7 1
12 45.30942 37.03928 Tsymbaly-Vostok MV, seepage 1 17/09 2.9 −35 8.5 1
14 45.43231 36.92253 Kuchugur MV, central seepage 13-1/09 5.4 −22 9.4 1
15 45.35414 36.71381 Chushka MV, flank seepage 12-1/09 5.0 −33 10.4 1
15 45.35414 36.71381 Chushka MV, central seepage 12/09 3.0 −22 7.0 1
19 45.25181 37.43917 Gnilaya MV, central seepage near lake 9-2/09BG 1.5 −34 7.0 1
19 45.25181 37.43917 Gnilaya MV, southern group of seepages 9-3/09 0.9 −39 7.0 1
21 45.32461 37.17114 Sopka MV 11/09BG −3.4 −35 2.2 1
South Caspian Province (see Fig. 3)
Fore-Caspian area
37 41.00317 49.19772 Zarat (Khydyrzyndy-2) MV 29/10 7.2 −25 11.6 2
47 41.15500 48.98386 Kaynardja MV 18/12 0.1 −28 4.9 1
Apsheron area
3 40.46239 49.57422 Uchtepe MV 3/10 7.4 −21 11.3 2
12 40.25767 49.55056 Pelpelya-Garadag MV 10/10 3.1 −19 6.7 2
21 40.35197 49.55944 Shorbulag MV 17/10 2.1 −22 6.1 2
23 40.38189 49.58417 Davaboynu MV 19/10 3.2 −24 7.5 2
42 40.49294 49.70328 Cheildag MV 34/10 6.2 −13 9.1 2
Shemakha-Gobustan area
1 40.48053 49.44811 Pirekyashkyul MV, northern group of seepages 1/10 3.1 −12 5.9 2
2 40.46625 49.46950 Pirekyashkyul MV, northern group of seepages 2/10 2.8 −21 6.7 2
4 39.99550 49.40642 Dashgil MV, central mud breccia field 4-1/10 2.0 −17 5.4 2
5 39.99561 49.40278 Dashgil MV, large seepage 4-2/10 2.5 −29 7.4 2
6 39.99861 49.47442 Bakhar MV 5/10 4.1 −26 8.6 2
7 40.00100 49.47031 Bakhar MV, northern group of seepages 5-1/10 2.5 −23 6.6 2
8 39.97019 49.34731 Saryboga MV, western group of seepages 6/10 3.2 −31 8.3 2
9 39.97358 49.35978 Goturdag MV 7/10 2.3 −31 7.4 2
10 39.99452 49.30911 Airantekyan MV 8/10 n.d. n.d. n.d. 2
22 40.31267 49.43722 Shakhigaya MV 18/10 1.9 −22 5.9 2
24 40.25078 49.24558 Galendarakhtarma MV 20/10 5.6 −14 8.6 2
25 40.35258 49.18122 Eastern Nardaran-Akhtarma MV 21/10 5.4 −15 8.5 2
26 40.82756 48.58558 Demirchi MV 22-1/10 10.4 −23 14.5 2
27 40.82756 48.58558 Demirchi MV 22-2/10 n.d. n.d. n.d. 2
28 40.51019 49.03208 Malyi Mereze MV 23/10 7.0 −21 10.9 2
31 40.29842 49.25425 Cheildag MV 26/10 4.9 −20 8.7 2
32 40.30089 49.26419 Cheildag MV, northern group of seepages 26-1/10 4.7 −12 7.5 2
33 40.30750 49.23358 Cheildag MV, western group of seepages 26-2/10 6.6 −14 9.6 2
34 40.30208 49.24000 Cheildag MV, southern group of seepages 26-3/10 5.4 −22 9.4 2
38 40.18611 49.23956 Gylych MV 30/10 4.8 −22 8.8 2
39 40.20617 49.21006 Agdam MV, group of seepages 31/10 2.7 −29 7.6 2
40 40.18083 49.18961 Arzani MV 32/10 5.1 −20 8.9 2
41 40.22075 49.16239 Shekikhan MV 33/10 8.2 −24 12.5 2
48 40.25131 48.84189 Kalamadyn MV, western group of seepage 1/12 4.8 n.d
.
n.d
.
1
49 40.30642 48.09720 Northern Inchabel MV 2/12 3.0 n.d. n.d. 1
49 40.30642 48.09720 Northern Inchabel MV 3/13 1.3 −33 6.7 1
50 40.48044 49.03178 Shikhzarli MV 9/12 6.3 −27 10.9 1
45 40.81014 48.70581 Northern-Astrakhanka MV 10/12 10.3 −28 15.1 1
51 40.17442 48.96256 Kyrlyh MV 12/12 3.0 −20 6.8 1
52 40.08844 48.95444 Malyi-Kharami MV 13/12 1.7 n.d. n.d. 1
53 40.43525 48.74017 Gushchu MV 15/12 1.0 −32 6.3 1
54 40.60908 48.56597 Matrasa MV 16/12 1.7 −26 6.2 1
55 40.21864 49.04072 Dashmardan MV, central seepage 19/12 5.4 −25 9.8 1
55 40.21914 49.04569 Dashmardan MV, flank seepage 19-1/12 3.6 −27 8.2 1
56 40.74378 48.43914 Baskal MV, northern group of seepages 20/12 2.8 −23 6.9 1
57 40.54942 49.30064 Weis MV 21/12 8.8 −20 12.6 1
58 40.52700 48.70000 Melikchoban MV 1/13 n.d. n.d. n.d. 1
59 40.58800 48.01000 Kelakhana MV 2/13 n.d. n.d. n.d. 1
60 40.52500 48.01800 Charkhan MV 4/13 n.d. n.d. n.d. 1
Fore-Kura area
11 39.86128 49.29592 Khydyrly MV 9/10 1.0 −30 6.0 2
13 39.51211 49.10772 Duruvdag MV 11/10 1.2 −23 5.3 2
14 39.38161 49.14611 Duzdag MV, small seepage 12/10 2.0 −16 5.3 2
15 39.38161 49.14611 Duzdag MV, central seepage 12-1/10 3.3 −21 7.2 2
16 39.31475 49.18442 South-Neftechala MV 13/10 −0.6 −32 4.7 2
17 39.31833 49.18711 Oil well near South-Neftechala MV 13-1/10 n.d. −32 n.d. 2
18 39.94703 49.07764 Malyi Mishovdag MV 14/10 2.3 −23 6.4 2
19 39.95308 49.05206 Bol'shoy Mishovdag MV 15/10 2.5 −16 5.8 2
20 39.88431 48.95014 Yandere MV 16/10 3.0 −18 6.5 2
29 39.92097 49.26481 Kalmaz MV 24/10 4.4 −16 7.7 2
35 40.19606 48.87050 Akhtarma-Pashaly MV 27/10 1.5 −21 5.4 2
43 39.70417 49.41172 Biandovan MV 35/10 3.7 −25 8.1 2
66 40.19036 48.90350 Bol'shoy Kharami MV, central seepage 14/12 2.7 −25 7.1 1
66 40.19030 48.90432 Bol'shoy Kharami MV, eastern group of seepages 14-2/12 2.4 −26 6.9 1
Tab.1  Locations of sampling sites and oxygen and hydrogen isotope compositions of mud volcanic waters
MV No. Sample T/°C pH TDS/(g·L−1) Concentration/(g·L−1) Concentration/(mg·L−1) vol% Mg/Li Data
НСО3 Сl Na SO4 K Mg Ca Si Li×1000 CO2 T/°C calc. Depth/km source*
Taman area of the Kerch-Taman Province
1 14-1/09 22.3 7.95 10.58 5.25 2.13 2.71 36.0 19.9 27.6 13.7 4.85 1.21 17.4 87 2.18 1, 2
1 14-3/09 23.0 8.25 11.47 5.61 2.13 3.01 176.1 16.3 27.9 8.1 5.34 1.16 8.0 86 2.15 1, 2
2 2/09BG n.d. 6.93 20.07 0.61 11.35 5.84 1.5 229.6 114.9 1560.0 6.68 13.26 1.7 136 3.40 1, 2
3 3-1/09BG 21.0 7.76 18.03 3.54 7.80 5.73 119.8 65.9 77.2 29.8 18.2 11.18 4.5 137 3.43 1, 2
4 15/09 n.d. 8.67 10.87 3.90 3.19 3.01 353.4 41.1 42.7 15.9 6.69 0.54 6.9 63 1.57 1, 2
5 4-1/09 20.0 7.94 13.34 6.22 2.62 3.83 35.5 79.7 101.8 24.6 17.7 2.00 6.4 83 2.08 1, 2
5 4-2/09 23.2 8.27 15.02 6.83 3.05 4.41 64.4 55.6 107.9 19.7 24.1 1.83 n.d. 80 2.01 1, 2
5 4-3/09 n.d. 8.00 14.30 6.10 3.19 4.41 30.7 36.4 78.3 10.2 16.0 1.58 n.d. 81 2.02 1, 2
7 1/09 17.9 8.02 15.44 9.25 1.46 3.82 23.9 55.2 63.2 21.0 9.65 1.97 22.0 89 2.23 1, 2
8 6-1/09 21.6 7.73 18.42 4.27 5.74 8.01 61.3 30.0 53.2 14.6 3.91 1.09 n.d. 76 1.91 1, 2
9
10
7/09
10/09
30.3
n.d.
6.60
7.81
0.80
12.09
0.37
2.39
0.14
5.29
0.11
4.30
26.9
46.1
9.3
14.0
7.3
31.6
114.2
22.0
9.67
5.07
0.02
0.22
5.3
1.9
18
47
0.46
1.18
1, 2
1, 2
12 17/09 25.0 n.d. 11.87 3.29 4.47 3.90 11.8 30.8 34.0 30.9 6.36 1.08 n.d. 82 2.05 1, 2
14 13-1/09 n.d. 6.98 16.05 3.78 4.96 4.81 1462.1 29.6 115.9 173.1 12.8 1.02 16.9 66 1.65 1, 2
15 12/09 17.8 7.82 11.63 3.05 4.26 4.12 8.4 30.9 33.3 30.5 6.09 1.07 3.7 82 2.04 1, 2
15 12-1/09 18.2 7.81 10.96 3.90 3.26 3.60 n.d. 25.3 35.6 34.5 8.82 0.84 5.3 75 1.87 1, 2
19 9-2/09BG n.d. 8.79 13.10 2.44 5.82 4.60 24.0 5.8 13.3 4.6 2.74 0.11 0.8 41 1.02 1, 2
19 9-3/09 n.d. 8.66 13.12 2.56 5.53 4.75 48.3 6.1 5.8 3.3 4.39 0.12 0.5 51 1.28 1, 2
21 11/09BG 25.5 8.84 9.59 1.83 3.05 2.90 1200.6 12.8 10.9 9.7 2.98 0.20 6.7 56 1.41 1, 2
Fore-Caspian area of the South Caspian Province
37 29/10 13.1 7.42 35.3 2.04 21.56 10.92 14.3 186.4 123.4 123.0 6.62 14.08 2.4 137 6.52 1, 3
47 18/12 17.4 6.69 63.8 0.89 37.59 23.22 n.d. 94.9 654.8 813.4 2.68 3.61 5.6 75 3.57 1
Apsheron area of the South Caspian Province
3 3/10 18.9 7.77 10.7 5.06 2.41 2.92 10.1 8.3 28.3 15.3 6.83 0.69 1.1 73 3.48 1, 3
12 10/10 n.d. 8.65 20.5 5.80 7.66 6.56 59.7 7.8 66.9 18.8 2.01 0.59 0.2 60 2.85 1, 3
21 17/10 14.2 7.82 13.2 1.37 5.82 4.38 961.9 15.8 75.3 107 3.52 0.36 1.5 48 2.29 1, 3
23 19/10 15.6 7.65 19.4 1.36 10.78 6.73 13.5 25.3 214.8 94.0 7.58 1.30 2.2 64 3.06 1, 3
42 34/10 13.7 8.27 9.6 2.53 3.17 2.98 7.7 11.1 11.5 8.5 3.96 0.38 0.6 70 3.32 1, 3
Shemakha-Gobustan area of the South Caspian Province
1 1/10 15.0 8.00 18.7 8.10 3.98 5.67 454.5 20.9 81.3 13.0 6.09 0.87 2.9 66 3.16 1, 3
2 2/10 16.0 8.00 13.2 6.07 2.46 3.80 13.4 13.3 37.3 6.3 10.2 0.77 4.0 73 3.46 1, 3
4 4-1/10 19.0 7.45 24.0 0.49 12.74 7.50 9.3 17.2 362.3 217 4.51 0.46 1.0 37 1.78 1, 3
5 4-2/10 19.6 7.49 38.2 1.76 15.89 11.70 3168.1 24.0 351.6 83.2 4.48 1.17 2.2 57 2.69 1, 3
6 5/10 20.0 7.84 14.7 2.47 6.07 4.83 29.3 10.8 14.0 13.2 4.39 0.41 2.5 69 3.30 1, 3
7 5-1/10 19.0 7.92 34.7 2.50 16.89 11.78 466.0 18.4 159.0 18.2 3.15 0.24 0.9 33 1.57 1, 3
8 6/10 18.5 7.88 14.5 1.40 7.55 5.27 5.1 9.7 65.3 25.0 5.82 0.39 0.6 51 2.43 1, 3
9 7/10 19.6 7.58 18.4 4.15 6.48 5.55 84.7 15.4 111.0 31.7 6.80 0.90 0.8 63 3.02 1, 3
10 8/10 17.5 7.58 18.1 3.23 7.47 5.91 236.4 11.8 119.9 29.0 5.77 0.49 3.0 50 2.37 1, 3
22 18/10 14.7 7.60 34.0 0.57 15.37 9.41 553.0 9.3 392.3 244 4.58 0.21 0.3 23 1.07 1, 3
24 20/10 13.9 7.99 15.2 7.02 2.49 4.23 72.2 7.1 25.4 6.3 4.17 0.78 3.2 77 3.69 1, 3
25 21/10 13.0 7.52 16.3 5.30 4.26 4.86 650.1 15.3 80.3 43.7 7.76 0.67 4.3 60 2.88 1, 3
26 22-1/10 10.0 8.02 8.6 3.97 1.41 2.38 67.0 9.4 22.8 9.2 4.71 2.00 3.6 103 4.91 1, 3
27 22-2/10 9.0 7.60 8.6 4.24 1.27 2.36 3.4 17.9 18.1 13.8 5.59 2.78 3.5 116 5.53 1, 3
28 23/10 11.1 7.98 10.0 3.08 3.27 3.23 59.6 8.8 31.8 11.3 4.88 0.26 1.2 50 2.38 1, 3
31 26/10 16.1 8.46 13.4 5.72 3.08 4.03 31.7 18.1 59.1 10.6 4.76 1.68 2.0 86 4.09 1, 3
32 26-1/10 15.4 8.12 12.5 6.01 1.91 3.35 2.5 18.0 65.2 14.1 2.65 0.98 2.0 71 3.40 1, 3
33 26-2/10 14.5 7.82 10.6 4.15 2.31 3.01 68.8 10.8 32.7 9.5 6.45 0.96 3.6 79 3.77 1, 3
34 26-3/10 14.8 7.82 11.8 4.54 3.07 3.62 45.7 28.0 37.9 18.3 6.79 1.88 4.7 95 4.50 1, 3
38 30/10 15.9 7.48 17.5 5.26 5.78 5.45 6.4 39.6 107.9 49.8 10.8 2.58 10.4 89 4.25 1, 3
39 31/10 14.8 8.10 22.9 5.14 8.02 6.97 187.4 24.5 113.3 15.8 4.99 0.17 1.8 29 1.40 1, 3
40 32/10 16.8 7.66 15.7 5.73 4.22 4.74 8.6 33.0 64.6 19.8 14.7 2.19 6.5 92 4.36 1, 3
41 33/10 14.4 8.00 9.9 3.72 2.54 2.97 128.1 21.0 43.5 42.3 4.73 0.55 2.3 63 3.00 1, 3
48 1/12 18.5 8.05 13.9 1.15 7.17 4.91 21.1 12.0 81.9 19.0 2.88 0.07 1.3 18 0.84 1
49 2/12 18.0 7.37 16.8 0.85 8.92 5.84 3.1 24.4 63.8 112 8.23 0.48 2.2 56 2.66 1
49 3/13 n.d. 8.50 15.0 2.07 5.74 4.56 734.4 22.3 131.7 25.0 4.41 0.07 0.8 12 0.59 1
50 9/12 14.0 7.99 8.8 3.26 1.31 2.33 628.7 12.0 19.8 9.5 5.96 0.28 2.2 57 2.70 1
50 5/13 n.d. 8.10 8.6 4.17 1.31 2.38 27.5 11.0 15.5 13.1 4.89 1.52 8.6 101 4.81 1
45 10/12 12.6 8.02 9.0 4.92 0.70 2.29 2.5 17.1 4.6 2.0 6.52 0.49 3.8 87 4.14 1
51 12/12 20.8 7.88 26.2 1.74 14.97 10.00 2.7 8.7 174.0 15.4 5.51 0.39 3.6 41 1.96 1
52 13/12 18.5 7.58 25.1 0.85 14.38 9.43 2.7 25.6 67.7 59.6 3.74 0.27 2.2 43 2.05 1
53 15/12 18.3 7.46 20.4 0.99 10.74 7.06 7.5 36.9 90.1 74.1 4.58 1.21 3.2 73 3.46 1
54 16/12 23.8 7.56 24.0 5.63 10.28 8.47 5.3 34.0 139.1 27.1 7.16 1.99 9.7 79 3.78 1
55 19/12 n.d. 7.76 11.9 2.70 3.28 3.30 463.4 15.0 20.5 21.3 10.0 0.63 n.d. 75 3.56 1
55 19-1/12 17.5 7.35 11.8 2.65 4.16 3.72 378.5 13.6 42.0 62.4 9.55 0.37 5.8 55 2.62 1
56 20/12 17.4 7.63 7.6 0.40 2.09 1.67 508.9 11.8 15.1 31.9 5.28 0.67 1.7 80 3.81 1
57 21/12 20.9 7.96 11.5 5.82 1.53 3.17 103.6 21.0 21.7 14.3 11.8 0.46 3.6 67 3.18 1
58 1/13 n.d. 8.20 6.7 0.71 3.49 2.50 31.1 11.1 9.0 18.6 4.74 0.25 0.5 63 3.01 1
59 2/13 n.d. 8.10 12.7 4.92 2.27 3.17 6.9 31.2 63.2 19.2 9.28 1.55 4.4 83 3.95 1
60 4/13 n.d. 7.80 17.7 2.99 7.35 5.25 5.4 46.2 251.1 125.7 21.1 1.37 5.9 64 3.04 1
Fore-Kura area
11 9/10 17.9 7.47 28.3 0.11 16.17 8.78 9.0 15.6 259.2 1085.4 2.70 0.19 2.9 24 1.60 1, 3
13 11/10 19.9 7.89 37.1 1.36 19.92 13.23 13.0 16.2 84.0 20.3 3.97 0.03 0.5 n.d. n.d. 1, 3
14 12/10 20.3 7.61 47.3 1.10 20.40 13.21 3.3 18.2 170.2 82.1 6.36 0.12 0.5 21 1.39 1, 3
15 12-1/10 n.d. 7.41 25.6 1.13 12.81 8.59 6.6 15.2 41.2 43.0 9.45 0.17 0.6 39 2.59 1, 3
16 13/10 19.0 6.51 84.3 0.41 46.07 24.29 12.6 73.5 981.0 3326.2 14.6 1.20 3.5 47 3.10 1, 3
17 13-1/10 22.6 n.d. 40.4 0.12 24.60 13.71 8.0 40.1 465.3 1195.3 11.3 0.61 3.4 41 2.71 1, 3
18 14/10 17.5 7.46 20.3 3.25 8.30 6.28 n.d. 22.3 145.2 36.1 6.27 0.59 2.0 51 3.42 1, 3
19 15/10 16.0 7.60 14.6 2.14 6.48 4.79 6.1 16.6 92.3 31.2 4.23 0.16 0.5 30 2.03 1, 3
20 16/10 17.5 7.69 12.2 1.02 5.99 4.05 n.d. 10.2 86.0 43.1 5.95 0.13 1.2 27 1.83 1, 3
29 24/10 16.0 7.97 16.6 2.26 7.61 5.62 26.0 11.6 66.7 37.0 6.73 0.49 9.5 56 3.70 1, 3
35 27/10 15.5 7.29 16.8 3.54 6.62 4.78 n.d. 18.0 359.5 133.2 18.4 0.66 1.6 45 2.97 1, 3
43 35/10 15.5 7.76 25.1 1.25 11.10 7.42 n.d. 19.5 78.4 72.7 4.62 0.54 3.3 56 3.73 1, 3
66 14/12 18.7 8.00 18.4 2.11 8.68 6.32 3.7 13.2 40.7 11.1 5.26 0.10 2.7 29 1.90 1, 3
66 14-2/12 n.d. 8.09 24.3 3.43 9.55 7.40 17.5 13.5 38.1 5.0 4.52 0.06 3.5 21 1.39 1, 3
Tab.2  Chemistry of mud volcanic waters from the Caucasus region and the fluid generation temperatures based on Mg/Li geothermometry.
Fig.4  Major ions composition of mud volcanic waters from different Caucasian MV provinces (mg-equ %). А – Kerch-Taman province, B – South Caspian province.
Fig.5  Correlation of CO2 (vol.%) in free gases and HCO3 (g/l) in MV waters from the Caucasian MV provinces. А – Kerch-Taman province, B – South Caspian province. Straight lines are statistically significant correlation trends.
Fig.6  Oxygen and hydrogen isotope compositions of water from the Caucasus region. 1-3 – MV waters of the Kerch-Taman (1), South Caspian (2), and Kakhety (3) provinces; 4 – fresh water, 5 – sea water, after (Dubinin and Dubinina, 2014) (AS= Sea of Azov, CS= Caspian Sea, BS= Black Sea), 6-7 – pore waters from hydrocarbon reservoirs, after (Seletskii, 1991), Azov-Kuban basin (6) Neftechala oil field in the South Caspian basin (7); 8 – CO2-rich springs from the Elbrus area; 9 – CO2-rich springs from West Caucasus; 10 – boreholes from the North Caucasus (8-10 – after Seletskii, 1998; Lavrushin, 2012; Dubinina, 2013). Dash line is Craig line of meteoric water composition (Craig, 1961). Solid line is statistically significant correlation trend inferred from the Taman MVs data. Black dots in two insets are all data set on MV waters from the Caucasus region.
Water variety, provinces VSMOW/‰ Data source*
δD d18О
MV water, Kerch-Taman province −39.0 – −21.0
−29.2 ± 2.5 (n=18)
−3.4 – +14.2
+5.4 ± 2.0 (n=18)
1
MV water, South Caspian province
Fore-Caspian area

Apsheron area
Shemakha-Gobustan area
Fore-Kura area
−33.0 – −12.0
−22.6 ± 1.5 (n=51)
−28.0 – −25.0
−26.5 (n=2)
−24.0 – −13.0
−19.8 ± 3.7 (n=5)
−33.0 – −12.0
−22.5 ± 2.0 (n=31)
−32.0 – −16.0
−22.5 ± 2.8 (n=13)
−0.6 – +10.4
+3.9 ± 0.7 (n=53)
+0.1 – +7.2
+3.7 (n=2)
+2.1 – +7.4
+4.4 ± 2.0 (n=5)
+1.0 – +10.4
+4.5± 0.8 (n=33)
−0.6 – +4.4
+2.3 ± 0.7 (n=13)
1, 2
1, 2
1, 2
1, 2
1, 2
MV water, Kakhety province −1.0 – −27.0
−16.3 ± 9.0 (n=5)
+2.0 – +9.6
+4.3 ± 2.7 (n=5)
3
Pore water (Neftechala oil field) −73.0 – -49.0
−55.0 ± 4.9 (n=20)
−11.7 – -2.4
−6.0 ± 1.1 (n=20)
4
Pore water (oil and gas reservoirs of the Azov-Kuban basin) −68.0 – -58.0 n.d. 5
Fresh meteoric waters, South Caspian province −67.0 – −55.0
−59.0 ± 4.0 (n=5)
−11.5 – −9.6
−10.3 ± 0.6 (n=5)
2
Sea water (Sea of Azov) −42.0 −3.4 4
Sea water (Black Sea) −18 – −25
−21.5 (n=2)
−4 – −3
−3.5 (n=2)
4
Sea water (Caspian Sea) −27.0 −3.0 2
Tab.3  Oxygen and hydrogen isotope compositions of MV water in comparison with pore water, sea water and spring water (the Caucasus region)
Fig.7  Constrained MV fluid generation temperatures (TMg/Li) and depths (HMg/Li) of mud volcanic reservoirs within the South Caspian province. Dash lines – the boundaries of MV areas. 1 – MV waters with HCO3-<25 mg-equ %, 2 – MV waters with HCO3->25 mg-equ %; 3-5 – distribution areas of different MV water types: 3 – HCO3-Cl/Na type, 4 – Cl-HCO3/Na type, 5 – Cl/Na type; 6 – the Great Caucasus, 7 – zone of high seismicity (Kadirov et al., 2012), 8 – general thrust direction after Reilinger et al. (2006) and Mosar et al. (2010), 9 – ranges of estimated TMg/Li and HMg/Li values. The specific values see in Table 4.
Fig.8  Correlation of calculated TMg/Li(°C), Cl and HCO3 contents, and δ18OH2O values in MV fluids. 1, 2 and 3, 4 are data points (1, 3) and trend (2, 4) in the Kerch-Taman and South Caspian provinces, respectively. Letters S, G and Y mark anomalous data points at Shugo, Gladkov, and Yuzhno-Neftyanoi mud volcanoes (Numbers 2, 3 and 9 in Tables 1 and 2, respectively).
MV province, area TMg/Li/°C HMg/Li/km
Kerch-Taman province 41–137
78.8±11.8 (n=18)
1.0–3.6
2.0±0.3 (n=18)
South Caspian province 18–137
60.8±6.3 (n=59)
0.8–6.5
3.1±0.3 (n=59)
?Fore-Caspian area 75–137
106 (n=2)
3.6–6.5
5.1 (n=2)
?Apsheron area 48–73
63±8.6 (n=5)
2.3–3.5
3.0±0.4 (n=5)
?Shemakha-Gobustan area 18–116
66.0±7.0 (n=39)
0.8–5.5
3.1±0.3 (n=39)
?Fore-Kura area 21–56
37.5±7.0 (n=13)
1.4–3.7
2.5±0.5 (n=13)
Kakhety province 58–108
78.3±22.4 (n=4)
1.9–3.6
2.6±0.8 (n=4)
Tab.4  Mg/Li temperature and depth constrains for mud volcano reservoirs in the Caucasus region (mean and extreme values, standard deviation)
Fig.9  Constrained MV fluid generation temperatures (TMg/Li) and depths (HMg/Li) of mud volcanic reservoirs of the Kerch-Taman province. Sketch map of the Crimea and Taman Peninsulas modified from Shnyukov et al. (1986). 1-2 – MVs: 1 – authors data, 2 – extra data are according to (Ershov and Levin, 2016; Sokol et al., 2019); 3 – Cenozoic sedimentary strata, 4 – Oligocene-Early Miocene shales (Maykop Formation), 5 – Cretaceous sedimentary strata, 6 – the Greater Caucasus orogeny, 7 – anticlinal folds, 8 – faults; 9 – isopachitis of the Maykop strata, km (Tugolesov, 1985); 10 – ranges of estimated TMg/Li and HMg/Li values. The specific values see in Table 2.
1 S A Adamia (1985). Crust and mantle structure in the Caucasus and its relation to modern geological structures. In: Geophysical Fields and Crust Structure in Transcaucasia. Moscow: Nauka, 151–169 (in Russian)
2 S Adamia, T Mumladze, N Sadradze, E Tsereteli, N Tsereteli, O Varazanashvili (2008). Late Cenozoic tectonics and geodynamics of Georgia (SW Caucasus). Georgian International Journal of Sciences and Technology, 1: 77–107
3 S Adamia, G Zakariadze, T Chkhotua, N Sadradze, N Tsereteli, A Chabukiani, A Gventsadze (2011). Geology of the Caucasus: a review. Turk J Earth Sci, 20: 489–544
https://doi.org/10.3906/yer-1005-11
4 A Aliev Ad, A A Bairamov (2007). Space and time patterns of mud volcanism in Azerbaijan in the context of a new tectonic model. Transactions, IG NAN Azerbaijan, 35: 25–45 (in Russian).
5 A A Aliyev, I S Guliyev, R R Rakhmanov (2009). Catalogue of mud volcanoes eruptions of Azerbaijan: 1810–2007. Baku: NaftaPress, 1–109
6 A A Aliyev, I S Guliyev, F G Dadashev, R R Rakhmanov (2015) Atlas of the world mud volcanoes, Baku: NaftaPress,1–323
7 S Aliev (1985). Map of heat flows in basins of Azerbaijan, scaled 1:500000 (Ismail-Zade T A and Gadzhiev T G, eds). Moscow: Mingeo SSSR (in Russian)
8 A Ali-Zade Ak (2008). Geology of Azerbaijan. Book VII. Oil and Gas. Baku: NaftaPress,1–672 (in Russian)
9 G Bödvarsson (1961). Physical characteristics of natural heat resources in Iceland. In: UN Conference on new sources of energy. Rome: 1–19
10 G Bödvarsson, G Pálmason (1961). Exploration of subsurface temperatures in Iceland. Jokull, 11: 39–48
11 T L Chelidze (1983) Thermodynamic environments and petrophysical models of regions of the earth’s crust in the Caucasus. In: Chikovani D S, Lursmanashvili O V, eds. The structure of the Georgia earth crust inferred from seismic and magnetic data. (Proceed. Geophysics Institute of the Georgian Acad. of Sci., 51). Tbilisi: Metsniereba,97–115 (in Russian)
12 G A Chelnokov, I V Bragin, N A Kharitonova (2018). Geochemistry of mineral waters and associated gases of the Sakhalin Island (Far East of Russia). J Hydrol (Amst), 559: 942–953
https://doi.org/10.1016/j.jhydrol.2018.02.049
13 H Craig (1961). Isotopic variation in meteoric waters. Science, 233: 133–149
14 H Craig (1963). The isotope geochemistry of water and carbon in geothermal areas. In: Tongiorgi E, ed. Nuclear geology on geothermal areas. Pisa: Spoleto, 17–53
15 A Dählmann, G J de Lange (2003). Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160. Earth Planet Sci Lett, 212(3–4): 377–391
https://doi.org/10.1016/S0012-821X(03)00227-9
16 F D’Amore, S Arnórsson (2000). Geothermometry. In: Arnórsson S, ed. Isotopic and chemical techniques in geothermal exploration, development and use. Sampling methods, data handling, interpretation. Vienna: International Atomic Energy Agency,152–199
17 L Dimitrov (2002). Mud volcanoes as the most important pathways for degassing deeply buried sediments. Earth Sci Rev, 59(1-4): 49–76
https://doi.org/10.1016/S0012-8252(02)00069-7
18 A V Dubinin, E O Dubinina (2014). Isotope composition of oxygen and hydrogen in the Black Sea waters as a result of the dynamics of water masses. Oceanology (Mosc), 54(6): 713–729
https://doi.org/10.1134/S0001437014050038
19 E O Dubinina, V A Kovalenker, A S Avdeenko, V Yu Lavrushin, M I Stepanets (2005). Origin of mineral springs of the Elbrus region, northern Caucasus: Isotopic-geochemical evidence. Geochem Int, 43(10): 988–998
20 E O Dubinina (2013). Stable Isotopes of Light Elements in Rock-Fluid Interactions and Contamination. Dissertation for the Doctoral Degree. Moscow: IGEM,1–50 (in Russian)
21 V V Ershov, B V Levin (2016). New data on the material composition of mud volcano products on Kerch Peninsula. Dokl Earth Sci, 471(1): 1149–1153
https://doi.org/10.1134/S1028334X16110027
22 V V Ershov, O A Nikitenko, A Perstneva Yu (2016). Geochemistry of mud and fluid migration in mud volcanoes. Vestnik of the Far East Branch of the Russian Academy of Sciences, 5(189): 52–58 (in Russian)
23 G Etiope (2015). Natural Gas Seepage. The Earth’s Hydrocarbon Degassing. Switzerland: Springer, 1–199
https://doi.org/10.1007/978-3-319-14601-0 (ISBN 978–3-319–14601–0
24 V I Ferronsky, V A Polyakov (2012). Isotopes of the earth’s hydrosphere. Berlin: Springer,1–628
https://doi.org/10.1007/978-94-007-2856-1
25 A A Feyzullayev (2012). Mud volcanoes in the South Caspian basin: nature and estimated depth of its products. Nat Sci, 4(07): 445–453
https://doi.org/10.4236/ns.2012.47060
26 C Fouillac, G Michard (1981). Sodium/litium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics, 10(1): 55–70
https://doi.org/10.1016/0375-6505(81)90025-0
27 R O Fournier (1977). Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1-4): 41–50
https://doi.org/10.1016/0375-6505(77)90007-4
28 R O Fournier, A H Truesdell (1973). An empirical Na K Ca chemical geothermometer for natural waters. Geochim Cosmochim Acta, 37(5): 1255–1275
https://doi.org/10.1016/0016-7037(73)90060-4
29 I P Gamkrelidze, T V Giorgobiani (1989). Problems of Alpian deformation in the Greater Caucasus and adjacent areas. In: Milanovskii E E, Koronovskii N V, eds. Geology and Mineral Resources of the Greater Caucasus. Moscow: Nauka, 35–40 (in Russian)
30 J M Gieskes, C F You, T Lee, T F Yui, H W Chen (1992). Hydro-geochemistry of mud volcanoes in Taiwan. Acta Geologica Taiwanica, 30: 79–88
31 W F Giggenbach (1995). Variations in the chemical and isotopic composition of fluids discharged from the taupo volcanic zone, New Zealand. J Volcanol Geotherm Res, 68(1-3): 89–116
https://doi.org/10.1016/0377-0273(95)00009-J
32 I S Guliev, F G Dadashev, A V Poletaev (2013). Isotopes of Hydrocarbon Gases in Azerbaijan. Baku: NaftaPress, 1–107 (in Russian)
33 I S Guliev, D A Huseynov, A A Feizullaev (2004). Fluids of mud volcanoes in the Southern Caspian sedimentary basin: geochemistry and sources in light of new data on the carbon, hydrogen, and oxygen isotopic compositions. Geochem Int, 42(7): 688–695
34 I S Guliev, F A Kadirov, R E Reilindzher (2002). Active tectonics of Azerbaijan: dased on geodesical, gravimetric, and seismic data. Dokl Earth Sci, 382(6): 812–815
35 I S Guliev, N I Pavlenko, M M Radjabov (1988). Zones of regional decompaction in the South Caspian basin sedimentary cover. Lithol Miner Resour, 5: 130–136
36 R A Horn (1969). Marine Chemistry. The structure of water and the chemistry of the hydrosphere. New York: Willey-Interscience,1–565
37 M S Iosseliani, S P Diasamidze (1983). Compiling seismic model of the earth crust in Georgia intermountain depression. In: Chikovani D S, Lursmanashvili O V, eds. The structure of the Georgia earth crust inferred from seismic and magnetic data. (Proceed. Geophysics Institute of the Georgian Acad. of Sci., 51). Tbilisi: Metsniereba, 34–42 (in Russian)
38 A A Jakubov, A A Alizade, M M Zeinalov (1971). Mud volcanoes of Azerbaijan. Baku: Publ. AN Azerbaijan, 1–258 (in Russian)
39 A A Jakubov, B V Grigoryants, A D Aliev, A D Babazade, M M Veliev, A Gadzhiev Ya, I G Guseinzade, A Ya Kabulova, N S Kastryulin, F A Matanov, M G Mustafaev, R R Rakhmanov, O B Safarova, A G Seidov (1980). Mud volcanism in the USSR territory and its relation with petroleum potential. Baku: Elm,1–167 (in Russian)
40 F A Kadirov, M Floyd, R Reilinger, A Alizadeh Ak, I S Guliyev, S G Mammadov, R T Safarov (2015). Active geodynamics of the Caucasus region: implications for earthquake hazards in Azerbaijan. Proceed. of Azerbaijan National Academy of Sciences. Sciences of Earth, 3: 3–17
41 V K Karandashev, A Y Leikin, V A Khvostikov, N K Kutseva, S V Pirogova (2016). Water analysis by inductively coupled plasma mass spectrometry. Inorg Mater, 52(14): 1391–1404
https://doi.org/10.1134/S0020168516140053
42 Y K Kharaka, R H Mariner (1989). Chemical geothermomethers and their application to formation waters from sedimentary basins. In: Naeser N D, McCulloch T H, eds. Thermal history of sedimentary basins, methods and case histories. New York: Springer-Verlag, 99–117
https://doi.org/10.1007/978-1-4612-3492-0_6
43 O E Kikvadze, V Y Lavrushin, B G Pokrovskii, B G Polyak (2014). Isotope and chemical composition of gases from mud volcanoes in the Taman Peninsula and problem of their genesis. Lithol Miner Resour, 49(6): 491–504
https://doi.org/10.1134/S0024490214060066
44 V E Khain (1982). Tectonic history of the Greater Caucasus in fixistic and mobilistic models. Геотектоника, 4: 3–13 (in Russian)
45 V N Kholodov (2002). Mud volcanoes: distribution and genesis: communication 1. Mud-volcanic provinces and morphology of mud volcanoes. Lithol Miner Resour, 37(3): 197–209
https://doi.org/10.1023/A:1015425612749
46 V N Kholodov (2013). Distribution and formation conditions of salt diapirs and mud volcanoes. Lithol Miner Resour, 48(5): 398–415
https://doi.org/10.1134/S0024490213050040
47 S N Kokh, Y F Shnyukov, E V Sokol, S A Novikova, O A Kozmenko, D V Semenova, E N Rybak (2015). Heavy carbon travertine related to methane generation: A case study of the Big Tarkhan cold spring, Kerch Peninsula, Crimea. Sediment Geol, 325: 26–40
https://doi.org/10.1016/j.sedgeo.2015.05.005
48 S N Kokh, E V Sokol, A A Dekterev, K A Kokh, T M Rashidov, A A Tomilenko, T A Bul’bak, A Khasaeva, A Guseinov (2017). The 2011 strong fire eruption of Shikhzarli mud volcano, Azerbaijan: a case study with implications for methane flux estimation. Environ Earth Sci, 76(20): 701
https://doi.org/10.1007/s12665-017-7043-5
49 A Kopf, A Deyhle, V Yu Lavrushin, B G Polyak, J M Gieskes, G I Buachidze, K Wallmann, A Eisenhauer (2003). Isotopic evidence (He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone. International Journal of Earth Sciences. Geol Rundsch, 92: 407–425
https://doi.org/10.1007/s00531-003-0326-y
50 A J Kopf (2002). Significance of mud volcanism. Rev Geophys, 40(2): 1005–1012
https://doi.org/10.1029/2000RG000093
51 G V Krasnopevtseva, I A Rezanov, V I Shevchenko (1977). Deep structure, seismic interfaces, and crust evolution in the Caucasus. In: Crust and Mantle Structure, from Seismic Data. Kiev: Naukova Dumka, 203–216 (in Russian)
52 Lagunova, I A (1975). Genesis of Boron in Waters of Mud Volcanoes, Sov. Geol., 1975, 1: 147–152. (in Russian)
53 I A Lagunova, S D Gemp (1971). Chemistry of mud volcanic waters in the Kerch-Taman province. In: Hydrogeology and Geological Role of Groundwaters. Leningrad: Leningrad University, 201–210 (in Russian)
54 I A Lagunova, S D Gemp (1978). Water chemistry of mud volcanoes. Sovetskaya Geologiya, 8: 108–125 (in Russian)
55 V Yu Lavrushin, B G Polyak, R M Prasolov, I L Kamenskii (1996). Sources of material in mud volcano products (based on isotopic, hydrochemical, and geological data). Lithol Miner Resour, 31(6): 557–578
56 V Yu Lavrushin (2012). Subsurface fluids of the Greater Caucasus and its surroundings (Transactions, GIN, Issue 599). Moscow: GEOS, 1–348 (in Russian)
57 V Yu Lavrushin, A Kopf, A Deyhle, M I Stepanets (2003). Formation of mud-volcanic fluids in Taman (Russia) and Kakhetia (Georgia): evidence from boron isotopes. Lithol Miner Resour, 38(2): 120–153
https://doi.org/10.1023/A:1023452025440
58 V Yu Lavrushin, E O Dubinina, A S Avdeenko (2005). Isotopic composition of oxigen and hydrogen in mud-volcanic waters from Taman (Russia) and Kakhetia (Eastern Georgia). Lithol Miner Resour, 40(2): 123–137
https://doi.org/10.1007/s10987-005-0014-z
59 V Y Lavrushin, I S Guliev, O E Kikvadze, A A Aliev, B G Pokrovsky, B G Polyak (2015). Waters from mud volcanoes of Azerbaijan: isotopic-geochemical properties and generation environments. Lithol Miner Resour, 50(1): 1–25
https://doi.org/10.1134/S0024490215010034
60 G Leonov Yu (2007). The Greater Caucasus in the Alpine Epoch. Moscow: GEOS, 1–368 (in Russian)
61 A Mazzini, H Svensen, S Planke, I Guliyev, G G Akhmanov, T Fallik, D Banks (2009). When mud volcanoes sleep: insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Mar Pet Geol, 26(9): 1704–1715
https://doi.org/10.1016/j.marpetgeo.2008.11.003
62 A Mazzini, G Etiope (2017). Mud volcanism: an updated review. Earth Sci Rev, 168: 81–112
https://doi.org/10.1016/j.earscirev.2017.03.001
63 E E Milanovskii, N V Koronovskii (1973). Orogenic volcanism and tectonics of the Alpine Belt of Eurasia. Moscow: Nedra,1–279 (In Russian)
64 A V Milkov (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol, 167(1-2): 29–42
https://doi.org/10.1016/S0025-3227(00)00022-0
65 J Mosar, T Kangarli, M Bochud, U A Glasmacher, A Rast, M F Brunet, M Sosson (2010). Cenozoic-Recent tectonics and uplift in the Greater Caucasus: a perspective from Azerbaijan. Geol Soc Lond Spec Publ, 340(1): 261–280
https://doi.org/10.1144/SP340.12
66 R S Nadirov, E Bagirov, M Tagiyev, I Lerche (1997). Flexural plate subsidence, sedimentation rates, and structural development of the super-deep South Caspian Basin. Mar Pet Geol, 14(4): 383–400
https://doi.org/10.1016/S0264-8172(96)00054-2
67 V V Olenchenko, Y F Shnyukov, O L Gas’kova, S N Kokh, E V Sokol, S B Bortnikova, I N El’tsov (2015). Explosion dynamics of the Andrusov mud vent (Bulganak mud volcano area, Kerch Peninsula, Russia). Dokl Earth Sci, 464(1): 951–955
https://doi.org/10.1134/S1028334X15090123
68 D Oppo, R Capozzi, A Nigarov, P Esenov (2014). Mud volcanism and fluid geochemistry in the Cheleken peninsula, western Turkmenistan. Mar Pet Geol, 57: 122–134
https://doi.org/10.1016/j.marpetgeo.2014.05.009
69 H Philip, A Cisternas, A Gvishiani, A Gorshkov (1989). The Caucasus: an actual example of the initial stages of continental collision. Tectonophysics, 161(1-2): 1–21
https://doi.org/10.1016/0040-1951(89)90297-7
70 B G Pokrovsky, P O Zaviyalov, M I Bujakaite, A S Izhitskiy, O L Petrov, A K Kurbaniyazov, V M Shimanovich (2017). Geochemistry of O, H, C, S, and Sr Isotopes in the water and sediments of the Aral Basin. Geochem Int, 55(11): 1033–1045
https://doi.org/10.1134/S0016702917110076
71 M M Radzhabov, I B Osipova, K H Armenakyan, M S Ioseliani, S P Diasamidze, V V Shcherbakov, E Ya Kutsenko, Z S Votsalevsky (1985). Wave fields and deep structure of the Caucasus according to seismic data. Geophysical field and crustal structure of the Caucasus. Moscow: Nauka,5–33 (in Russian)
72 R R Rakhmanov (1987). Mud volcanoes: implications for petroleum reservoir potential. Moscow: Nedra,1–174 (in Russian)
73 A Revil (2002). Genesis of mud volcanoes in sedimentary basins: a solitary wave-based mechanism. Geophys Res Lett, 29(12): 1574
https://doi.org/10.1029/2001GL014465
74 R Reilinger, S McClusky, P Vernant, S Lawrence, S Ergintav, R Cakmak, H Ozener, F Kadirov, I Guliev, R Stepanyan, M Nadariya, G Hahubia, S Mahmoud, K Sakr, A ArRajehi, D Paradissis, A Al-Aydrus, M Prilepin, T Guseva, E Evren, A Dmitrotsa, S V Filikov, F Gomez, R Al-Ghazzi, G Karam (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth, 111: 1–26
https://doi.org/10.1029/2005JB004051
75 K O Rostovtsev, ed. (2000). The geological map of the Russian Federation, scaled 1:200 000. Caucasian series, sheets L-37-XIX, L-37-XXV (Taman). FGUGP “Caucasus geological survey”, NGO “Yuzhmorgeologiya” Publisher: VSEGEI
76 B Seletskii Yu (1991). Deuterium and oxygen-18 in the context of mud volcanic waters formation. Izvestia AN SSSR. Geology, 5: 133–138 (in Russian)
77 B Seletskii Yu (1998). Condensation and solution waters of oil and gas fields: possible mechanisms of formation of their isotopic composition. Water Resour, 25(3): 259–264
78 E F Shnyukov, V Sobolevskiy Yu, G I Gnatenko, P I Naumenko, V A Kutniy (1986). Mud volcanoes of the Kerch-Taman region: an atlas. Kiev: Naukova Dumka, 1–152 (in Russian).
79 E Shnyukov, V Sheremetiev, N Maslakov, V Kutniy, I Gusakov, V Trofimov (2005). Mud volcanoes of the Kerch-Taman region. Krasnodar: Glav Media Publishing House,1–176 (in Russian)
80 A L Sobissevitch, A V Gorbatikov, A N Ovsuchenko (2008). Deep structure of the Mt. Karabetov mud volcano. Dokl Earth Sci, 422(1): 1181–1185
https://doi.org/10.1134/S1028334X08070428
81 E Sokol, S Kokh, O Kozmenko, S Novikova, P Khvorov, E Nigmatulina, E Belogub, M Kirillov (2018). Mineralogy and geochemistry of mud volcanic ejecta: A new look at old issues (A case study from the Bulganak field, Northern Black Sea). Minerals (Basel), 8(8): 344
https://doi.org/10.3390/min8080344
82 E V Sokol, S N Kokh, O A Kozmenko, V Yu Lavrushin, E V Belogub, P V Khvorov, O E Kikvadze (2019). Boron in an onshore mud volcanic environment: Case study from the Kerch Peninsula, the Caucasus continental collision zone. Chem Geol, 525: 58–81
https://doi.org/10.1016/j.chemgeo.2019.07.018
83 D A Tugolesov, A S Gorshkov, L B Meisner, V V Solov’ev, E M Khakhalev (1985). Tectonics of Mesozoic–Cenozoic deposits of the Black Sea Basin. Moscow: Nedra, 1–215 (in Russian) Vetshtei`n V E (1982). Oxygen and Hydrogen Isotopes in Natural Waters of the USSR. Leningrad: Nedra, 1–216 (in Russian)
84 C F You, J M Gieskes, T Lee, T F Yui, H W Chen (2004). Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Appl Geochem, 19(5): 695–707
https://doi.org/10.1016/j.apgeochem.2003.10.004
85 L P Zonenshain, X Pichon (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics, 123(1–4): 181–211
https://doi.org/10.1016/0040-1951(86)90197-6
[1] Supplementary Material Download
[1] Pingzhi FANG, Deqian ZHENG, Ming GU, Haifeng CHENG, Bihong ZHU. Numerical investigation of the wind environment around tall buildings in a central business district[J]. Front. Earth Sci., 2019, 13(4): 848-858.
[2] Chunyang XU, Ping DONG. An application of two-phase 1DV model in studying sedimentary processes on an erosional mudflat at Yangtze River Delta, China[J]. Front. Earth Sci., 2017, 11(4): 715-728.
[3] Yilei YU, Xianfang SONG, Yinghua ZHANG, Fandong ZHENG, Licai LIU. Impact of reclaimed water in the watercourse of Huai River on groundwater from Chaobai River basin, Northern China[J]. Front. Earth Sci., 2017, 11(4): 643-659.
[4] Ye CAO, Meijuan Yao, Shengrong LI, Huafeng ZHANG, . Significance of quartz REE geochemistry, Shihu gold deposit, western Hebei Province, North China, using LA-ICP-MS[J]. Front. Earth Sci., 2010, 4(3): 337-344.
[5] JIANG Qingfeng, SHEN Ji, LIU Xingqi, ZHANG Enlou. Holocene climate reconstructions of Ulungur Lake (Xinjiang,China) inferred from ostracod species assemblages and stable isotopes[J]. Front. Earth Sci., 2008, 2(1): 31-40.
[6] XU Sihuang, W. Lynn Watney. Dominant factors in controlling marine gas pools in South China[J]. Front. Earth Sci., 2007, 1(4): 491-497.
[7] WANG Yong, HOU Zengqian, DONG Fangliu, ZENG Pusheng, MO Xuanxue, BI Xianmei. Stable isotope characteristics and origin of ore-forming fluids in copper-gold-polymetallic deposits within strike-slip pull-apart basin of Weishan-Yongping continental collision orogenic belt, Yunnan Province, China[J]. Front. Earth Sci., 2007, 1(3): 322-332.
[8] CHEN Yong, ZHOU Yaoqi, REN Yongjun, WANG Qiang, YAN Shiyong, LIU Chaoying, XIAO Huanqin, SUN Xinian. Immiscibility of high salinity fluids in volcanic rocks and the mechanism of magma degassing in the Dongying sag, eastern China[J]. Front. Earth Sci., 2007, 1(2): 206-211.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed