Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (4) : 789-802    https://doi.org/10.1007/s11707-020-0834-0
RESEARCH ARTICLE
Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China
Kaixiu ZHANG1, Wen QIN1, Fang TIAN1(), Xianyong CAO2,3, Yuecong LI4, Jule XIAO5, Wei DING6, Ulrike HERZSCHUH7,8, Qinghai XU4()
1. College of Resource Environment and Tourism, Beijing Key Laboratory of Resource Environment and GIS, Capital Normal University, Beijing 100048, China
2. Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
3. Alpine Paleoecology and Human Adaptation Group (ALPHA), Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
4. College of Resources and Environment Sciences, Hebei Normal University, Shijiazhuang 050024, China
5. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
6. Institute of Geological Sciences, Palaeontology, Free University of Berlin, Berlin 12249, Germany
7. Alfred Wegener Institute Helmholtz Center for Polarand Marine Research, Research Unit Potsdam, Potsdam 14473, Germany
8. Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam 14476, Germany
 Download: PDF(2819 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pollen productivity is a critical parameter in the interpretation of pollen-vegetation relationships, and in the quantitative reconstructions of past vegetation from fossil pollen records. One-year monitoring records were collected for 143 pollen traps in various parts of northern China, together with modern vegetation data. Absolute Pollen Productivity Estimates (APPE) were calculated for 11 taxa using the ratio of pollen influx to plant coverage at each applicable sampling site, in which the plants of the target taxon were present. Relative Pollen Productivity Estimates (RPPE) were calculated for the 11 taxa (taking Poaceae as the reference taxon) at those sites in which each taxon occurred together with Poaceae. Artemisia and Chenopodiaceae were found to have the highest RPPEs and the largest RPPEs ranges, while Pinus and Quercus also had higher RPPEs than Poaceae; Abies, Betula, Larix, Picea and Cyperaceae had relatively low RPPEs. Variations in RPPE between different areas may be explained by variations in climatic conditions, plant coverage and land use practices which might influence plant growing situation. Marked effect that variations in pollen productivity can have on vegetation reconstructions was demonstrated by applying these distinct RPPEs to reconstructions of Holocene vegetation in the Lake Daihai area (northern China), such as a large range of RPPE produces a large range of plant coverage. Variations in RPPEs within a single taxon, related to vegetation coverage and climatic conditions, therefore need to be considered in future vegetation reconstructions.

Keywords pollen influx      pollen productivity      vegetation reconstruction      REVEALS model      northern China     
Corresponding Author(s): Fang TIAN,Qinghai XU   
Just Accepted Date: 20 October 2020   Online First Date: 17 November 2020    Issue Date: 08 January 2021
 Cite this article:   
Kaixiu ZHANG,Wen QIN,Fang TIAN, et al. Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China[J]. Front. Earth Sci., 2020, 14(4): 789-802.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-020-0834-0
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I4/789
Fig.1  Locations of 120 Tauber traps and location of the study area relative to the Tibetan Plateau, the Loess Plateau, the Inner Mongolia Plateau and the North China Plain. The square filled with gray dots within the inset corresponds to the area depicted in the main figure. Black dashed lines represent the boundaries of different vegetation types and solid gray lines are annual precipitation isolines. I: Temperate desert zone; II: Temperate steppe zone; III: Warm temperate broad-leaved forest zone; IV: Tibetan plateau zone; V: Sub-tropical broad-leaved forest zone.
Species Fall speed/(m·s−1)
Betula 0.031a
Pinus 0.031b
Quercus 0.042a
Ostryopsis 0.025a
Artemisia 0.015a
Chenopodiaceae 0.029a
Cyperaceae 0.035c
Poaceae 0.035b
Tab.1  Fall speeds for the eight species used in the REVEALS model
Species APPEs/(grains cm−2 a−1) RPPEs (related to Poaceae) Key Factor
Number of traps Range Median Number of traps Range Median
Abies 5 4-26 9 0* 0.10-0.69* 0.24* ---
Betula 21 8-660 40 5 0.13-2.14 0.29 Pann
Larix 15 2-106 20 6 0.03-3.81 0.12 Pann
Picea 12 0.65-111 3 3 0.07-0.13 0.09 Pann
Pinus 4 128-188 145 0* 3.32-4.9* 3.78* ---
Quercus 14 18-471 194 0* 0.46-12.23* 5.05* Mtco
Ostryopsis 8 11.6-220 34 3 0.3-9 6 Tann
Artemisia 35 65-11,265 963 30 0.74-690 25.38 Mtwa
Chenopodiaceae 14 140-9,122 514 10 1.79-830 25.7 ---
Cyperaceae 35 3-220 25 9 0.04-15 0.13 ---
Poaceae 53 1-1,658 38 53 1 1 Tann
Tab.2  APPE and RPPE values and their associated major climatic factors in northern China
Fig.2  Box plots of absolute pollen productivity factors. (N: number of samples, *: Extremes, O: Outliers).
Fig.3  Smoothed curves for variations in the APPEs (grains cm2 a1) of nine pollen taxa with plant coverage and key climatic factors (smoother span: 0. 67).
Fig.4  Holocene vegetation compositions deduced from the original pollen count data and REVEALS models. The blue line represents median vegetation reconstructions (from 100 reconstructions), with the lower limits of error bars marking the 25% quartiles and their upper limits the 75% quartiles. The broken red lines indicate total pollen percentages for the eight reconstructed taxa.
Species This study Inner Mongolia1 Tibetan Plateau2 Den-
mark3
Eng-
land4
Est-
onis5
Fin-
land6
Nor-
way7
Central Sweden8 Southern Sweden9 Swiss Jura10 Swiss Plateau11 Xilinhaote12 Shandong
Province13
Changbai Mt. 14 Forest-steppe ecotone15 Loess Plateau16
Abies 0.237 3.34 9.92 0.39 1.06 0.19 1.00
Betula 0.29 8.06 1.81 4.6 2.24 8.94 2.42 24.65 1.16 6.20
Picea 0.09 4.75 4.73 2.78 1.77 7.1 0.57 11.70
Pinus 3.777 1.41 5.07 8.4 21.58 5.71 1.35 8.96 15.21 20.07 29.80
Quercus 5.049 7.6 7.39 7.6 2.56 4.89 58.05 0.6
Artemisia 25.375 53.625 3.267 3.48 11.21 24.70 1.29 2.3
Chenopodiaceae 25.7 12.5 5.379 6.74 50.49
Cyperaceae 0.13 0.66 0.002 1.23 0.29 0.89 0.67 0.68 0.94 0.21 0.01
Poaceae 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tab.3  Relative pollen production for the 11 taxa in northern China, and results from other study
1 S T Andersen (1974). Wind conditions and pollen deposition in a mixed deciduous forest II Seasonal and annual pollen deposition 1967–1972. Grana, 14(2–3): 64–77
https://doi.org/10.1080/00173137409429895
2 J Autio, S Hicks (2004). Annual variations in pollen deposition and meteorological conditions on the fell Aakenustunturi in northern Finland: potential for using fossil pollen as a climate proxy. Grana, 43(1): 31–47
https://doi.org/10.1080/00173130310017409
3 A G Baker, M Zimny, A Keczyński, S A Bhagwat, K J Willis, M Latalowa (2016). Pollen productivity estimates from old-growth forest strongly differ from those obtained in cultural landscapes: evidence from the Białowieża National Park Poland. Holocene, 26(1): 80–92
https://doi.org/10.1177/0959683615596822
4 L Breiman, J H Friedman, R A Olshen, C G Stone (2015). Classification and regression trees. Belmont, California: Wadsworth International Group. Ency Ecology, 57(1): 582–588
5 A Broström, S Sugita, M J Gaillard (2004). Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden. Holocene, 14(3): 368–381
https://doi.org/10.1191/0959683604hl713rp
6 A Broström, A B Nielsen, M J Gaillard, K Hjelle, F Mazier, H Binney, J Bunting, R Fyfe, V Meltsov, A Poska, S Räsänen, W Soepboer, H von Stedingk, H Suutari, S Sugita (2008). Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. Veg Hist Archaeobot, 17(5): 461–478
https://doi.org/10.1007/s00334-008-0148-8
7 M J Bunting, M J Gaillard, S Sugita, R Middleton, A Broström (2004). Vegetation structure and pollen source area. Holocene, 14(5): 651–660
https://doi.org/10.1191/0959683604hl744rp
8 M J Bunting, R Armitage, H A Binney, M Waller (2005). Estimates of ‘relative pollen productivity’ and ‘relevant source area of pollen’ for major tree taxa in two Norfolk (UK) woodlands. Holocene, 15(3): 459–465
https://doi.org/10.1191/0959683605hl821rr
9 M J Bunting, K L Hjelle (2010). Effect of vegetation data collection strategies on estimates of relevant source area of pollen (RSAP) and relative pollen productivity estimates (relative PPE) for non-arboreal taxa. Veg Hist Archaeobot, 19(4): 365–374
https://doi.org/10.1007/s00334-010-0246-2
10 M J Bunting, J E Schofield, K J Edwards (2013). Estimates of relative pollen productivity (RPP) for selected taxa from southern Greenland: a pragmatic solution. Rev Palaeobot Palynol, 190: 66–74
https://doi.org/10.1016/j.revpalbo.2012.11.003
11 R Calcote (1995). Pollen source area and pollen productivity: evidence from forest hollows. J Ecol, 83(4): 591–602
https://doi.org/10.2307/2261627
12 X Y Cao, F Tian, F Li, M J Gaillard, N Rudaya, U Herzschuh (2019). Pollen-based quantitative land-cover reconstruction for northern Asia during the last 40 ka cal BP. Clim Past, 15: 1503–1536
13 H Chen, Q H Xu, S R Zhang, Y H Sun, M Wang, Z Z Zhou (2019). Relative pollen productivity estimates of subtropical evergreen and deciduous broadleaved mixed forest in Ta-pieh Mountains. Quat Sci, 39(2): 469–482
14 J E Cresswell, C Hagen, J M Woolnough (2011). Attributes of individual flowers of Brassica napus L are affected by defoliation but not by intraspecific competition. Ann Bot, 88: 111–117
15 A Dahlström (2008). Grazing dynamics at different spatial and temporal scales: examples from the Swedish historical record A. D. 1620–1850. Veg Hist Archaeobot, 17(5): 563–572
16 Z Z Gao, F H Dai (1988). Vegetation of Ningxia. Yinchuan: Ningxia Renmin Press, 52–61 (in Chinese)
17 Y W Ge, Y C Li, Y Li, X L Yang, R C Zhang, Q H Xu (2015). Relevant source area of pollen and relative pollen productivity estimates in Bashang steppe. Quat Sci, 35(4): 934–945
18 R Grindean, A B Nielsen, I Tanţău, A Feurdean (2019). Relative pollen productivity estimates in the forest steppe landscape of southeastern Romania. Rev Palaeobot Palynol, 264: 54–63
https://doi.org/10.1016/j.revpalbo.2019.02.007
19 W Groenman-van Waateringe (1993). The effects of grazing on the pollen production of grasses. Veg Hist Archaeobot, 2(3): 157–162
https://doi.org/10.1007/BF00198586
20 P D Gunin (1999). Vegetation dynamics of Mongolia. Geobotany, 26
21 Y Han, H Y Liu, Q Hao, X Liu, W C Guo, H Shangguan (2017). More reliable pollen productivity estimates and relative source area of pollen in a forest-steppe ecotone with improved vegetation survey. Holocene, 27(10): 1567–1577
https://doi.org/10.1177/0959683617702234
22 M Hättestrand, C Jensen, M Hallsdóttir, K D Vorren (2008). Modern pollen accumulation rates at the north-western fringe of the European boreal forest. Rev Palaeobot Palynol, 151(3–4): 90–109
https://doi.org/10.1016/j.revpalbo.2008.03.001
23 S Hellman, M J Gaillard, A Broström, S Sugita (2008a). The REVEALS model a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden. J Quat Sci, 23(1): 21–42
https://doi.org/10.1002/jqs.1126
24 S Hellman, M J Gaillard, A Broström, S Sugita (2008b). Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model. Veg Hist Archaeobot, 17(5): 445–459
https://doi.org/10.1007/s00334-008-0149-7
25 U Herzschuh, H Kürschner, Y Z Ma (2003). The surface pollen and relative pollen production of the desert vegetation of the Alashan Plateau western Inner Mongolia. Chin Sci Bull, 48(14): 1488–1493
https://doi.org/10.1360/02wd0256
26 U Herzschuh, H Kürschner, R Battarbee, J Holmes (2006a). Desert plant pollen production and a 160-year record of vegetation and climate change on the Alashan Plateau NW China. Veg Hist Archaeobot, 15(3): 181–190
https://doi.org/10.1007/s00334-005-0031-9
27 U Herzschuh, K Winter, B Wünnemann, S J Li (2006b). A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quat Int, 154–155: 113–121
https://doi.org/10.1016/j.quaint.2006.02.005
28 S Hicks, M Helander, S Heino (1994). Birch pollen production transport and deposition for the period 1984–1993 at Kevo northernmost Finland. Aerobiologia, 10(2-3): 183–191
https://doi.org/10.1007/BF02459234
29 S Hicks (2001). The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol, 117(1–3): 1–29
https://doi.org/10.1016/S0034-6667(01)00074-4
30 F C How (1998). A dictionary of the families and genera of Chinese seed plants. 2nd ed. Beijing: Science Press (in Chinese)
31 Inner Mongolia and Ningxia Research Group of Chinese Academy of Sciences (1985). Vegetation of Inner Mongolia Beijing: Science Press, 427–641 (in Chinese)
32 S T Jackson, J B Kearsley (1998). Quantitative representation of local forest composition in forest-floor pollen assemblages. J Ecol, 86(3): 474–490
https://doi.org/10.1046/j.1365-2745.1998.00277.x
33 F R Li, M J Gaillard, S Sugita, F Mazier, Q H Xu, Z Z Zhou, Y Y Zhang, Y C Li, D Laffly (2017a). Relative pollen productivity estimates for major plant taxa of cultural landscapes in central eastern China. Veg Hist Archaeobot, 26(6): 587–605
https://doi.org/10.1007/s00334-017-0636-9
34 F R Li, M J Gaillard, X Y Cao, U Herzschuh, S Sugita, P E Tarasov, M K Wagner, Q H Xu, J Ni, W M Wang, Y Zhao, C B An, A H W Beusen, F H Chen, Z D Feng, C G M Klein Goldewijk, X Z Huang, Y C Li, X Jia (2020). Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light of pollen-based REVEALS reconstructions of regional plant cover. Earth Sci Rev, 203: 103–119
https://doi.org/10.1016/j.earscirev.2020.103119
35 Y C Li, Q H Xu, X L Wang, X Y Cao (2008). Modern pollen assemblages of the forest communities and their relationships with vegetation and climate in northern China. Acta Geogr Sin, 63(9): 945–957 (in Chinese)
36 Y C Li, M J Bunting, Q H Xu, S X Jiang, W Ding, L Y Hun (2011). Pollen-vegetation-climate relationships in some desert and desert-steppe communities in northern China. Holocene, 21(6): 997–1010
https://doi.org/10.1177/0959683611400202
37 Y Li, Y Ge, M J Bunting, Z Zhang, J Li, C Wang, B Li, C Li (2017b). Relative pollen productivities and relevant source area of pollen in the forest-steppe ecotone of northern China. Rev Palaeobot Palynol, 224: 1–12
38 Y Li, A B Nielsen, X Zhao, L Shan, S Wang, J Wu, L Zhou (2015). Pollen production estimates (PPEs) and fall speeds for major tree taxa and relevant source areas of pollen (RSAP) in Changbai Mountain northeastern China. Rev Palaeobot Palynol, 216: 92–100
https://doi.org/10.1016/j.revpalbo.2015.02.003
39 H Y Liu, H T Cui, R Pott, M Speier (1999). The surface pollen of the woodland-steppe ecotone in southeastern Inner Mongolia, China. Rev Palaeobot Palynol, 105(3-4): 237–250
https://doi.org/10.1016/S0034-6667(98)00074-8
40 Y Z Ma, K B Liu, Z D Feng, Y L Sang, W Wang, A Z Sun (2008). A survey of modern pollen and vegetation along a south-north transect in Mongolia. J Biogeogr, 35(8): 1512–1532
https://doi.org/10.1111/j.1365-2699.2007.01871.x
41 F Mazier, A Brostöm, M J Gaillard, S Sugita, P Vittoz, A Buttler (2008). Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland). Veg Hist Archaeobot, 17: 479–495
https://doi.org/10.1007/s00334-008-0143-0
42 K K McLauchlan, C S Barnes, J M Craine (2011). Interannual variability of pollen productivity and transport in mid-north America from 1997 to 2009. Aerobiologia, 27(3): 181–189
https://doi.org/10.1007/s10453-010-9186-7
43 A B Nielsen, B V Odgaard (2010). Quantitative landscape dynamics in Denmark through the last three millennia based on the Landscape Reconstruction Algorithm approach. Veg Hist Archaeobot, 19(4): 375–387
https://doi.org/10.1007/s00334-010-0249-z
44 B Niemeyer, J Klemm, L A Pestryakova, U Herzschuh (2015). Relative pollen productivity estimates for common taxa of the northern Siberian Arctic. Rev Palaeobot Palynol, 221: 71–82
https://doi.org/10.1016/j.revpalbo.2015.06.008
45 H S Pardoe (2001). The representation of taxa in surface pollen spectra on alpine and sub-alpine glacier forelands in southern Norway. Rev Palaeobot Palynol, 117(1–3): 63–78
https://doi.org/10.1016/S0034-6667(01)00077-X
46 C F Pérez, F Latorre, S Stutz, S Pastorino (2009). A two-year report of pollen influx into Tauber traps in MarChiquita coastal lagoon Buenos Aires Argentina. Aerobiologia, 25(3): 167–181
https://doi.org/10.1007/s10453-009-9122-x
47 A Poska, V Meltsov, S Sugita, J Vassiljev (2011). Relative pollen productivity estimates of major anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia). Rev Palaeobot Palynol, 167(1–2): 30–39
https://doi.org/10.1016/j.revpalbo.2011.07.001
48 S Räsänen, H Suutari, A B Nielsen (2007). A step further towards quantitative reconstruction of past vegetation in Fennoscandian boreal forests: pollen productivity estimates for six dominant taxa. Rev Palaeobot Palynol, 146(1–4): 208–220
https://doi.org/10.1016/j.revpalbo.2007.04.004
49 H Saito, Y Mishima, S Nogawa, M Takeoka (1984). Pollen production rates in 75-year-old Japanese pine forest. Scientific Report of Kyoto Prefectural University. Agriculture, 36: 9–18
50 J E Schofield, K J Edwards, J A McMullen (2007). Modern pollen-vegetation relationships in subarctic southern Greenland and the interpretation of fossil pollen data from the Norse landnam. J Biogeogr, 34(3): 473–488
https://doi.org/10.1111/j.1365-2699.2006.01607.x
51 P Sjögren, J F N van Leeuwen, W O van der Knaap, K van der Borg (2006). The effect of climate variability on pollen productivity AD 1975–2000 recorded in a Sphagnum peat hummock. Holocene, 16(2): 277–286
https://doi.org/10.1191/0959683606hl924rp
52 P Sjögren, W O van der Knaap, A Huusko, J F N van Leeuwen (2008). Pollen productivity dispersal and correction factors for major tree taxa in the Swiss Alps based on pollen-trap results. Rev Palaeobot Palynol, 152(3–4): 200–210
https://doi.org/10.1016/j.revpalbo.2008.05.003
53 W Soepboer, S Sugita, A F Lotter, J F N van Leeuwen, W O van der Knaap (2007). Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene, 17(1): 65–77
https://doi.org/10.1177/0959683607073279
54 W Soepboer, S Sugita, A F Lotter (2010). Regional vegetation-cover changes on the Swiss Plateau during the past two millennia: a pollen-based reconstruction using the REVEALS model. Quat Sci Rev, 29(3–4): 472–483
https://doi.org/10.1016/j.quascirev.2009.09.027
55 S Sugita (1993). A model of pollen source area for an entire lake. Quat Res, 39(2): 239–244
https://doi.org/10.1006/qres.1993.1027
56 S Sugita, M J Gaillard, A Broström (1999). Landscape openness and pollen records: a simulation approach. Holocene, 9(4): 409–421
https://doi.org/10.1191/095968399666429937
57 S Sugita (2007a). Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation. Holocene, 17(2): 229–241
https://doi.org/10.1177/0959683607075837
58 S Sugita (2007b). Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene, 17(2): 243–257
https://doi.org/10.1177/0959683607075838
59 S Sugita, T Parshall, R Calcote, K Walker (2010a). Testing the landscape reconstruction algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin. Quat Res, 74(2): 289–300
https://doi.org/10.1016/j.yqres.2010.07.008
60 S Sugita, S Hicks, H Sormunen (2010b). Absolute pollen productivity and pollen-vegetation relationships in northern Finland. J Quat Sci, 25(5): 724–736
https://doi.org/10.1002/jqs.1349
61 X J Sun, N Q Du, Y S Chen, Z Y Gu, J Q Liu, B Y Yuan (1993). Holocene palynological records in Lake Selincuo, Northern Xizang. Journal of Integrative Plant Biology, 35: 943–950 (in Chinese)
62 F Tian, Q H Xu, Y C Li, X Y Cao, X L Wang, L Y Zhang (2008). Pollen assemblage characteristics of lakes in the monsoon fringe area of China. Chin Sci Bull, 53(21): 3354–3363
63 F Tian (2010). Pollen sedimentary processes of different lakes in Northern China. Dissertation for Master’s Degree. Shijiazhuang: Hebei Normal University China (in Chinese)
64 A K Trondman, M J Gaillard, F Mazier, S Sugita, R Fyfe, A B Nielsen, C Twiddle, P Barratt, H J B Birks, A E Bjune, L Björkman, A Broström, C Caseldine, R David, J Dodson, W Dörfler, E Fischer, B van Geel, T Giesecke, T Hultberg, L Kalnina, M Kangur, P van der Knaap, T Koff, P Kuneš, P Lagerås, M Latałowa, J Lechterbeck, C Leroyer, M Leydet, M Lindbladh, L Marquer, F J G Mitchell, B V Odgaard, S M Peglar, T Persson, A Poska, M Rösch, H Seppä, S Veski, L Wick (2015). Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. Glob Chang Biol, 21(2): 676–697
pmid: 25204435
65 W O van der Knaap, J F N van Leeuwen, H Svitavská-Svobodová, I A Pidek, E Kvavadze, M Chichinadze, T Giesecke, B W Kaszewski, F Oberli, L Kalnina, H S Pardoe, W Tinner, B Ammann (2010). Annual pollen traps reveal the complexity of climatic control on pollen productivity in Europe and the Caucasus. Veg Hist Archaeobot, 19(4): 285–307
https://doi.org/10.1007/s00334-010-0250-6
66 H von Stedingk, R Fyfe, A Allard (2008). Pollen productivity estimates from the forest—tundra ecotone in west-central Sweden: implications for vegetation reconstruction at the limits of the boreal forest. Holocene, 18: 323–332
https://doi.org/10.1177/0959683607086769
67 Y B Wang, U Herzschuh (2011). Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model. Rev Palaeobot Palynol, 168(1): 31–40
https://doi.org/10.1016/j.revpalbo.2011.09.004
68 S M Wang, Y S Yu, R J Wu, M Feng (1990). The Daihai Lake: Environment Evolution and Climate Change. Hefei: University of Science and Technology of China Press (in Chinese)
69 J Watrin, A M Lézine, K Gajewski, A Vincens (2007). Pollen-plant-climate relationships in sub-Saharan Africa. J Biogeogr, 34(3): 489–499
https://doi.org/10.1111/j.1365-2699.2006.01626.x
70 H C Wei, H Z Ma, Z Zheng, A D Pan, K Y Huang (2011). Modern pollen assemblages of surface samples and their relationships to vegetation and climate in the northeastern Qinghai-Tibetan Plateau China. Rev Palaeobot Palynol, 163(3-4): 237–246
https://doi.org/10.1016/j.revpalbo.2010.10.011
71 J Wu, Q Liu, G Q Chu, L Wang, J Q Liu (2016). Vegetation history and climate change recorded by stomata evidence during the late glacial in the Great Khingan Mountain Region Northeastern China. Chin Sci Bull, 61(36): 3940–3945 (in Chinese)
https://doi.org/10.1360/N972016-01181
72 Z Wu (1980). Vegetation of China. Beijing: Science Press (in Chinese)
73 J L Xiao, Q H Xu, T Nakamura, X L Yang, W D Liang, Y Inouchi (2004). Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quat Sci Rev, 23(14–15): 1669–1679
https://doi.org/10.1016/j.quascirev.2004.01.005
74 Q H Xu, Y C Li, X L Yang, J L Xiao, W D Liang, Y J Peng (2005). Source and distribution of pollen in the surface sediment of Daihai Lake inner Mongolia. Quat Int, 136(1): 33–45
https://doi.org/10.1016/j.quaint.2004.11.006
75 Q H Xu, Y C Li, L P Zhou, Y Y Li, Z Q Zhang, F Y Lin (2007). Pollen flux and vertical dispersion in coniferous and deciduous broadleaved mixed forest in the Changbai Mountains. Chin Sci Bull, 52(11): 1540–1544
https://doi.org/10.1007/s11434-007-0187-z
76 Q H Xu, Y C Li, F Tian, X Y Cao, X L Yang (2009). Pollen assemblages of tauber traps and surface soil samples in steppe areas of China and their relationships with vegetation and climate. Rev Palaeobot Palynol, 153(1–2): 86–101
https://doi.org/10.1016/j.revpalbo.2008.07.003
77 Q H Xu, F Tian, M J Bunting, Y C Li, W Ding, X Y Cao, Z He (2012). Pollen source areas of lakes with inflowing rivers: modern pollen influx data from Lake Baiyangdian China. Quat Sci Rev, 37: 81–91
https://doi.org/10.1016/j.quascirev.2012.01.019
78 Q H Xu, X Y Cao, F Tian, S R Zhang, Y C Li, M Y Li, J Li, Y Liu, J Liang (2014). Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction. Sci China Earth Sci, 57(6): 1254–1266
https://doi.org/10.1007/s11430-013-4738-7
79 Y Zhao, U Herzschuh (2009). Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains north-eastern Tibetan Plateau. Veg Hist Archaeobot, 18(3): 245–260
https://doi.org/10.1007/s00334-008-0201-7
80 L Zhu, X Lü, J Wang, P Peng, T Kasper, G Daut, T Haberzettl, P Frenzel, Q Li, R Yang, A Schwalb, R Mäusbacher (2015). Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Sci Rep, 5(1): 3940–3945
https://doi.org/10.1038/srep13318 pmid: 26294226
[1] Anning SUO, Dongzhi ZHAO, Fengshou ZHANG, Huaru WANG, Fengqiao LIU, . Driving forces and management strategies for estuaries in northern China[J]. Front. Earth Sci., 2010, 4(1): 51-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed