Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (1) : 70-80    https://doi.org/10.1007/s11707-020-0844-y
RESEARCH ARTICLE
Characterizing the urban spatial structure using taxi trip big data and implications for urban planning
Haibo LI1, Xiaocong XU1(), Xia LI2, Shifa MA3, Honghui ZHANG4
1. School of Geography and Planning, Guangdong Key Laboratory for Urbanization and Geo-simulation, SunYat-sen University, Guangzhou 510275, China
2. School of Geographic Sciences, Key Lab. of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
3. School of Architecture and Urban Planning, Guangdong University of Technology Guangzhou 510090, China
4. Guangdong Guodi Planning Science Technology Co., ltd, Guangzhou 510275, China
 Download: PDF(4250 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Urban spatial structure is an important feature for assessing the effects of urban planning. Quantifying an urban spatial structure cannot only help in identifying the problems with current planning but also provide a basic reference for future adjustments. Evaluation of spatial structure is a difficult task for planners and researchers and this has been usually carried out by comparing different land use structures. However, these methods cannot efficiently reflect the influence of human activities. With the wide application of big data, analyzing data on human travel behavior has increasingly been carried out to reveal the relationship between urban spatial structure and urban planning. In this study, we constructed a human-activity space network using the taxi trip big data. Clustering at different scales revealed the hierarchy and redundancy of the spatial structure for assessing the appropriateness and shortcomings of urban planning. This method was applied to a case study based on one-month taxi trip data of Dongguan City. Existing urban spatial structures at different scales were retrieved and utilized to assess the effectiveness of the master plan designed for 2000 to 2015 and 2008 to 2020, which can help identify the limitations and improvements in the spatial structure designed in these two versions of the master plan. We also evaluated the potential effect of the master plan designed for 2016 to 2035 by providing a reference for reconstructing and optimizing future urban spatial structure. The analysis demonstrated that the taxi trip data are important big data on social spatial perception, and taxi data should be used for evaluating spatial structures in future urban planning.

Keywords urban structure      taxi GPS data      complex networks      community management     
Corresponding Author(s): Xiaocong XU   
Online First Date: 01 April 2021    Issue Date: 19 April 2021
 Cite this article:   
Haibo LI,Xiaocong XU,Xia LI, et al. Characterizing the urban spatial structure using taxi trip big data and implications for urban planning[J]. Front. Earth Sci., 2021, 15(1): 70-80.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-020-0844-y
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I1/70
1 E R Alexander, A Faludi (1989). Planning and plan implementation: notes on evaluation criteria. Environ Plann B Plann Des, 16(2): 127–140
https://doi.org/10.1068/b160127
2 R Alterman, M Hill (1978). Implementation of urban land use plans. J Am Inst Plann, 44(3): 274–285
https://doi.org/10.1080/01944367808976905
3 A Arenas, A Fernandez, S Gomez (2008). Analysis of the structure of complex networks at different resolution levels. New J Phys, 10(5): 053039
https://doi.org/10.1088/1367-2630/10/5/053039
4 B J Berry (1968). Interdependency of spatial structure and spatial behavior: A general field theory formulation. Papers of the Regional Science Association, 21(1): 205–227
5 S D Brody, W E Highfield, S Thornton (2006). Planning at the urban fringe: an examination of the factors influencing nonconforming development patterns in southern Florida. Environ Plann B Plann Des, 33(1): 75–96
https://doi.org/10.1068/b31093
6 M Castells, G Cardoso (2005). The Network Society: From Knowledge to Policy. Washington, DC: Center for Transatlantic Relations, Paul H. Nitze School of Advanced International Studies, Johns Hopkins University
7 G Csardi, T Nepusz (2006). The igraph software package for complex network research. Inter Journal, Complex Systems, 1695(5): 1–9
8 A De Montis, M Barthélemy, A Chessa, A Vespignani (2007). The structure of interurban traffic: a weighted network analysis. Environ Plann B Plann Des, 34(5): 905–924
https://doi.org/10.1068/b32128
9 S Fortunato (2010). Community detection in graphs. Phys Rep, 486(3–5): 75–174
https://doi.org/10.1016/j.physrep.2009.11.002
10 M Girvan, M E Newman (2002). Community structure in social and biological networks. Proc Natl Acad Sci USA, 99(12): 7821–7826
https://doi.org/10.1073/pnas.122653799 pmid: 12060727
11 S Gao, Y Wang, Y Gao, L Yu (2013). Understanding urban traffic-flow characteristics: a rethinking of betweenness centrality. Environ Plann B Plann Des, 40(1): 135–153
https://doi.org/10.1068/b38141
12 Y X Gong, Y Y Lin, Z Y Duan (2017). Exploring the spatiotemporal structure of dynamic urban space using metro smart card records. Comput Environ Urban Syst, 64: 169–183
https://doi.org/10.1016/j.compenvurbsys.2017.02.003
13 P Gordon, H W Richardson (1996). Beyond polycentricity: the dispersed metropolis, Los Angeles, 1970-1990. J Am Plann Assoc, 62(3): 289–295
https://doi.org/10.1080/01944369608975695
14 R Guimerà, S Mossa, A Turtschi, L A Amaral (2005). The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci USA, 102(22): 7794–7799
https://doi.org/10.1073/pnas.0407994102 pmid: 15911778
15 R Guimerà, L A Nunes Amaral (2005). Functional cartography of complex metabolic networks. Nature, 433(7028): 895–900
https://doi.org/10.1038/nature03288 pmid: 15729348
16 H Han, S Lai, A Dang, Z Tan, C Wu (2009). Effectiveness of urban construction boundaries in Beijing: an assessment. J Zhejiang Univ Sci A, 10(9): 1285–1295
https://doi.org/10.1631/jzus.A0920317
17 S Hasan, C M Schneider, S V Ukkusuri, M C González (2013). Spatiotemporal patterns of urban human mobility. J Stat Phys, 151(1–2): 304–318
https://doi.org/10.1007/s10955-012-0645-0
18 U Heiden, W Heldens, S Roessner, K Segl, T Esch, A Mueller (2012). Urban structure type characterization using hyperspectral remote sensing and height information. Landsc Urban Plan, 105(4): 361–375
https://doi.org/10.1016/j.landurbplan.2012.01.001
19 J E Innes, D E Booher (1999). Consensus building and complex adaptive systems: a framework for evaluating collaborative planning. J Am Plann Assoc, 65(4): 412–423
https://doi.org/10.1080/01944369908976071
20 C Kang, S Sobolevsky, Y Liu, C Ratti (2013). Exploring human movements in Singapore: a comparative analysis based on mobile phone and taxicab usages. In: Proceedings of the 2nd ACM SIGKDD international workshop on urban computing, ACM
21 A Lancichinetti, S Fortunato (2009). Community detection algorithms: a comparative analysis. Phys Rev E Stat Nonlin Soft Matter Phys, 80(5): 056117
https://doi.org/10.1103/PhysRevE.80.056117 pmid: 20365053
22 L Laurian, M Day, P Berke, N Ericksen, M Backhurst, J Crawford, J Dixon (2004). Evaluating plan implementation: a conformance-based methodology. J Am Plann Assoc, 70(4): 471–480
https://doi.org/10.1080/01944360408976395
23 S Li, X Li, X P Liu, Z F Wu, B Ai, F Wang (2013). Simulation of spatial population dynamics based on labor economics and multi-agent system: a case study on a rapidly developing manufacturing metropolis. Int J Geogr Inf Sci, 27(12): 2410–2435
https://doi.org/10.1080/13658816.2013.826360
24 S Li, D Lyu, X Liu, Z Tan, F Gao, G Huang, Z Wu (2020a). The varying patterns of rail transit ridership and their relationships with fine-scale built environment factors: big data analytics from Guangzhou. Cities, 99: 102580
https://doi.org/10.1016/j.cities.2019.102580
25 S Li, D Lyu, G Huang, X Zhang, F Gao, Y Chen, X Liu (2020b). Spatially varying impacts of built environment factors on rail transit ridership at station level: a case study in Guangzhou, China. J Transp Geogr, 82: 102631
https://doi.org/10.1016/j.jtrangeo.2019.102631
26 X Li, A Yeh G O (2000). Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int J Geogr Inf Syst, 14(2): 131–152
https://doi.org/10.1080/136588100240886
27 C Lim, K J Kim, P P Maglio (2018). Smart cities with big data: reference models, challenges, and considerations. Cities, 82: 86–99
https://doi.org/10.1016/j.cities.2018.04.011
28 J Liu, X Wang, D Zhuang (2003). Application of convex hull in identifying the types of urban land expansion. Acta Geographica Sinica (Chinese edition), 58(6): 885–892 (in Chinese)
29 Y Liu, C Kang, S Gao, Y Xiao, Y Tian (2012). Understanding intra-urban trip patterns from taxi trajectory data. J Geogr Syst, 14(4): 463–483
https://doi.org/10.1007/s10109-012-0166-z
30 X Liu, L Gong, Y Gong, Y Liu (2015). Revealing travel patterns and city structure with taxi trip data. J Transp Geogr, 43: 78–90
https://doi.org/10.1016/j.jtrangeo.2015.01.016
31 Y Long, Y Gu, H Han (2012). Spatiotemporal heterogeneity of urban planning implementation effectiveness: evidence from five urban master plans of Beijing. Landsc Urban Plan, 108(2–4): 103–111
https://doi.org/10.1016/j.landurbplan.2012.08.005
32 M E Newman (2004). Fast algorithm for detecting community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys, 69(6): 066133
https://doi.org/10.1103/PhysRevE.69.066133 pmid: 15244693
33 X Niu, J Zhu, S Cheng (2017). A technical framework for urban master plan implementation evaluation using mobile phone signaling data. Urbanism and Architecture, 27
34 R K Norton (2008). Using content analysis to evaluate local master plans and zoning codes. Land Use Policy, 25(3): 432–454
https://doi.org/10.1016/j.landusepol.2007.10.006
35 J Parr (2004). The polycentric urban region: a closer inspection. Reg Stud, 38(3): 231–240
https://doi.org/10.1080/003434042000211114
36 M Rahmani, E Jenelius, H N Koutsopoulos (2015). Non-parametric estimation of route travel time distributions from low-frequency floating car data. Transp Res, Part C Emerg Technol, 58: 343–362
https://doi.org/10.1016/j.trc.2015.01.015
37 C Ratti, S Sobolevsky, F Calabrese, C Andris, J Reades, M Martino, R Claxton, S H Strogatz (2010). Redrawing the map of Great Britain from a network of human interactions. PLoS One, 5(12): e14248
https://doi.org/10.1371/journal.pone.0014248 pmid: 21170390
38 S Rinzivillo (2012). Discovering the geographical borders of human mobility. KI- Künstliche Intelligenz 26(3): 253–260
39 M Rosvall, C T Bergstrom (2007). An information-theoretic framework for resolving community structure in complex networks. Proc Natl Acad Sci USA, 104(18): 7327–7331
https://doi.org/10.1073/pnas.0611034104 pmid: 17452639
40 L Shi, G Chi, X Liu, Y Liu (2015). Human mobility patterns in different communities: a mobile phone data-based social network approach. Ann GIS, 21(1): 15–26
https://doi.org/10.1080/19475683.2014.992372
41 E Talen (1996). After the plans: methods to evaluate the implementation success of plans. J Plann Educ Res, 16(2): 79–91
https://doi.org/10.1177/0739456X9601600201
42 L Tian, T Shen (2011). Evaluation of plan implementation in the transitional China: a case of Guangzhou city master plan. Cities, 28(1): 11–27
https://doi.org/10.1016/j.cities.2010.07.002
43 M Veloso, S Phithakkitnukoon, C Bento (2011). Sensing urban mobility with taxi flow. International Workshop on Location-based Social Networks
44 T V D Voorde, W, Jacquet F Canters (2011). Mapping form and function in urban areas: an approach based on urban metrics and continuous impervious surface data. Landscape and Urban Planning, 102(3): 1–155
45 T Wang, W Yue, X Ye, Y Liu, D Lu (2020). Re-evaluating polycentric urban structure: a functional linkage perspective. Cities, 101: 102672
46 Z Wang, Y Deng, X Song, W U Bing (2001). The complexity analysis of the spatial structure in Shanghai. Prog Geogr, 20(4): 331–340
47 A Wildavsky (1973). If planning is everything, maybe it’s nothing. Policy Sci, 4(2): 127–153
https://doi.org/10.1007/BF01405729
48 L Wei, Y Luo, M Wang, Y Y Cai, S L Su, B Z Li, H Y Ji (2020). Multiscale identification of urban functional polycentricity for planning implications: an integrated approach using geo-big transport data and complex network modeling. Habitat Int, 97: 102–134
https://doi.org/10.1016/j.habitatint.2020.102134
49 G Xi, F Zhen (2017). Exploring the ideas and methods of urban planning evaluation based on big data. Urban Planning Forum
50 X Xu, N Yuruk, Z Feng, T A J Schweiger (2007). SCAN: a structural clustering algorithm for networks. In: An International Conference on Knowledge Discovery & Data Mining
51 W Yu (2014). Implementation evaluation of Beijing urban master plan based on subway transit smart card data. In: International Conference on Geoinformatics
52 Y Yuan, M Raubal, Y Liu (2012). Correlating mobile phone usage and travel behavior—a case study of Harbin, China. Comput Environ Urban Syst, 36(2): 118–130
https://doi.org/10.1016/j.compenvurbsys.2011.07.003
53 C Zhong, S M Arisona, X Huang, M Batty, G Schmitt (2014). Detecting the dynamics of urban structure through spatial network analysis. Int J Geogr Inf Sci, 28(11): 2178–2199
https://doi.org/10.1080/13658816.2014.914521
54 X Zhou, A G O Yeh, Y Yue (2018). Spatial variation of self-containment and jobs-housing balance in shenzhen using cellphone big data. J Transp Geogr, 68: 102–108
https://doi.org/10.1016/j.jtrangeo.2017.12.006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed