Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (1) : 106-120    https://doi.org/10.1007/s11707-020-0853-x
RESEARCH ARTICLE
Identifying porphyry-Cu geochemical footprints using local neighborhood statistics in Baft area, Iran
Saeid GHASEMZADEH1, Abbas MAGHSOUDI1(), Mahyar YOUSEFI2
1. Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran 95799-79167, Iran
2. Faculty of Engineering, Malayer University, Malayer 65719-95863, Iran
 Download: PDF(2875 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Identifying geochemical anomalies related to ore deposition processes facilitates the practice of vectoring toward undiscovered mineral deposit sites. In district-scale exploration studies, analysis of dispersion patterns of ore-forming elements results in more-reliable targets. Therefore, deriving significant geochemical footprints and mapping the ensuing geochemical anomalies are of important issues that lead exploration geologists toward anomaly sources, e.g., mineralization. This paper aims to examine the effectiveness of local relative enrichment index and singularity mapping technique, as two methods of local neighborhood statistics, in the delineation of anomalous areas for further exploration. A data set of element contents obtained from stream sediment samples in Baft area, Iran, therefore was applied to illustrate the procedure proposed. The close relationship between anomalous patterns recognized and known Cu-occurrences demonstrated that the procedures proposed can efficiently model complex dispersion patterns of geochemical anomalies in the study area. The results showed that singularity mapping method is a better technique, compared to local relative enrichment index, to delineate targets for follow-up exploration in the area. We made this comparison because, as pointed out by exploration geochemists, dispersion patterns of geochemical indicators in stream sediments vary in different areas even for the same deposit type. The variety in the dispersion patterns is due to the operation of post-mineralization subsystems, which are affected by local factors such as landscape of the areas under study. Therefore, the effectiveness of the methods should be evaluated in every area for every targeted deposit.

Keywords local neighborhood statistics      robust principal component analysis      singularity mapping technique      local relative enrichment index      exploration targets     
Corresponding Author(s): Abbas MAGHSOUDI   
Online First Date: 01 April 2021    Issue Date: 19 April 2021
 Cite this article:   
Saeid GHASEMZADEH,Abbas MAGHSOUDI,Mahyar YOUSEFI. Identifying porphyry-Cu geochemical footprints using local neighborhood statistics in Baft area, Iran[J]. Front. Earth Sci., 2021, 15(1): 106-120.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-020-0853-x
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I1/106
1 P Afzal, A Khakzad, P Moarefvand, N R Omran, B Esfandiari, Y F Alghalandis (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. J Geochem Explor, 104(1–2): 34–46
https://doi.org/10.1016/j.gexplo.2009.11.003
2 P Afzal, Y F Alghalandis, P Moarefvand, N R Omran, H A Haroni (2012). Application of power-spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. J Geochem Explor, 112: 131–138
https://doi.org/10.1016/j.gexplo.2011.08.002
3 P Afzal, M Mirzaei, M Yousefi, A Adib, M Khalajmasoumi, A Zia Zarifi, P Foster, A B Yasrebi (2016). Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. J Afr Earth Sci, 119: 139–149
https://doi.org/10.1016/j.jafrearsci.2016.03.009
4 P Afzal, M Yousefi, M Mirzaie, E Ghadiri-Sufi, S Ghasemzadeh, L Daneshvar Saein (2019). Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran). J Min Environ, 10(3): 705–715
5 M Aghazadeh, Z Hou, Z Badrzadeh, L Zhou (2015). Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochrono-logy. Ore Geol Rev, 70: 385–406
https://doi.org/10.1016/j.oregeorev.2015.03.003
6 P Agard, L Jolivet, B Vrielynck, E Burov, P Monie (2007). Plate acceleration: the obduction trigger? Earth Planet Sci Lett, 258(3–4): 428–441
https://doi.org/10.1016/j.epsl.2007.04.002
7 F P Agterberg, G F Bonham-Carter (2005). Measuring the performance of mineral-potential maps. Nat Resour Res, 14(1): 1–17
https://doi.org/10.1007/s11053-005-4674-0
8 J Aitchison (1986). The Statistical Analysis of Compositional Data. London: Chapman and Hall.
9 J Aitchison, C Barcelo-Vidal, J Martín-Fernandez, V Pawlowsky-Glahn (2000). Logratio analysis and compositional distance. Math Geol, 32(3): 271–275
https://doi.org/10.1023/A:1007529726302
10 J C Allègre, E Lewin (1995). Scaling laws and geochemical distributions. Earth Planet Sci Lett, 132(1–4): 1–13
https://doi.org/10.1016/0012-821X(95)00049-I
11 F Aliyari, P Afzal, H Harati, H Zengqian (2020). Geology, mineralogy, ore fluid characteristics, and 40Ar/39Ar geochronology of the Kahang Cu-(Mo) porphyry deposit, Urumieh-Dokhtar Magmatic Arc, Central Iran. Ore Geol Rev, 116: 103238
https://doi.org/10.1016/j.oregeorev.2019.103238
12 F Ayati, F Yavuz, H Asadi, J P Richards, F Jourdan (2013). Petrology and geochemistry of calc–alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran. Int Geol Rev, 55(2): 158–184
https://doi.org/10.1080/00206814.2012.689640
13 J Bai, A Porwal, C Hart, A Ford, L Yu (2010). Mapping geochemical singularity using multifractal analysis: application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. J Geochem Explor, 104(1–2): 1–11
https://doi.org/10.1016/j.gexplo.2009.09.002
14 M Boomeri, K Nakashima, D R Lentz (2009). The Miduk porphyry Cu deposit, Kerman, Iran: a geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. J Geochem Explor, 103(1): 17–29
https://doi.org/10.1016/j.gexplo.2009.05.003
15 G F Bonham-Carter (1994). Geographic Information Systems for Geoscientists, Modelling with GIS. Pergamon: Oxford
16 A Buccianti (2015). The FOREGS repository: modelling variability in stream water on a continental scale revising classical diagrams from CoDA (compositional data analysis) perspective. J Geochem Explor, 154: 94–104
https://doi.org/10.1016/j.gexplo.2014.12.003
17 A Buccianti, A Lima, S Albanese, B De Vivo (2018). Measuring the change under compositional data analysis (CoDA): insight on the dynamics of geochemical systems. J Geochem Explor, 189: 100–108
https://doi.org/10.1016/j.gexplo.2017.05.006
18 E J M Carranza (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry, 11
19 E J M Carranza (2009). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Comput Geosci, 35(10): 2032–2046
https://doi.org/10.1016/j.cageo.2009.02.008
20 E J M Carranza (2011). Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J Geochem Explor, 110(2): 167–185
https://doi.org/10.1016/j.gexplo.2011.05.007
21 E J M Carranza, M Hale (1997). A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay Province, Philippines. J Geochem Explor, 60(2): 157–171
https://doi.org/10.1016/S0375-6742(97)00032-0
22 M A Chaffee, R H Hill, S J Sutley, J R Watterson (1981). Regional geochemical studies in the Patagonia Mountains, Santa Cruz County, Arizona. J Geochem Explor, 14: 135–153
https://doi.org/10.1016/0375-6742(81)90109-6
23 Y Chen, L Lu, X Li (2014). Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly. J Geochem Explor, 140: 56–63
https://doi.org/10.1016/j.gexplo.2014.02.013
24 Q Cheng (1999). Spatial and scaling modelling for geochemical anomaly separation. J Geochem Explor, 65(3): 175–194
https://doi.org/10.1016/S0375-6742(99)00028-X
25 Q Cheng (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol Rev, 32(1–2): 314–324
https://doi.org/10.1016/j.oregeorev.2006.10.002
26 Q Cheng, F P Agterberg (2009). Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Comput Geosci, 35(2): 234–244
https://doi.org/10.1016/j.cageo.2008.02.034
27 Q Cheng, F P Agterberg, S B Ballantyne (1994). The separation of geochemical anomalies from background by fractal methods. J Geochem Explor, 51(2): 109–130
https://doi.org/10.1016/0375-6742(94)90013-2
28 Q Cheng, F P Agterberg, G F Bonham-Carter (1996). A spatial analysis method for geochemical anomaly separation. J Geochem Explor, 56(3): 183–195
https://doi.org/10.1016/S0375-6742(96)00035-0
29 Q Cheng, Y Xu, E Grunsky (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Nat Resour Res, 9(1): 43–52
https://doi.org/10.1023/A:1010109829861
30 Q Cheng, L Jing, A Panahi (2006). Principal component analysis with optimum order sample correlation coefficient for image enhancement. Int J Remote Sens, 27(16): 3387–3401
https://doi.org/10.1080/01431160600606882
31 Q Cheng, G Bonham-Carter, W Wang, S Zhang, W Li, X Qinglin (2011). A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Comput Geosci, 37(5): 662–669
https://doi.org/10.1016/j.cageo.2010.11.001
32 D R Cohen, D L Kelley, R Anand, W B Coker (2010). Major advances in exploration geochemistry, 1998–2007. Geochem Explor Environ Anal, 10(1): 3–16
https://doi.org/10.1144/1467-7873/09-215
33 F Darabi-Golestan, A Hezarkhani (2019). Applied statistical functions and multivariate analysis of geochemical compositional data to evaluate mineralization in Glojeh polymetallic deposit, NW Iran. Front Earth Sci-PRC, 13(1): 229–246
https://doi.org/10.1007/s11707-018-0705-0
34 P Andrada de Palomera, F J A van Ruitenbeek, E J M Carranza (2015). Prospectivity for epithermal gold–silver deposits in the Deseado Massif, Argentina. Ore Geol Rev, 71: 484–501
https://doi.org/10.1016/j.oregeorev.2014.12.007
35 W F C Rocha, R Nogueira, G E Baptista da Silva, S M Queiroz, G F Sarmanho (2013). A comparison of three procedures for robust PCA of experimental results of the homogeneity test of a new sodium diclofenac candidate certified reference material. Microchem J, 109: 112–116
https://doi.org/10.1016/j.microc.2012.03.028
36 M D Dimitrijevic (1973). Geology of Kerman Region. Geological Survey of Iran Report YU/52
37 J J Egozcue, V Pawlowsky-Glahn, G Mateu-Figueras, C Barceloó-Vidal (2003). Isometric logratio transformations for compositional data analysis. Math Geol, 35(3): 279–300
https://doi.org/10.1023/A:1023818214614
38 P Filzmoser, K Hron (2008). Outlier detection for compositional data using robust methods. Math Geosci, 40(3): 233–248
https://doi.org/10.1007/s11004-007-9141-5
39 P Filzmoser, K Hron (2009). Correlation analysis for compositional data. Math Geosci, 41(8): 905–919
https://doi.org/10.1007/s11004-008-9196-y
40 P Filzmoser, K Hron, C Reimann (2009a). Principal component analysis for compositional data with outliers. Environmetrics, 20(6): 621–632
https://doi.org/10.1002/env.966
41 P Filzmoser, K Hron, C Reimann, R Garrett (2009b). Robust factor analysis for compositional data. Comput Geosci, 35(9): 1854–1861
https://doi.org/10.1016/j.cageo.2008.12.005
42 S Ghasemzadeh, A Maghsoudi, M Yousefi, M J Mihalasky (2019a). Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and C-A fractal modeling. Ore Geol Rev, 113: 103115
https://doi.org/10.1016/j.oregeorev.2019.103115
43 S Ghasemzadeh, A Maghsoudi, M Yousefi (2019b). Application of geometric average approach for Cu-porphyry prospectivity mapping in the Baft area, Kerman. J Geosci (Prague), 29: 123–130
https://doi.org/10.22071/gsj.2018.116787.1398
44 Q Gong, J Li, Y Xiang, R Liu, X Wu, T Yan, J Chen, R Li, Y Tong (2018). Determination and classification of geochemical anomalies based on backgrounds and cutoff grades of trace elements: a case study in South Nanling Range, China. J Geochem Explor, 194: 44–51
https://doi.org/10.1016/j.gexplo.2018.07.009
45 E C Grunsky, L J Drew, D M Sutphin (2009). Process recognition in multi-element soil and stream-sediment geochemical data. Appl Geochem, 24(8): 1602–1616
https://doi.org/10.1016/j.apgeochem.2009.04.024
46 W E Halter, N Bain, K Becker, C A Heinrich, M Landtwing, A VonQuadt, A H Clark, A M Sasso, T Bissig, R M Tosdal (2004). From andesitic volcanism to the formation of a porphyry Cu-Au mineralizing magma chamber: the Farallo’n Negro Volcanic Complex, northwestern Argentina. J Volcanol Geotherm Res, 136(1–2): 1–30
https://doi.org/10.1016/j.jvolgeores.2004.03.007
47 J R Harris, L Wilkinson, E C Grunsky (2000). Effective use and interpretation of lithogeochemical data in regional mineral exploration programs: application of Geographic Information Systems (GIS) technology. Ore Geol Rev, 16(3–4): 107–143
https://doi.org/10.1016/S0169-1368(99)00027-X
48 J Z He, S Z Yao, Z P Zhang, G J You (2013). Complexity and productivity differentiation models of metallogenic indicator elements in rocks and supergene media around Daijiazhuang Pb–Zn deposit in Dangchang County, Gansu Province. Nat Resour Res, 22(1): 19–36
https://doi.org/10.1007/s11053-012-9193-1
49 A Hezarkhani (2006). Petrology of the intrusive rocks within the Sungun Porphyry Copper Deposit, Azerbaijan, Iran. J Asian Earth Sci, 27(3): 326–340
https://doi.org/10.1016/j.jseaes.2005.04.005
50 A Hezarkhani, A E Williams-Jones (1998). Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran; evidence from fluid inclusions and stable isotopes. Econ Geol, 93(5): 651–670
https://doi.org/10.2113/gsecongeo.93.5.651
51 T Hengl (2006). Finding the right pixel size. Comput Geosci, 32(9): 1283–1298
https://doi.org/10.1016/j.cageo.2005.11.008
52 H E Hurst (1951). Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng, 116: 770–808
53 H Jamali (2017). The behavior of rare-earth elements, zirconium and hafnium during magma evolution and their application in determining mineralized magmatic suites in subduction zones: constraints from the Cenozoic belts of Iran. Ore Geol Rev, 81: 270–279
https://doi.org/10.1016/j.oregeorev.2016.10.006
54 D A John, R A Ayuso, M D Barton, R J Blakely, R J Bodnar, J H Dilles, F Gray, F T Graybeal, J C Mars, D K McPhee, R R Seal, R D Taylor, P G Vikre (2010). Porphyry Copper Deposit Model: Chapter B in Mineral Deposit Models for Resource Assessment. Reston: U.S. Geological Survey
55 I Jolliffe (2002). Principal Component Analysis and Factor Analysis. Principal Component Analysis. New York: Springer
56 C Kirkwood, M Cave, D Beamish, S Grebby, A Ferreira (2016). A machine learning approach to geochemical mapping. J Geochem Explor, 167: 49–61
https://doi.org/10.1016/j.gexplo.2016.05.003
57 O P Kreuzer, M Yousefi, V Nykänen (2020). Introduction to the special issue on spatial modelling and analysis of ore forming processes in mineral exploration targeting. Ore Geol Rev, 119: 103391
https://doi.org/10.1016/j.oregeorev.2020.103391
58 C Li, T Ma, J Shi (2003). Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor, 77(2–3): 167–175
https://doi.org/10.1016/S0375-6742(02)00276-5
59 M G Macklin, J Ridgway, D G Passmore, B T Rumsby (1994). The use of overbank sediment for geochemical mapping and contamination assessment: results from selected English and Welsh floodplains. Appl Geochem, 9(6): 689–700
https://doi.org/10.1016/0883-2927(94)90028-0
60 B B Mandelbrot, J R Wallis (1969). Some long-run properties of geographysical records. Water Resour Res, 5(2): 321–340
https://doi.org/10.1029/WR005i002p00321
61 A Mirzaie, S S Bafti, R Derakhshani (2015). Fault control on Cu mineralization in the Kerman porphyry copper belt, SE Iran: a fractal analysis. Ore Geol Rev, 71: 237–247
https://doi.org/10.1016/j.oregeorev.2015.05.015
62 M Mohajjel, C L Fergusson (2000). Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, western Iran. J Struct Geol, 22(8): 1125–1139
https://doi.org/10.1016/S0191-8141(00)00023-7
63 C J Moon (1999). Towards a quantitative model of downstream dilution of point source geochemical anomalies. J Geochem Explor, 65(2): 111–132
https://doi.org/10.1016/S0375-6742(98)00065-X
64 M C Moghadam, Z Tahmasbi, A Ahmadi-Khalaji, J F Santos (2018). Petrogenesis of Rabor-Lalehzar magmatic rocks (SE Iran): constraints from whole rock chemistry and Sr-Ndisotopes. Geochemistry, 78(1): 58–77
https://doi.org/10.1016/j.chemer.2017.11.004
65 S M Niktabar, A Moradian, H Ahmadipour, J F Santos, M H Mendes (2015). Petrogenesis of the Lalezar granitoid intrusions (Kerman Province-Iran). Journal of Sciences, 26(4): 333–348
66 M Parsa, A Maghsoudi, M Yousefi, M Sadeghi (2016). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. J Afr Earth Sci, 114: 228–241
https://doi.org/10.1016/j.jafrearsci.2015.12.007
67 M Parsa, A Maghsoudi, E J M Carranza, M Yousefi (2017 a). Enhancement and mapping of weak multivariate stream sediment geochemical anomalies in Ahar Area, NW Iran. Nat Resour Res, 26(4): 443–455
https://doi.org/10.1007/s11053-017-9346-3
68 M Parsa, A Maghsoudi, M Yousefi (2017 b). An improved data-driven fuzzy mineral prospectivity mapping procedure; cosine amplitude-based similarity approach to delineate exploration targets. Int J Appl Earth Obs Geoinf, 58: 157–167
https://doi.org/10.1016/j.jag.2017.02.006
69 M Parsa, A Maghsoudi, M Yousefi (2018a). A receiver operating characteristics-based geochemical data fusion technique for targeting undiscovered mineral deposits. Nat Resour Res, 27(1): 15–28
https://doi.org/10.1007/s11053-017-9351-6
70 M Parsa, A Maghsoudi, M Yousefi (2018b). Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district. NW Iran. Ore Geol Rev, 92: 97–112
https://doi.org/10.1016/j.oregeorev.2017.11.013
71 F Pirajno (2010). Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia). J Geodyn, 50(3–4): 325–346
https://doi.org/10.1016/j.jog.2010.01.018
72 G Pison, P J Rousseeuw, P Filzmoser, C Croux (2003). Robust factor analysis. J Multivariate Anal, 84(1): 145–172
https://doi.org/10.1016/S0047-259X(02)00007-6
73 I Peytcheva, A von Quadt, F Neubauer, M Frank, R Nedialkov, C Heinrich, S Strashimirov (2009). U–Pb dating, Hf-isotope characteristics and trace-REE-patterns of zircons from Medet porphyry copper deposit, Bulgaria: implications for timing, duration and sources of ore-bearing magmatism. Miner Petrol, 96(1–2): 19–41
https://doi.org/10.1007/s00710-009-0042-9
74 X Qu, Z Hou, K Zaw, Y Li (2007). Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: Preliminary geochemical and geochronological results. Ore Geol Rev, 31(1–4): 205–223
https://doi.org/10.1016/j.oregeorev.2005.03.012
75 C Reimann, P Filzmoser (2000). Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ. Geol., 39(9): 1001–1014
https://doi.org/10.1007/s002549900081
76 C Reimann, P Filzmoser, R G Garrett (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem, 17(3): 185–206
https://doi.org/10.1016/S0883-2927(01)00066-X
77 M Rezaei-Kahkhaei, C Galindo, R J Pankhurst, D Esmaeily (2011). Magmatic differentiation in the calc-alkaline Khalkhab–Neshveh pluton, Central Iran. J Asian Earth Sci, 42(3): 499–514
https://doi.org/10.1016/j.jseaes.2011.04.022
78 P J Rousseeuw, K V Driessen (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3): 212–223
https://doi.org/10.1080/00401706.1999.10485670
79 B Shafiei, M Haschke, J Shahabpour (2009). Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner Depos, 44(3): 265–283
https://doi.org/10.1007/s00126-008-0216-0
80 B Shafiei (2010). Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic-metallogenetic implications. Ore Geol Rev, 38(1–2): 27–36
https://doi.org/10.1016/j.oregeorev.2010.05.004
81 F Soltani, P Moarefvand, F Alinia, P Afzal (2019). Characterization of rare earth elements by coupling multivariate analysis, factor analysis, and geostatistical simulation: case-study of Gazestan deposit, central Iran. J Min Environ, 10(4): 929–945
82 R H Sillitoe (1972). A plate tectonic model for the origin of porphyry copper deposits. Econ Geol, 67(2): 184–197
https://doi.org/10.2113/gsecongeo.67.2.184
83 R H Sillitoe (2010). Porphyry copper systems. Econ Geol, 105(1): 3–41
https://doi.org/10.2113/gsecongeo.105.1.3
84 D A Singer, V I Berger, B C Moring (2005). Porphyry Copper Deposits of the World: Database, Maps, Grade and Tonnage Models. Reston: US Department of the Interior, US Geological Survey,1005–1060
85 M Spadoni (2006). Geochemical mapping using a geomorphologic approach based on catchments. J Geochem Explor, 90(3): 183–196
https://doi.org/10.1016/j.gexplo.2005.12.001
86 M Spadoni, M Voltaggio, G Cavarretta (2005). Recognition of areas of anomalous concentration of potentially hazardous elements by means of a subcatchment-based discriminant analysis of stream sediments. J Geochem Explor, 87(3): 83–91
https://doi.org/10.1016/j.gexplo.2005.08.001
87 A Srdic, M N Dimitrijevic, S Cvetic, M D Dimitrijevic (1972). Geological Map of Baft (1: 100,000). Teheran: Geological Survey of Iran Publication
88 M Templ, K Hron, P Filzmoser (2011). robCompositions: an R-package for robust statistical analysis of compositional data. In: Pawlowsky-Glahn V, Buccianti A, eds. Compositional Data Analysis: Theory and Applications. Chichester: Wiley, 341–355
89 M Tian, X Wang, L Nie, C Zhang (2018). Recognition of geochemical anomalies based on geographically weighted regression: a case study across the boundary areas of China and Mongolia. J Geochem Explor, 190: 381–389
https://doi.org/10.1016/j.gexplo.2018.04.003
90 M Thompson, R J Howarth (1976). Duplicate analysis in geochemical practice. Part 1: theoretical approach and estimation of analytical reproducibility. Analyst (Lond), 101(1206): 690–698
https://doi.org/10.1039/an9760100690
91 H Wang, R Zuo (2015). A comparative study of trend surface analysis and spectrum–area multifractal model to identify geochemical anomalies. J Geochem Explor, 155: 84–90
https://doi.org/10.1016/j.gexplo.2015.04.013
92 H Wang, Q Cheng, R Zuo (2015). Quantifying the spatial characteristics of geochemical patterns via GIS-based geographically weighted statistics. J Geochem Explor, 157: 110–119
https://doi.org/10.1016/j.gexplo.2015.06.004
93 J Wang, R Zuo (2016). An extended local gap statistic for identifying geochemical anomalies. J Geochem Explor, 164: 86–93
https://doi.org/10.1016/j.gexplo.2016.01.002
94 J Wang, R Zuo, J Caers (2017). Discovering geochemical patterns by factor-based cluster analysis. J Geochem Explor, 181: 106–115
https://doi.org/10.1016/j.gexplo.2017.07.006
95 J Wang, Y Zhou, F Xiao (2020). Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: a case study from Ag-Pb-Zn deposits in north-western Zhejiang, China. Appl Geochem: 104679
https://doi.org/10.1016/j.apgeochem.2020.104679
96 Z Wang, Y Dong, R Zuo (2019). Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method. Ore Geol Rev, 107: 258–265
https://doi.org/10.1016/j.oregeorev.2019.02.027
97 F Xiao, J Chen, Z Zhang, C Wang, G Wu, F P Agterberg (2012). Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in northwest Zhejiang, China. J Geochem Explor, 122: 90–100
https://doi.org/10.1016/j.gexplo.2012.04.010
98 F Xiao, K Wang, W Hou, O Erten (2020). Identifying geochemical anomaly through spatially anisotropic singularity mapping: a case study from silver-gold deposit in Pangxidong district, SE China. J Geochem Explor, 210: 106453
https://doi.org/10.1016/j.gexplo.2019.106453
99 X Xie, X Wang, Q Zhang, G Zhou, H Cheng, D Liu, Z Cheng, S Xu (2008). Multi-scale geochemical mapping in China. Geochem Explor Environ Anal, 8(3–4): 333–341
https://doi.org/10.1144/1467-7873/08-184
100 S Xie, Q Cheng, X Xing, Z Bao, Z Chen (2010). Geochemical multifractal distribution patterns in sediments from ordered streams. Geoderma, 160(1): 36–46
https://doi.org/10.1016/j.geoderma.2010.01.009
101 Y Xiong, R Zuo, K Wang, J Wang (2018). Identification of geochemical anomalies via local RX anomaly detector. J Geochem Explor, 189: 64–71
https://doi.org/10.1016/j.gexplo.2017.06.021
102 Y Xiong, R Zuo (2020). Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine1. Comput Geosci, 140: 104484
https://doi.org/10.1016/j.cageo.2020.104484
103 Z Yang, Z Hou, N C White, Z Chang, Z Li, Y Song (2009). Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geol Rev, 36(1–3): 133–159
https://doi.org/10.1016/j.oregeorev.2009.03.003
104 H Yilmaz (2003a). Exploration at the Kuscayiri Au (Cu) prospect and its implications for porphyry-related mineralization in western Turkey. J Geochem Explor, 77(2–3): 133–150
https://doi.org/10.1016/S0375-6742(02)00274-1
105 H Yilmaz (2003b). Geochemical exploration for gold in western Turkey: success and failure. J Geochem Explor, 80(1): 117–135
https://doi.org/10.1016/S0375-6742(03)00187-0
106 M Yousefi (2017a). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geol Rev, 83: 200–214
https://doi.org/10.1016/j.oregeorev.2016.12.024
107 M Yousefi (2017b). Analysis of zoning pattern of geochemical indicators for targeting of porphyry-Cu mineralization: a pixel-based mapping approach. Nat Resour Res, 26(4): 429–441
https://doi.org/10.1007/s11053-017-9334-7
108 M Yousefi, E J M Carranza (2015). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Comput Geosci, 74: 97–109
https://doi.org/10.1016/j.cageo.2014.10.014
109 M Yousefi, A Kamkar-Rouhani, E J M Carranza (2012). Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J Geochem Explor, 115: 24–35
https://doi.org/10.1016/j.gexplo.2012.02.002
110 M Yousefi, E J M Carranza, A Kamkar-Rouhani (2013). Weighted drainage catchment basin mapping of geochemical anomalies using stream sediment data for mineral potential modeling. J Geochem Explor, 128: 88–96
https://doi.org/10.1016/j.gexplo.2013.01.013
111 M Yousefi, O P Kreuzer, V Nykänen, J M Hronsky (2019). Exploration information systems-a proposal for the future use of GIS in mineral exploration targeting. Ore Geol Rev, 111: 103005
https://doi.org/10.1016/j.oregeorev.2019.103005
112 M Yousefi, V Nykänen (2017). Introduction to the special issue: GIS-based mineral potential targeting. J Afr Earth Sci (Paris), 128: 1–4
https://doi.org/10.1016/j.jafrearsci.2017.02.023
113 X Yu, F Xiao, Y Zhou, Y Wang, K Wang (2019). Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district. J Geochem Explor, 203: 87–95
https://doi.org/10.1016/j.gexplo.2019.04.007
114 A Zarasvandi, M Rezaei, M Sadeghi, D Lentz, M Adelpour, H Pourkaseb (2015). Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA), Iran. Ore Geol Rev, 70: 407–423
https://doi.org/10.1016/j.oregeorev.2015.01.010
115 J Zhao, W Wang, L Dong, W Yang, Q Cheng (2012). Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China. J Geochem Explor, 122: 81–89
https://doi.org/10.1016/j.gexplo.2012.08.006
116 S Zhou, K Zhou, Y Cui, J Wang, J Ding (2015). Exploratory data analysis and singularity mapping in geochemical anomaly identification in Karamay, Xinjiang, China. J Geochem Explor, 154: 171–179
https://doi.org/10.1016/j.gexplo.2014.12.007
117 J Zhao, S Chen, R Zuo (2016). Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. J Geochem Explor, 164: 54–64
https://doi.org/10.1016/j.gexplo.2015.06.018
118 C Zhang, C Jordan, A Higgins (2007). Using neighbourhood statistics and GIS to quantify and visualize spatial variation in geochemical variables: an example using Ni concentrations in the top soils of Northern Ireland. Geoderma, 137(3–4): 466–476
https://doi.org/10.1016/j.geoderma.2006.10.018
119 S Zhou, K Zhou, J Wang, G Yang, S Wang (2018). Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies. Front Earth Sci, 12(3): 491–505
120 Y Zheng, X Sun, S Gao, C Wang, Z Zhao, S Wu, J Li, X Wu (2014). Analysis of stream sediment data for exploring the Zhunuo porphyry Cu deposit, southern Tibet. J Geochem Explor, 143: 19–30
https://doi.org/10.1016/j.gexplo.2014.02.012
121 R Zuo (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor, 111(1–2): 13–22
https://doi.org/10.1016/j.gexplo.2011.06.012
122 R Zuo (2012). Exploring the effects of cell size in geochemical mapping. J Geochem Explor, 112: 357–367
https://doi.org/10.1016/j.gexplo.2011.11.001
123 R Zuo (2014). Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas. J Geochem Explor, 136: 93–101
https://doi.org/10.1016/j.gexplo.2013.10.011
124 R Zuo (2017). Machine learning of mineralization-related geochemical anomalies: a review of potential methods. Nat Resour Res, 26(4): 457–464
https://doi.org/10.1007/s11053-017-9345-4
125 R Zuo, Y Xiong (2020). Geodata science and geochemical mapping. J Geochem Explor, 209: 106431
https://doi.org/10.1016/j.gexplo.2019.106431
126 R Zuo, Q Cheng, F P Agterberg, Q Xia (2009a). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. J Geochem Explor, 101(3): 225–235
https://doi.org/10.1016/j.gexplo.2008.08.003
127 R Zuo, Q Cheng, Q Xia (2009b). Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor, 102(1): 37–43
https://doi.org/10.1016/j.gexplo.2008.11.020
128 R Zuo, Q Xia, H Wang (2013). Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Appl Geochem, 28: 202–211
https://doi.org/10.1016/j.apgeochem.2012.10.031
129 R Zuo, J Wang (2016). Fractal/multifractal modeling of geochemical data: a review. J Geochem Explor, 164: 33–41
https://doi.org/10.1016/j.gexplo.2015.04.010
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed