Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (4) : 770-789    https://doi.org/10.1007/s11707-021-0888-7
RESEARCH ARTICLE
Mechanism of pore pressure variation in multiple coal reservoirs, western Guizhou region, South China
Wei JU1,2(), Zhaobiao YANG1,2, Yulin SHEN1,2, Hui YANG2, Geoff WANG3, Xiaoli ZHANG2, Shengyu WANG2
1. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process (Ministry of Education), China University of Mining and Technology, Xuzhou 221008, China
2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
3. School of Chemical Engineering, The University of Queensland, Brisbane St Lucia 4072, Australia
 Download: PDF(4343 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pore pressure is an important parameter in coalbed methane (CBM) exploration and development; however, the distribution pattern and mechanism for pore pressure differences in the Upper Permian CBM reservoirs are poorly understood in the western Guizhou region of South China. In this study, lateral and vertical variations and mechanisms for pore pressure differences are analyzed based on 126 injection-falloff and in-situ stress well test data measured in Permian coal reservoirs. Generally, based on the pore pressure gradient and coefficient in coal reservoirs of the western Guizhou region, five zones can be delineated laterally: the mining areas of Zhina, northern Liupanshui, northern Guizhou, northwestern Guizhou and southern Liupanshui. Vertically, there are two main typical patterns: i) the pore pressure gradient (or coefficient) is nearly unchanged in different coal reservoirs, and ii) the pore pressure gradient (or coefficient) has cyclic variations in a borehole profile with multiple coal seams, which suggests the existence of a “superimposed CBM system”. The mechanism analysis indicates that coal permeability, thermal evolution stage and hydrocarbon generation contribute little to pore pressure differences in coal reservoirs in the western Guizhou region. The present-day in-situ stress field, basement structure and tectonic activity may be the dominant factors affecting lateral pore pressure differences. The sealing capacity of caprocks and the present-day in-situ stress field are significant parameters causing vertical pore pressure differences in coal reservoirs. These results are expected to provide new geological references for CBM exploration and development in the western Guizhou region.

Keywords pore pressure difference      influencing factor      coalbed methane reservoir      Upper Permian      western Guizhou region     
Corresponding Author(s): Wei JU   
Online First Date: 01 June 2021    Issue Date: 20 January 2022
 Cite this article:   
Wei JU,Zhaobiao YANG,Yulin SHEN, et al. Mechanism of pore pressure variation in multiple coal reservoirs, western Guizhou region, South China[J]. Front. Earth Sci., 2021, 15(4): 770-789.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0888-7
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I4/770
Type Pressure coefficient Pressure gradient/(MPa·km−1)
Underpressure <0.96 <9.28
Normal pressure 0.96–1.06 9.28–10.41
Overpressure >1.06 >10.41
Tab.1  The classification of pore pressure used in this study
Fig.1  The Permian Longtan Formation stratigraphy in the western Guizhou region. GR indicates the gamma logging curve, unit: API. The stratigraphy is from Well JV in Panguan syncline.
Fig.2  The distribution of coalbed methane (CBM) units in the western Guizhou region. Grey areas are CBM units in the western Guizhou region, and in this study, pore pressure data are mainly collected from those units with blue color. 1—Agong syncline, 2—Santang syncline, 3—Zhuzang syncline, 4—Jiaga anticline, 5—Bide syncline, 6—Bulang syncline, 7—Bainijing syncline, 8—Guanzhai syncline, 9—Xinpu anticline, 10—Guantian syncline, 11—Jinsha-Qianxi syncline, 12—Luojiaohe syncline, 13—Yemachuan syncline, 14—Gedaying anticline, 15—Gemudi syncline, 16—Yangmeishu syncline, 17—Dailang syncline, 18—Tucheng syncline, 19—Zhaozihe syncline, 20—Panguan syncline, and 21—Qingshan syncline.
CBM unit Well Coal seam number Depth/m Pc/MPa Po/MPa Pressure gradient/(MPa·km−1) Pressure coefficient Permeability/mD
Agong syncline 1# 6 128.18 2.83 0.91 7.10 0.72 0.1800
27+29 312.48 8.07 1.96 6.27 0.64 0.1400
2# 16 440.70 9.49 4.89 11.10 1.13 0.1700
30 529.92 12.32 5.09 9.61 0.98 0.0200
Bainijing syncline 3# 5 596.50 7.21 5.48 9.19 0.94 0.5960
7 630.75 11.20 6.13 9.72 0.99 0.1300
Bide syncline 4# 2 582.98 12.32 6.80 11.66 1.19 0.0700
6 654.80 14.59 7.33 11.19 1.14 0.3300
5# 27 375.30 8.37 3.04 8.10 0.83 0.1200
30 412.83 8.04 4.53 10.97 1.12 0.1200
32 469.32 7.28 4.73 10.08 1.03 0.5700
6# 2 520.17 8.90 5.12 9.84 1.00 0.1074
6 577.76 11.75 5.69 9.85 1.00 0.1682
7# 2 464.04 8.09 2.97 6.40 0.65 0.5002
5 502.26 8.75 4.41 8.77 0.90 0.3228
6 523.35 9.31 4.68 8.93 0.91 0.2999
Bulang syncline 8# 7 200.86 4.31 2.06 10.26 1.05 0.6900
17 344.78 7.96 3.78 10.96 1.12 0.3300
18 365.05 8.27 3.93 10.77 1.10 0.5100
20 380.97 8.51 4.02 10.55 1.08 0.4000
9# 61 269.99 4.25 2.54 9.41 0.96 0.0607
62 280.87 4.25 2.59 9.22 0.94 0.0511
16 446.90 4.33 4.44 9.94 1.01 0.1287
27 569.90 8.52 5.25 9.21 0.94 0.0610
Gedaying anticline 10# 3 299.86 6.62 2.79 9.30 0.95 0.1758
7 362.57 6.73 2.51 6.92 0.71 0.0734
10 383.68 7.17 2.59 6.75 0.69 0.0928
Guantian syncline 4 463.80 8.01 4.71 10.16 1.04 0.2400
9 492.85 12.38 4.82 9.78 1.00 0.4300
12# 13 509.83 11.26 5.18 10.16 1.04 0.7500
15 549.57 12.35 5.75 10.46 1.07 0.6700
Gemudi syncline 13# 7 807.89 9.56 6.43 7.96 0.81 0.0666
132 869.48 13.33 7.06 8.12 0.83 0.2509
Guanzhai syncline 14# 4 555.42 11.60 4.60 8.28 0.85 0.2300
9 599.74 16.47 5.01 8.35 0.85 0.0210
11 645.70 16.48 5.20 8.05 0.82 0.0430
Jiaga anticline 15# 3 135.90 2.14 0.78 5.74 0.59 1.5621
4 142.78 2.40 0.81 5.67 0.58 1.3103
Langdai syncline 16# 7 94.38 2.19 0.66 6.99 0.71 0.6700
15 247.65 5.17 1.64 6.62 0.68 0.1820
18 298.45 5.33 2.06 6.90 0.70 0.5600
Luojiaohe syncline 17# 18 296.43 4.82 2.71 9.14 0.93 0.5070
29 321.96 9.14 4.56 14.16 1.45 0.0088
51 368.69 12.58 6.31 17.11 1.75 0.0638
73 439.51 11.42 6.51 14.81 1.51 0.0706
78 464.27 11.56 5.36 11.55 1.18 0.0391
Panguan syncline 18# 61 674.45 10.37 6.26 9.28 0.95 0.1920
12 722.09 12.17 6.32 8.75 0.89 0.5730
18 774.39 12.18 6.96 8.99 0.92 0.0492
24 832.89 13.57 10.83 13.00 1.33 0.0578
19# 7 554.24 15.68 6.54 11.80 1.20 0.4260
20# 3 359.09 10.40 3.95 11.00 1.12 0.0173
9 408.53 13.33 5.27 12.90 1.32 0.0044
21# 3 558.05 10.23 5.66 10.13 1.03 0.3240
10 611.10 12.80 6.00 9.82 1.00 0.0975
13 641.58 15.79 6.14 9.57 0.98 0.0157
22 706.93 11.85 7.04 9.96 1.02 0.3130
22# 1 439.67 4.84 4.75 10.81 1.10 0.4930
161 566.96 9.10 6.01 10.60 1.08 0.1550
202 603.37 12.56 6.03 9.99 1.02 0.1310
22 631.65 9.81 6.70 10.61 1.08 0.0759
23# 12 1133.90 27.21 12.89 11.37 1.16 0.0010
24 1243.60 27.36 11.28 9.07 0.93 0.0060
24# 15 1080.00 23.76 12.28 11.37 1.16 0.0096
25# 10 1139.70 23.93 10.13 8.89 0.91 0.0020
Jinsha-Qianxi syncline 26# 9 251.83 3.82 2.62 10.40 1.06 0.6100
15 376.40 6.35 3.57 9.48 0.97 0.4300
27# 4 338.07 7.02 4.47 13.22 1.35 0.0874
9 352.12 8.56 3.70 10.51 1.07 0.0758
15 408.16 11.19 6.45 15.80 1.61 0.0025
28# 4 435.10 8.76 3.79 8.71 0.89 0.0907
29# 4 890.41 12.41 8.04 9.03 0.92 0.0268
15 964.82 17.52 8.11 8.41 0.86 0.0276
30# 12 1023.50 18.46 12.63 12.34 1.26 0.0700
16 1096.70 17.68 12.81 11.68 1.19 0.0600
Qingshan syncline 31# 17 147.17 2.39 1.20 8.15 0.83 0.2700
19 175.30 3.60 1.51 8.61 0.88 0.2560
27 323.30 5.19 2.95 9.12 0.93 0.5600
32# 18 341.95 8.20 3.93 11.49 1.17 0.0007
19 367.09 11.01 4.11 11.20 1.14 0.0002
33# 19 493.29 11.53 4.09 8.29 0.85 0.0110
26 628.61 11.53 6.37 10.13 1.03 0.2010
34# 3 647.82 14.80 10.35 15.98 1.63 0.0002
9 712.62 12.80 8.66 12.15 1.24 0.0081
12 726.63 14.22 9.37 12.90 1.32 0.0106
171 742.84 18.14 8.97 12.08 1.23 0.0027
172 752.04 14.18 7.40 9.84 1.00 0.0109
19 771.73 12.86 8.86 11.48 1.17 0.0074
35# 17 292.22 6.28 3.54 12.11 1.24 0.0078
19 329.40 8.29 3.66 11.11 1.13 0.0110
29 426.95 9.56 4.57 10.70 1.09 0.0130
36# 17 632.36 7.14 5.50 8.70 0.89 0.4800
19 665.02 15.12 7.51 11.29 1.15 0.0620
Santang syncline 37# 6 220.77 5.04 1.04 4.71 0.48 0.0100
16 325.29 5.41 3.43 10.54 1.08 0.0314
27 399.94 6.63 2.24 5.60 0.57 0.0857
Tucheng syncline 38# 1+3 619.26 10.67 6.94 11.21 1.14 0.1060
9 661.23 11.11 7.02 10.61 1.08 0.0934
16 738.90 13.14 10.11 13.69 1.40 0.2100
271 920.03 21.01 12.35 13.42 1.37 0.0437
Xinpu anticline 39# 18 191.95 4.52 2.08 10.84 1.11 0.0052
20 215.25 7.19 2.29 10.64 1.09 0.0133
Yangmeishu syncline 40# 52 580.00 8.35 6.95 11.99 1.22 0.0661
7 630.00 10.85 6.25 9.92 1.01 0.1730
232 806.00 14.92 7.62 9.45 0.96 0.1310
Zhaozihe syncline 41# 3 31.77 1.85 0.52 16.37 1.67 0.6600
12 195.91 3.73 2.16 11.03 1.13 0.2000
17 238.29 4.82 2.32 9.74 0.99 0.2100
19 270.50 5.77 2.60 9.61 0.99 0.6100
28 437.41 10.15 4.74 10.84 1.11 0.5700
29 461.18 10.34 5.04 10.93 1.11 0.0700
Yemachuan syncline 42# 1 751.20 8.17 5.16 6.87 0.70 0.0347
4 795.70 11.63 5.46 6.86 0.70 0.0319
7 826.90 13.76 5.54 6.70 0.68 0.0291
43# 1 659.98 7.48 3.44 5.21 0.53 0.0363
5 728.54 9.61 3.10 4.26 0.43 0.0830
44# 13 438.31 7.37 2.78 6.34 0.65 0.0738
18 441.98 6.57 3.17 7.17 0.73 0.1033
45# 2 418.65 6.93 1.58 3.77 0.39 0.0763
3 428.57 6.97 1.97 4.60 0.47 0.0656
5 450.37 6.00 1.48 3.29 0.34 0.1210
8 469.96 6.31 1.68 3.57 0.36 0.0585
46# 4 455.92 7.13 1.97 4.32 0.44 0.0830
Zhuzang syncline 47# 16 379.70 8.01 2.95 7.77 0.79 0.0179
23 431.38 15.59 3.04 7.05 0.72 0.0002
48# 16 736.98 17.56 6.86 9.31 0.95 0.0005
Tab.2  Parameters from injection-falloff and in-situ stress tests in the western Guizhou region
Zone CBM unit Pressure gradient/(MPa·km−1)
min–max
Pressure coefficient
min–max
Number of underpressure layer Number of normal pressure layer Number of overpressure layer
Northern Guizhou mining area Guantian syncline 9.78–10.46 1.00–1.07 0 3 1
Jinsha-Qianxi syncline 8.41–15.80 0.86–1.61 3 1 6
Luojiaohe syncline 9.14–17.11 0.93–1.75 1 0 4
total 4 4 11
Zhina mining area Guanzhai syncline 8.05–8.35 0.82–0.85 3 0 0
Xinpu anticline 10.64–10.84 1.09–1.11 0 0 2
Agong syncline 6.27–11.10 0.64–1.13 2 1 1
Bainijing syncline 9.19–9.72 0.94–0.99 1 1 0
Santang syncline 4.71–10.54 0.48–1.08 2 0 1
Zhuzang syncline 7.05–9.31 0.72–0.95 3 0 0
Jiaga anticline 5.67–5.74 0.58–0.59 2 0 0
Bide syncline 6.40–11.66 0.65–1.19 4 3 3
total 17 5 7
Northern Liupanshui mining area Bulang syncline 9.21–10.96 0.94–1.12 0 4 4
Langdai syncline 6.62–6.99 0.68–0.71 3 0 0
Gedaying anticline 6.75–9.30 0.69–0.95 3 0 0
Gemudi syncline 7.96–8.12 0.81–0.83 2 0 0
total 8 4 4
Southern Liupanshui mining area Yangmeishu syncline 9.45–11.99 0.96–1.22 0 2 1
Tucheng syncline 10.61–13.69 1.08–1.40 0 0 4
Zhaozihe syncline 9.61–16.37 0.98–1.67 0 2 4
Panguan syncline 8.75–13.01 0.89–1.33 5 5 9
Qingshan syncline 8.15–15.98 0.83–1.63 5 2 11
total 10 11 29
Northwestern Guizhou mining area Yemachuan syncline 3.29–7.17 0.34–0.73 12 0 0
total 12 0 0
Tab.3  Zone divisions based on pore pressure gradient or coefficient in coal reservoirs of western Guizhou region
Fig.3  The relationship between pore pressure and burial depth in the western Guizhou region. In Fig.3, y indicates pore pressure in coal reservoirs, x is burial depth, and R is the correlation coefficient.
Fig.4  Variations of (a) pore pressure gradient and (b) pressure coefficient in coal reservoirs with burial depth in the western Guizhou region.
Fig.5  The relationship between pore pressure and horizontal minimum principal stress in coal reservoirs of western Guizhou region. y is pore pressure, MPa; x is horizontal minimum principal stress, MPa; R is correlation coefficient.
Fig.6  Variations of (a) pore pressure gradient and (b) pressure coefficient in coal reservoirs with horizontal minimum principal stress in the western Guizhou region.
Fig.7  Variations of pore pressure gradient with horizontal minimum principal stress in different mining areas of western Guizhou region. (a) Northern Liupanshui mining area, (b) Zhina mining area, (c) southern Liupanshui mining area, and (d) northern and northwestern Guizhou mining area.
Fig.8  The relationship between pore pressure and coal permeability in the western Guizhou region.
Fig.9  Variations of (a) pore pressure gradient and (b) pressure coefficient with coal permeability in the western Guizhou region.
Fig.10  Variations of pore pressure gradient with coal permeability in different mining areas of western Guizhou region. (a) Northern Liupanshui mining area, (b) Zhina mining area, (c) southern Liupanshui mining area, and (d) northern and northwestern Guizhou mining area.
Zone Maximum vitrinite reflectance
Ro/%
Homogenization temperature of inclusion/°C
Range First stage Second stage
Zhina mining area 1.64–3.35 115–244 115–192 206–244
Southern Liupanshui mining area 0.72–1.27 65–150 65–119 135–150
Tab.4  Measured the maximum vitrinite reflectance and homogenization temperature of inclusion (after Tang et al., 2016)
Fig.11  Burial history and thermal evolution of coal seam in western Santang syncline (Zhina mining area); (a) and western Panguan syncline (southern Liupanshui mining area); (b) of western Guizhou region (after Dou, 2012).
Fig.12  Isoline map showing the maximum vitrinite reflectance in the Permian coal reservoirs of western Guizhou region (the data are from Xu and He, 2003).
Fig.13  Generation of thermogenic gas from coal with increasing thermal maturity (after Thakur et al., 2014).
Fig.14  The distribution of basement structure in the western Guizhou region (after Dou, 2012). F1: Panxian-Shuicheng Fault, F2: South Panjiang Fault, F3: Shuicheng-Ziyun Fault, F4: South Xingyi-Anlong Fault, F5: Puan Fault, F6: Zunyi-Pingba Fault, F7: Guiyang-Puding Fault, F8: Qianzhong Fault, and F9: Hezhang-Jinsha Fault.
Fig.15  The development and type of faults in the Zhina mining area of western Guizhou region.
Fig.16  The division of multiple superposed gas-bearing systems in Well 18 of Panguan syncline. The gray bands are indicative of siderite-bearing strata.
1 S D Chen, D Z Tang, S Tao, H Xu, S Li, J L Zhao, P F Ren, H J Fu (2017). In-situ stress measurements and stress distribution characteristics of coal reservoirs in major coalfields in China: implication for coalbed methane (CBM) development. Int J Coal Geol, 182: 66–84
https://doi.org/10.1016/j.coal.2017.09.009
2 S Dasgupta, R Chatterjee, S P Mohanty (2016). Magnitude, mechanisms, and prediction of abnormal pore pressure using well data in the Krishna-Godavari Basin, east coast of India. AAPG Bull, 100(12): 1833–1855
https://doi.org/10.1306/05131615170
3 X Z Dou (2012). Tectonic evolution and its control on coalbed methane reservoiring in western Guizhou. Dissertation for the Doctoral Degree. Xuzhou: China University of Mining and Technology (in Chinese)
4 T Engelder, M P Fischer (1994). Influence of poroelastic behavior on the magnitude of minimum horizontal stress, Sh in overpressured parts of sedimentary basins. Geology, 22(10): 949–952
https://doi.org/10.1130/0091-7613(1994)022<0949:IOPBOT>2.3.CO;2
5 H J Fu, D T Yan, S G Yang, X M Wang, Z Zhang, M D Sun (2020). Characteristics of in situ stress and its influence on coalbed methane development: a case study in the eastern part of the southern Junggar Basin, NW China. Energy Sci Eng, 8(2): 515–529
https://doi.org/10.1002/ese3.533
6 B C Haimson, F H Cornet (2003). ISRM suggested methods for rock stress estimation. Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int J Rock Mech Min Sci, 40(7-8): 1011–1020
https://doi.org/10.1016/j.ijrmms.2003.08.002
7 T Hantschel, A I Kauerauf (2009). Fundamentals of Basin and Petroleum Systems Modeling. Heidelberg: Springer-Verlag
8 J M Hunt (1990). Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bull, 74(1): 1–12
9 W Ju, B Jiang, Q Miao, J L Wang, Z H Qu, M Li (2018a). Variation of in situ stress regime in coal reservoirs, eastern Yunnan region, south China: implications for coalbed methane production. AAPG Bull, 102(11): 2283–2303
https://doi.org/10.1306/04241817376
10 W Ju, B Jiang, Y Qin, C F Wu, G Wang, Z H Qu, M Li (2019). The present-day in-situ stress field within coalbed methane reservoirs, Yuwang Block, Laochang Basin, south China. Mar Pet Geol, 102: 61–73
https://doi.org/10.1016/j.marpetgeo.2018.12.030
11 W Ju, J Shen, Y Qin, S Z Meng, C F Wu, Y L Shen, Z B Yang, G Z Li, C Li (2017). In-situ stress state in the Linxing region, eastern Ordos Basin, China: implications for unconventional gas exploration and production. Mar Pet Geol, 86: 66–78
https://doi.org/10.1016/j.marpetgeo.2017.05.026
12 W Ju, J Shen, Y Qin, S Z Meng, C Li, G Z Li, G Yang (2018b). In-situ stress distribution and coalbed methane reservoir permeability in the Linxing area, eastern Ordos Basin, China. Front Earth Sci, 12(3): 545–554
https://doi.org/10.1007/s11707-017-0676-6
13 W Ju, Z B Yang, Y Qin, T S Yi, Z G Zhang (2018c). Characteristics of in-situ stress state and prediction of the permeability in the Upper Permian coalbed methane reservoir, western Guizhou region, SW China. J Petrol Sci Eng, 165: 199–211
https://doi.org/10.1016/j.petrol.2018.02.037
14 F Khoshnaw, P Jaf, S Farkha (2014). Pore, abnormal formation and fracture pressure prediction. WIT Trans Ecol Environ, 186: 579–593
https://doi.org/10.2495/ESUS140511
15 B E Law, C W Spencer (1998). Abnormal pressure in hydrocarbon environments. AAPG Mem, 70: 1–11
16 S Li, D Z Tang, Z J Pan, H Xu, L L Guo (2015). Evaluation of coalbed methane potential of different reservoirs in western Guizhou and eastern Yunnan, China. Fuel, 139: 257–267
https://doi.org/10.1016/j.fuel.2014.08.054
17 R Liu, J Z Liu, W L Zhu, F Hao, Y H Xie, Z F Wang, L F Wang (2016). In-situ stress analysis in the Yinggehai Basin, northwestern South China Sea: implication for the pore pressure-stress coupling process. Mar Pet Geol, 77: 341–352
https://doi.org/10.1016/j.marpetgeo.2016.06.008
18 C E Neuzil (1993). Low fluid pressure within the Pierre Shale: a transient response to erosion. Water Resour Res, 29(7): 2007–2020
https://doi.org/10.1029/93WR00406
19 M J Osborne, R E Swarbrick (1997). Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG Bull, 81(6): 1023–1041
20 Y Qin, T A Moore, J Shen, Z B Yang, Y L Shen, G Wang (2018). Resources and geology of coalbed methane in China: a review. Int Geol Rev, 60(5-6): 777–812
https://doi.org/10.1080/00206814.2017.1408034
21 Y Qin, M H Xiong, T S Yi, Z B Yang, C F Wu (2008). On unattached multiple superposed coalbed methane system: in a case of the Shuigonghe syncline, Zhijin-Nayong Coalfield, Guizhou. Geol Rew, 54(1): 65–70 (in Chinese)
22 Y X Qiu, Y C Zhang, W P Ma (1999). Tectonic Attribute and Evolution of Mountain Xuefeng: A Formation Model for Intracontinental Orogenic Belt. Beijing: Geological Publishing House (in Chinese)
23 V Saxena, M Krief, L Adam (2018). Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization. Amsterdam: Elsevier
24 Y L Shen, Y Qin, G Wang, Q Xiao, J Shen, J Jin, T Zhang, Y Zong, J B Liu, Y J Zhang, J Zheng (2019). Sealing capacity of siderite-bearing strata: the effect of pore dimenstion on abundance and micromorphology type of siderite in the Lopingian (Late Permian) coal-bearing strata, western Guizhou province. J Petrol Sci Eng, 178: 180–192
https://doi.org/10.1016/j.petrol.2019.03.032
25 D K Singha, R Chatterjee (2014). Detection of overpressure zones and a statistical model for pore pressure estimation from well logs in the Krishna-Godavari Basin, India. Geochem Geophys Geosyst, 15(4): 1009–1020
https://doi.org/10.1002/2013GC005162
26 S L Tang, D Z Tang, H Xu, S Tao, S Li, Y G Geng (2016). Geological mechanisms of the accumulation of coalbed methane induced by hydrothermal fluids in the western Guizhou and eastern Yunnan regions. J Nat Gas Sci Eng, 33: 644–656
https://doi.org/10.1016/j.jngse.2016.05.061
27 P Thakur, S Schatzel, K Aminian (2014). Coal Bed Methane: From Prospect to Pipeline. Amsterdam: Elsevier
28 M R P Tingay, R R Hillis, C K Morley, R E Swarbrick, E C Okpere (2003). Pore/pressure coupling in Brunei Darussalam-implications for shale injection. In: van Rensbergen P, Hillis R R, Maltman A J, Morley C K, eds. Subsurface Sediment Mobilization. Geological Society, London: Special Publications, 216: 369–379
29 M R P Tingay, R R Hillis, R E Swarbrick, C K Morley, A R Damit (2009). Origin of overpressure and pore-pressure prediction in the Baram province, Brunei. AAPG Bull, 93(1): 51–74
https://doi.org/10.1306/08080808016
30 P C H Veeken (2007). Seismic Stratigraphy, Basin Analysis and Reservoir Characterisation. Amsterdam: Elsevier
31 C F Wu, C Wang, W Jiang (2014). Abnormal high-pressure formation mechanism in coal reservoir of Bide-Santang Basin, western Guizhou Province. Earth Sci, 39(1): 73–77 (in Chinese)
32 Y P Wu (2005). The formation mechanisms of abnormal pressure and factor in control of the coal bed gas in Qinshui Basin. Dissertation for the Master’s Degree. Chengdu: Chengdu University of Technology (in Chinese)
33 X Xie, C M Bethke, S Li, X Liu, H Zheng (2001). Overpressure and petroleum generation and accumulation in the Dongying Depression of the Bohaiwan Basin, China. Geofluids, 1(4): 257–271
https://doi.org/10.1046/j.1468-8123.2001.00017.x
34 B B Xu, D M He (2003). Coal Geology in Guizhou Province. Xuzhou: China University of Mining and Technology Press (in Chinese)
35 H Xu, D Z Tang, Y Qin, C Z Meng, S Tao, Z L Chen (2011). Characteristics and origin of coal reservoir pressure in the west Guizhou area. J China Univ Min Technol, 40(4): 556–560 (in Chinese)
36 H Xu, J F Zhang, D Z Tang, M Li, W Z Zhang, W J Lin (2012). Controlling factors of underpressure reservoirs in the Sulige gas field, Ordos Basin. Pet Explor Dev, 39(1): 70–74
https://doi.org/10.1016/S1876-3804(12)60016-0
37 S Yao, C F Wu, C Q Yang, R Q Li, Y L Chen (2019). Study on pressure characteristics and difference causes of coal reservoirs in Bide-Santang Basin of western Guizhou. Coal Sci Technol, 47(4): 162–168 (in Chinese)
38 J P Ye, Y Qin, D Y Lin (1998). Coalbed Methane Resources of China. Xuzhou: China University of Mining and Technology Press (in Chinese)
39 K M Zahid, A Uddin (2005). Influence of overpressure on formation velocity evaluation of Neogene strata from the eastern Bengal Basin, Bangladesh. J Asian Earth Sci, 25(3): 419–429
https://doi.org/10.1016/j.jseaes.2004.04.003
40 J C Zhang (2011). Pore pressure prediction from well logs: methods, modifications, and new approaches. Earth Sci Rev, 108(1-2): 50–63
https://doi.org/10.1016/j.earscirev.2011.06.001
[1] Wei JU, Jian SHEN, Chao LI, Kun YU, Hui YANG. Natural fractures within unconventional reservoirs of Linxing Block, eastern Ordos Basin, central China[J]. Front. Earth Sci., 2020, 14(4): 770-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed