Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (4) : 876-891    https://doi.org/10.1007/s11707-021-0908-7
RESEARCH ARTICLE
Discriminating hydrocarbon generation potential of coaly source rocks and their contribution: a case study from the Upper Paleozoic of Bohai Bay Basin, China
Jinjun XU1, Da LOU1,2(), Qiang JIN1, Lixin FU2, Fuqi CHENG1, Shuhui ZHOU2, Xiuhong WANG3, Chao LIANG1, Fulai LI1
1. Shandong Provincial Key Laboratory of Deep Oil and Gas, Qingdao 266580, China
2. PetroChina Dagang Oilfield Company, Tianjin 300280, China
3. Research Institute of Petroleum Exploration and Development, Shengli Oilfield Company, Sinopec, Dongying 257015, China
 Download: PDF(3962 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although various coaly source rocks widely developed in the Carboniferous–Permian (C–P) of the Bohai Bay Basin, their geochemical characteristics and hydrocarbon generation potential are poorly understood. This study aims to discriminate the contribution of hydrocarbon generation from different C–P coaly source rocks and clarify the differences within generated oils using organic geochemistry, organic petrology, and thermal simulation experiments. The coaly source rocks containt coal clarain and durain, carbonaceous shale, and shale deposited in deltaic and lagoonal environment. The results indicated that clarain, durain, and carbonaceous shale exhibited higher hydrogen index and liquid–gas hydrocarbon yields than lagoonal and deltaic shales, which was mainly associated with the concentrations of sporinite, cutinite, and hydrogen-rich collodetrinite. Aliphatic hydrocarbons originated from coal and carbonaceous shale presented lower Ts/(Ts+Tm), Ga/17α(H)21β(H)-C30 hopane, 18α(H)-oleanane/17α(H)21β(H)-C30 hopane ratios, and higher 17β(H)21α(H)-C30 Morane/17α(H)21β(H)-C30 hopane than deltaic lagoonal shales. Parameters of aromatic hydrocarbons generated from five lithologies of coaly source rocks trended as clear group distribution, e.g., clarain and durain showing lower MNR, DBT/Fluorene (F) ratios and higher DBF/F ratio than coaly shales. The distinct descending trend of hydrocarbon potential is obtained from clarain, durain, carbonaceous shale to lagoonal and deltaic shales, implying dominated the petroleum and natural gas supplement from coal and carbonaceous shale. The difference between aliphatic and aromatic hydrocarbons provides a significant contribution to analyze the generic relationship between coaly source rock and lacustrine shale. Our results illustrate the importance of coaly source rocks for the in-depth oil-gas exploration of the Bohai Bay Basin and understanding hydrocarbon generation potential of source rocks in coal bearing strata.

Keywords thermal simulation      hydrocarbon generation      coaly source rock      Carboniferous–Permian      Bohai Bay Basin     
Corresponding Author(s): Da LOU   
Online First Date: 13 August 2021    Issue Date: 20 January 2022
 Cite this article:   
Jinjun XU,Da LOU,Qiang JIN, et al. Discriminating hydrocarbon generation potential of coaly source rocks and their contribution: a case study from the Upper Paleozoic of Bohai Bay Basin, China[J]. Front. Earth Sci., 2021, 15(4): 876-891.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0908-7
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I4/876
Fig.1  Study area and coaly source rock profile of the Carboniferous–Permian in the Bohai Bay Basin. (a) Bohai Basin; (b) research area; (c) stratigraphic sequence.
Samples Well/area Formation Lithology Depth/m TOC/
wt%
S1/
(mg·g–1)
S2/
(mg·g–1)
S1 + S2/
(mg·g–1)
Tmax/
°C
HI/
(mg·g–1 ·TOC–1)
C1 Caozhuang Shanxi Clarain# 350.00 71.00 1.32 167.78 169.10 432 236.31
C2 CG2 Taiyuan Clarain 1690.63 68.10 3.84 208.70 212.54 434 306.46
C3 CG2 Taiyuan Clarain 1598.13 67.90 2.18 154.03 156.21 438 226.85
C4 GG16102 Taiyuan Clarain 2224.55 70.10 2.17 154.19 156.36 432 219.96
C5 CL1601 Taiyuan Clarain 2276.11 65.70 10.61 160.81 171.42 457 244.76
C6 Chazhaung Shanxi Clarain 300.00 57.00 4.76 195.97 200.73 437 343.81
C7 Chazhaung Shanxi Clarain 420.00 54.60 8.36 228.21 236.57 431 417.97
D1 Chazhaung Shanxi Durain 450.00 50.60 2.89 138.03 140.92 431 272.79
D2 Chazhaung Taiyuan Durain 780.00 61.20 2.27 158.02 160.29 436 258.20
D3 Caozhuang Taiyuan Durain# 750.00 56.50 1.11 119.35 120.46 432 211.24
D4 CG2 Taiyuan Durain 1690.63 40.00 0.95 49.61 50.56 438 124.03
D5 GG16102 Taiyuan Durain 2224.55 69.40 2.30 91.23 93.53 431 131.46
CS1 Chazhaung Taiyuan Carbonaceous shale 635.00 14.70 2.13 49.80 51.93 441 338.78
CS2 QG8 Taiyuan Carbonaceous shale 3704.00 22.93 3.66 51.23 54.89 437 223.42
CS3 QG1601 Taiyuan Carbonaceous shale 3879.00 23.90 1.92 39.18 41.10 444 163.93
CS4 QG1601 Taiyuan Carbonaceous shale 3801.00 37.40 5.07 87.03 92.10 443 232.70
CS5 QG1601 Shanxi Carbonaceous shale 3750.00 26.10 3.11 87.60 90.71 443 335.63
CS6 GG16102 Taiyuan Carbonaceous shale 2198.09 27.77 3.70 57.02 60.71 430 205.31
CS7 GG16102 Taiyuan Carbonaceous shale 2211.78 22.03 1.79 44.30 46.09 428 201.09
CS8 QG8 Taiyuan Carbonaceous shale 3710.00 13.13 1.15 12.89 14.04 441 98.17
CS9 QG1601 Taiyuan Carbonaceous shale 3717.00 15.50 1.69 38.13 39.82 438 246.00
CS10 QG1601 Taiyuan Carbonaceous shale 3819.00 17.10 2.12 37.92 40.04 440 221.75
CS11 CG2 Taiyuan Carbonaceous shale# 1602.95 7.58 0.44 21.00 21.44 436 277.04
CS12 CL1601 Taiyuan Carbonaceous shale 2273.20 11.50 1.82 10.19 12.01 469 88.61
CS13 CL1601 Taiyuan Carbonaceous shale 2270.95 24.80 4.27 78.80 53.07 464 317.74
CS14 CL1601 Taiyuan Carbonaceous shale 2101.79 17.60 0.97 15.64 16.61 457 88.86
DS1 Chazhaung Shanxi Deltaic shale 350.00 6.07 0.10 14.14 14.24 435 232.95
DS2 CC1 Shanxi Deltaic shale 1593.59 4.38 0.18 1.03 1.21 476 23.52
DS3 CC1 Shanxi Deltaic shale 1594.25 7.68 0.56 2.90 3.46 480 37.76
DS4 CG2 Shanxi Deltaic shale# 1587.88 1.92 0.07 1.63 1.7 440 84.90
LS1 Chazhaung Taiyuan Lagoonal shale 760.00 5.62 0.37 6.54 6.91 440 116.37
LS2 Chazhaung Taiyuan Lagoonal shale# 780.00 5.75 0.10 1.86 1.96 452 32.35
LS3 CL1601 Taiyuan Lagoonal shale 2279.91 2.38 0.32 1.49 1.81 473 62.61
LS4 CL1601 Taiyuan Lagoonal shale 2275.91 2.33 0.23 1.19 1.42 469 51.07
LS5 CL1601 Taiyuan Lagoonal shale 2259.09 3.27 0.22 2.64 2.86 463 80.73
LS6 CL1601 Taiyuan Lagoonal shale 2256.97 1.27 0.15 0.75 0.90 464 59.06
Tab.1  Organic geochemical parameters of coaly source rocks
Fig.2  Organic matter abundance and maceral compositions of coaly source rocks (modified from Peters and Cassa, 1994).
Fig.3  Maceral components accumulated in coaly source rocks. (a1), (b1) abundant green-yellow hydrogen-rich collodetrinite, sporinite and cutinite, reflecting fluorescent light under UV conditions; and white light, clarain (C6), Shanxi Formation, 1000×, 500×; (a2), (b2) dark gey collodetrinite, light gray collotelinite, off-white inertinite, clarain (C6), Shanxi Formation, 200×, 200×; (c1), (c2) larger fuscous collotelinite and black corpogelinite under UV conditions, dark gey collodetrinite, light gray collotelinite, and off-white inertinite under white light condition, durain (D1), Shanxi Formation, 500×, 200×; (d1), (d2) yellow sporinite with an apparent cell and black corpogelinite under UV conditions, light gray collotelinite under white light condition, carbonaceous shale (CS11), Taiyuan Formation, 500×, 200×; (e1), (e2) black corpogelinite under UV conditions, light gray collotelinite and bright white pyrite under white light condition, deltaic shale (DS3), Shanxi Formation, 500× , 200×; (f1), (f2) shallow yellow cutinite and black corpogelinite under UV conditions, a few light gray collotelinite and bright white pyrite under white light condition, lagoonal shale (LS5), Taiyuan Formation, 500×, 200×.
Samples Well /area Formation Lithology Depth/
m
Ro/
%
TOC/% (S1 + S2)/
(mg·g–1)
Tmax/
°C
Liptinite/% Vitrinite/% Inertinite/% Bituminite/%
Hydrogen-poor Hydrogen-rich
C5 CL1601 Taiyuan Clarain 2276.11 1.00 65.7 171.42 457 21.5 59.0 9.4 1.8
C6 CHZ-7 Shanxi Clarain 300.00 0.65 57.0 200.73 437 3.1 47.6 32.5 11.2
C7 CHZ-5 Shanxi Clarain 420.00 0.67 54.6 236.57 431 3.9 88.6 1.2 0
D1 CHZ-11 Shanxi Durain 450.00 0.65 50.6 140.92 431 28.3 22.0 8.3 36.2
CS1 CZ-9 Taiyuan Carbonaceous shale 635.00 0.66 14.7 51.93 434 5.6 48.4 4.3 3.7
CS11 CG2 Taiyuan Carbonaceous shale 1602.95 0.64 7.58 21.44 436 10.5 24.5 26.8 0.1
CS12 CL1601 Taiyuan Carbonaceous shale 2273.2 0.92 11.5 12.01 469 6.5 6.2 0.2 8.0
CS14 CL1601 Taiyuan Carbonaceous shale 2101.79 0.92 17.6 16.61 457 2.1 8.4 45.6 0.1
DS2 CC1 Shanxi Deltaic shale 1593.59 1.15 4.38 1.21 476 0.7 7.4 0.1 10.1
DS3 CC1 Shanxi Deltaic shale 1594.25 1.14 7.68 3.46 480 13.6 0.1 9.8
LS3 CL1601 Taiyuan Lagoonal shale 2279.91 1.02 2.38 1.81 473 2.6 1.4
LS2 CHZ-4 Taiyuan Lagoonal shale 780.00 0.65 5.75 1.96 452 1.5 4.2 0.2 1.3
LS4 CL1601 Taiyuan Lagoonal shale 2275.91 1.00 2.33 1.42 469 2.2 0.1 2.7
LS5 CL1601 Taiyuan Lagoonal shale 2259.09 0.96 3.27 2.86 463 2.1 3.4 0.2 9.4
LS6 CL1601 Taiyuan Lagoonal shale 2256.97 1.07 1.27 0.9 464 0.8 1.4 6.0
Tab.2  Organic geochemical parameters and maceral components of coaly source rocks
Fig.4  Plots of liptinite, hydrogen-poor vitrinite, hydrogen-rich vitrinite vs. total organic carbon (TOC) within coaly source rocks.
Fig.5  Processes and yields of liquid and gas hydrocarbon generation changing in the thermal simulation.
Fig.6  Chromatography of hopane series (m/z = 191) and fluorene series (m/z = 166, 168, 184) compounds.
Fig.7  Variations in saturated hydrocarbon parameters in the thermal simulation. Pr: pristane; Ph: phytane.
Fig.8  Variations in phenanthrene, fluorene, and naphthalene compounds in the thermal simulation. MPI2= 3 × 2-methylphenanthrene/(Methylphenanthrene+ 1-methyphenanthrene+ 9-methylphenanthrene); MNR= 2-methylnaphthalene/1-methylnapthalene.
Fig.9  Parameters of hopane series compounds for lithology identification from thermal simulation.
Fig.10  Plots of TeMNR vs. MNR and Dibenzofuran/Fluorene vs. Dibenzothiophene/Fluorene for distinguishing lithologies (from thermal simulation). (a) parameters of naphthalene series compounds for discriminating different lithologies of coaly source rocks; (b) parameters of fluorene series compounds for discriminating different lithologies of coaly source rocks. TeMNR= 1,3,6,7-TeMN/[1,3,6,7+ 1,2,5,6-TeMN], C= clarain, D= durain, CS= carbonaceous shale, LS= lagoonal shale, DS= deltaic shale.
1 M Ahmed, H Volk, S C George, M Faiz, L Stalker (2009). Generation and expulsion of oils from Permian coals of the Sydney Basin. Australia. Org Geochem, 40(7): 810–831
https://doi.org/10.1016/j.orggeochem.2009.04.003
2 M Asif (2010). Geochemical applications of polycyclic aromatic hydrocarbons in crude oils and sediments from pakistan. Dissertation for Doctor Degree. Lahore: University of Engineering and Technology
3 M Asif, R Alexander, T Fazeelat, K Pierce (2009). Geosynthesis of dibenzothiophene and alkyl dibenzothiophenes in crude oils and sediments by carbon catalysis. Org Geochem, 40(8): 895–901
https://doi.org/10.1016/j.orggeochem.2009.04.016
4 J Chang, N Qiu, X Zhao, F Shen, N Liu, W Xu (2018). Mesozoic and Cenozoic tectono-thermal reconstruction of the western Bohai Bay Basin (East China) with implications for hydrocarbon generation and migration. J Asian Earth Sci, 160: 380–395
https://doi.org/10.1016/j.jseaes.2017.09.008
5 M E Collinson, P F Van Bergen, A C Scott, J W De Leeuw (1994). The oil-generating potential of plants from coal and coal-bearing strata through time: a review with new evidence from Carboniferous plants. Geol Soc Lond Spec Publ, 77(1): 31–70
https://doi.org/10.1144/GSL.SP.1994.077.01.03
6 J R Colmenero, I Suárez-Ruiz, J Fernández-Suárez, P Barba, T Llorens (2008). Genesis and rank distribution of Upper Carboniferous coal basins in the Cantabrian Mountains, Northern Spain. Int J Coal Geol, 76(3): 187–204
https://doi.org/10.1016/j.coal.2008.08.004
7 J A D’Angelo, E L Zodrow, A Camargo (2010). Chemometric study of functional groups in Pennsylvanian gymnosperm plant organs (Sydney Coalfield, Canada): implications for chemotaxonomy and assessment of kerogen formation. Org Geochem, 41(12): 1312–1325
https://doi.org/10.1016/j.orggeochem.2010.09.010
8 J J P Figueiredo, D M Hodgson, S S Flint, J P Kavanagh (2010). Depositional environments and sequence stratigraphy of an exhumed permian mudstone-dominated submarine slope succession, Karoo Basin, South Africa. Am J Bot, 60: 736–744
9 S F Greb, R L Martino (2005). Fluvial–Estuarine Transitions in Fluvial dominated Successions: Examples from the Lower Pennsylvanian of the Central Appalachian Basin. In: Blum M D, Marriott S B, Leclair S F, eds. Fluvial Sedimentology VII. IAS Special Publication 35: 425–451
https://doi.org/10.1002/9781444304350.ch23
10 W A Hartgers, J S Sinninghe Damste, J W de Leeuw, Y Ling, G R Dyrkacz (1994). Molecular characterization of flash pyrolyzates of two carboniferous coals and their constituting maceral fractions. Energy Fuels, 8(5): 1055–1067
https://doi.org/10.1021/ef00047a008
11 J He, W Ding, J Zhang, A Li, W Zhao, P Dai (2016). Logging identification and characteristic analysis of marine–continental transitional organic-rich shale in the Carboniferous–Permian strata, Bohai Bay Basin. Mar Pet Geol, 70: 273–293
https://doi.org/10.1016/j.marpetgeo.2015.12.006
12 W B Hughes, A G Holba, L Dzou (1995). The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim Cosmochim Acta, 59(17): 3581–3598
https://doi.org/10.1016/0016-7037(95)00225-O
13 ICCP (International Committee for Coal and Organic Petrology) (1998). The new vitrinite classification (ICCP System 1994). Fuel, 77(5): 349–358
https://doi.org/10.1016/S0016-2361(98)80024-0
14 ICCP (International Committee for Coal and Organic Petrology) (2001). The new inertinite classification (ICCP System 1994). Fuel, 80(4): 459–471
https://doi.org/10.1016/S0016-2361(00)00102-2
15 ISO 7404–2 (2009). Methods for the Petrographic Analysis of Bituminous Coal and Anthracite-Part 2: Methods for Preparing Coal Samples. International Organization for Standardization, Geneva, Switzerland, 8
16 ISO 7404–3 (2009). Methods for the Petrographic Analysis of Coals-Part 3: Method of Determining Maceral Group Composition. International Organization for Standardization, Geneva, Switzerland, 18
17 ISO 7404–5 (2009). Methods for the Petrographic Analysis of Coals-Part 5: Method of Determining Microscopically the Reflectance of Vitrinite, Geneva, Switzerland, 14
18 Q Jin, G Song, L Wang (2009). Generation models of Carboniferous-Permian coal-derived gas in Shengli Oilfield. Pet Explor Dev, 36(3): 358–364
19 S Kędzior (2009). Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin (southern Poland). Int J Coal Geol, 80(1): 20–34
https://doi.org/10.1016/j.coal.2009.08.003
20 J Kim (2001). Comparison of the Ordovician–Carboniferous boundary between Korea and NE China: implications for correlation and tectonic evolution. Gondwana Res, 4(1): 39–53
https://doi.org/10.1016/S1342-937X(05)70653-5
21 J G Li, M Li, Z Y Wang (2004). Dibenzofuran series in terrestrial source rocks and crude oils and applications to oil-source rock correlations in the Kuche Depression of Tarim Basin, NW China. Chin J Geochem, 23(2): 113–123
https://doi.org/10.1007/BF02868974
22 L Li, Z Li, H J Liu, X Y Fang (2015). Late Mesozoic to Cenozoic extension and strike slip structures and deep background of Bohai Bay Basin. Chinese Journal of Geology, 50: 446–472
23 M Li, T Wang, N Zhong, W Zhang, A Sadik, H Li (2013). Ternary diagram of fluorenes, dibenzothiophenes and dibenzofurans: Indicating depositional environment of crude oil source rocks. Energy Exploration & Exploitation, 31(4): 569–588
https://doi.org/10.1260/0144-5987.31.4.569
24 Y Li, D Tang, P Wu, X Niu, K Wang, P Qiao, Z Wang (2016). Continuous unconventional natural gas accumulations of Carboniferous-Permian coal-bearing strata in the Linxing area, northeastern Ordos basin, China. J Nat Gas Sci Eng, 36: 314–327
https://doi.org/10.1016/j.jngse.2016.10.037
25 Y Li, Z Wang, Q Gan, X Niu, W Xu (2019a). Paleoenvironmental conditions and organic matter accumulation in Upper Paleozoic organic-rich rocks in the east margin of the Ordos Basin, China. Fuel, 252: 172–187
https://doi.org/10.1016/j.fuel.2019.04.095
26 Y Li, Z Wang, P Wu, X Gao, Z Yu, Y Yu, J Yang (2019b). Organic geochemistry of Upper Paleozoic source rocks in the eastern margin of the Ordos Basin, China: input and hydrocarbon generation potential. J Petrol Sci Eng, 181: 106202
https://doi.org/10.1016/j.petrol.2019.106202
27 Y Li, J Yang, Z Pan, W Tong (2020). Nanoscale pore structure and mechanical property analysis of coal: an insight combining AFM and SEM images. Fuel, 260: 116352
https://doi.org/10.1016/j.fuel.2019.116352
28 Z X Li, Y Z Sun, J F Yu, D Y Liu (2001). Marine transgression “event” in coal formation from North China Basin. Energ Energ Explor & Exploit, 19(6): 559–567
https://doi.org/10.1260/0144598011492679
29 G Liu (1990). Permo-Carboniferous paleogeography and coal accumulation and their tectonic control in the north and south China continental plates. Int J Coal Geol, 16(1–3): 73–117
https://doi.org/10.1016/0166-5162(90)90014-P
30 J Luo, K Cheng, L Fu (2001). Alkylated dibenzothiophene index: a new method to assess thermal maturity of source rocks. Acta Petrol Sin, 22(3): 27–32
31 D Lv, J Chen (2014). Depositional environments and sequence stratigraphy of the Late Carboniferous-Early Permian coal-bearing successions (Shandong Province, China): sequence development in an epicontinental basin. J Asian Earth Sci, 79: 16–30
https://doi.org/10.1016/j.jseaes.2013.09.003
32 M R Mello, P C Gaglianone, S C Brassell, J R Maxwell (1988). Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Mar Pet Geol, 5(3): 205–223
https://doi.org/10.1016/0264-8172(88)90002-5
33 J K Michelsen, G K Khorasani (1990). Monitoring chemical alterations of individual oil-prone macerals by means of microscopical fluorescence spectrometry combined with multivariate data analysis. Org Geochem, 15(2): 179–192
https://doi.org/10.1016/0146-6380(90)90082-B
34 K E Peters, M R Cassa (1994). Applied source rock geochemistry. In: Magoon L B, Dow W G, eds. The Petroleum System–From Source to Trap: AAPG Memoir 60: 93–117
35 H I Petersen, J Andsbjerg, J A Bojesen Koefoed, H P Nytoft (2000). Coal‐generated oil: source rock evaluation and petroleum geochemistry of the Lulita oilfield, Danish North Sea. J Pet Geol, 23(1): 55–90
https://doi.org/10.1111/j.1747-5457.2000.tb00484.x
36 W Pickel, J Kus, D Flores, S Kalaitzidis, K Christanis, B J Cardott, M Misz-Kennan, S Rodrigues, A Hentschel, M Hamor-Vido, P Crosdale, N Wagner (2017). Classification of liptinite- ICCP system 1994. Int J Coal Geol, 169: 40–61
https://doi.org/10.1016/j.coal.2016.11.004
37 M Radke, S P Vriend, L R Ramanampisoa (2000). Alkyldibenzofurans in terrestrial rocks: influence of organic facies and maturation. Geochim Cosmochim Acta, 64(2): 275–286
https://doi.org/10.1016/S0016-7037(99)00287-2
38 M Radke, H Willsch (1994). Extractable alkyldibenzothiophenes in Posidonia Shale (Toarcian) source rocks: relationship of yields to petroleum formation and expulsion. Geochim Cosmochim Acta, 58(23): 5223–5244
https://doi.org/10.1016/0016-7037(94)90307-7
39 R T Ryder, Q Jin, P J McCabe, V F Nuccio, F Persits (2012). Shahejie–Shahejie/Guantao/Wumishan and Carboniferous/Permian coal–Paleozoic total petroleum systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the US Geological Survey). US Geological Survey, Reston, Virginia
40 L D Stasiuk (1994). Oil-prone alginite macerals from organic-rich Mesozoic and Palaeozoic strata, Saskatchewan, Canada. Mar Pet Geol, 11(2): 208–217
https://doi.org/10.1016/0264-8172(94)90097-3
41 N Suwarna (2006). Permian Mengkarang coal facies and environment, based on organic petrology study. Indonesian J Geosci, 1: 1–8
42 X Tang, J Zhang, Y Shan, J Xiong (2012). Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin, China. Geosci Front, 3(6): 863–873
https://doi.org/10.1016/j.gsf.2011.11.018
43 R C Tewari, Z A Khan (2015). Origin of banded structure and coal lithotype cycles in Kargali coal seam of East Bokaro sub-basin, Jharkhand, India: environmental implications. J Earth Syst Sci, 124(3): 643–654
https://doi.org/10.1007/s12040-015-0553-1
44 D D Wang, L Y Shao, Z X Li, M P Li, D Lv, H Liu (2016). Hydrocarbon generation characteristics, reserving performance and preservation conditions of continental coal measure shale gas: a case study of Mid-Jurassic shale gas in the Yan’an Formation, Ordos Basin. J Petrol Sci Eng, 145: 609–628
https://doi.org/10.1016/j.petrol.2016.06.031
45 Z B Wei, D J Zhang, C L Zhang, J P Chen (2001). Methyldibenzothiophenes distribution index as a tool for maturity assessments of source rocks. Geochim Cosmochim Acta, 30(3): 242–248
46 J J Xu, Q Jin (2020). Hydrocarbon potential and polycyclic aromatic compounds differences of Carboniferous–Permian coaly source rocks, Bohai Bay Basin: an implication for different sources of gas condensate and oils. J Petrol Sci Eng, 195: 107899
https://doi.org/10.1016/j.petrol.2020.107899
47 L B Zeng, H Su, X M Tang, Y M Peng, L Gong (2013). Fractured tight sandstone oil and gas reservoirs: a new play type in the Dongpu depression, Bohai Bay Basin, China. AAPG Bull, 97(3): 363–377
https://doi.org/10.1306/09121212057
48 X Zhao, F Jin, Q Wang, G Bai (2015). Buried-hill play, Jizhong subbasin, Bohai Bay basin: a review and future prospectivity. AAPG Bull, 99: 1–26
https://doi.org/10.1306/07171413176
49 X Zhao, L Zhou, X Pu, W Jiang, F Jin, D Xiao, W Han, W Zhang, Z Shi, Y Li (2018). Hydrocarbon-generating potential of the Upper Paleozoic section of the Huanghua Depression, Bohai Bay Basin, China. Energy Fuels, 32(12): 12351–12364
https://doi.org/10.1021/acs.energyfuels.8b03159
50 L Zhou, L Fu, D Lou, Y Lu, J Feng, S Zhou, M Santosh, S Li (2012). Structural anatomy and dynamics of evolution of the Qikou Sag, Bohai Bay Basin: implications for the destruction of North China craton. J Asian Earth Sci, 47: 94–106
https://doi.org/10.1016/j.jseaes.2011.06.004
[1] Wenzhong HAN, Xianzheng ZHAO, Xiugang PU, Shiyue CHEN, Hu WANG, Yan LIU, Zhannan SHI, Wei ZHANG, Jiapeng WU. Fine-grained rock fabric facies classification and its control on shale oil accumulation: a case study from the Paleogene Kong 2 Member, Bohai Bay Basin[J]. Front. Earth Sci., 2021, 15(2): 423-437.
[2] Mingjie LIU,Zhen LIU,Biao WANG,Xiaoming SUN,Jigang GUO. A new method for recovering paleoporosity of sandstone: case study of middle Es3 member of Paleogene formation in Niuzhuang Sag, Dongying Depression, Bohai Bay Basin in China[J]. Front. Earth Sci., 2015, 9(3): 521-530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed