Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (2) : 438-456    https://doi.org/10.1007/s11707-021-0915-8
RESEARCH ARTICLE
Differences in hydrocarbon composition of shale oils in different phase states from the Qingshankou Formation, Songliao Basin, as determined from fluorescence experiments
Longhui BAI1, Bo LIU2,1(), Jianguo YANG3, Shansi TIAN1, Boyang WANG1, Saipeng HUANG1
1. Accumulation and Development of Unconventional Oil and Gas, State Key Laboratory Cultivation Base, Northeast Petroleum University, Daqing 163318, China
2. Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan 430100, China
3. Shenyang Center, China Geological Survey, Shenyang 110034, China
 Download: PDF(3597 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The phase state of shale oil has a significant impact on its mobility. The mineral and organic matter in shale reservoirs play an important role in oil phase. This study attempts to evaluate the properties of shale oils in different phase states and to investigate how these differences are related to initial shale composition. Samples from the first member of the Qingshankou (Q1) Formation were analyzed using X-ray diffraction, total organic carbon content, rock pyrolysis solvent extraction and group component separation. Subsequently, fluorescence techniques were used to quantitatively determine the content and properties of the free oil (FO), the adsorbed oil associated with carbonate (ACO), and the adsorbed oil associated with silicate and clay-organic complexes (AKO). The results showed that non-hydrocarbons and asphaltenes are the primary fluorescing compounds on shale grain. FO is the dominant phase in the Q1 Formation. The quantitative grain fluorescence on extraction (QGF-E) and total scanning fluorescence (TSF) spectra of ACO and AKO show a significant redshift compared to the FO. The TSF spectra of FO have a characteristic skew to the left and a single peak distribution, suggesting a relatively light hydrocarbon component. The TSF spectra of ACO show a skew to the right and an even, double-peaked distribution. The TSF spectra of AKO show a single peak with a skew to the right, indicating that ACO and AKO hydrocarbons are heavier than FO hydrocarbons. In summary, enrichment of carbonate minerals in shale may result in mis-identification of “sweet spots” when using QGF. The normalized fluorescence intensity of QGF-E and TSF are effective indexes allowing oil content evaluation. As an additional complicating factor, hydrocarbon fractionation occurs during generation and expulsion, leading to a differentiation of oil composition. And FO has high relatively light hydrocarbon content and the strongest fluidity.

Keywords stepwise extraction      fluorescence spectroscopic techniques      shale grain      shale oil phase     
Corresponding Author(s): Bo LIU   
Online First Date: 09 October 2021    Issue Date: 26 October 2021
 Cite this article:   
Longhui BAI,Bo LIU,Jianguo YANG, et al. Differences in hydrocarbon composition of shale oils in different phase states from the Qingshankou Formation, Songliao Basin, as determined from fluorescence experiments[J]. Front. Earth Sci., 2021, 15(2): 438-456.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0915-8
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I2/438
Fig.1  (a) Tectonic Unit Division, (b) Studied Area and Location of well J. (Modified from Liu et al., 2019a).
Fig.2  Flow chart of the whole experimental procedure.
Fig.3  (a) Plot of Tmax versus HI. (b) Correlation between S2 and TOC. (c) Plot of S1 and TOC.
Fig.4  (a) Triangular plot of rock mineral composition of the Q1 Formation. (b) Bar graph of clay mineral content of the Q1 Formation.
Number Depth/m Rock-Eval. Whole Rock Mineralogy/(wt.%) Clay (Phyllosilicate) Mineralogy (wt.%)
TOC/wt.% Tmax/°C S1/(mg·HC·g-1) S2/(mg·HC·g-1) OSI/(mg·HC·g-1) HI/(mg HC·g-1 TOC-1) Quartz K-feldspar Plagioclase Calcite Ankerite Siderite Pyrite Total Clay Illite chlorite Illite/
Smectite
J1 1971.18 1.94 446 1.6 13.4 37.0 693 27.7 0 18.0 9.7 0 3.3 5.5 35.8 74 7 19
J2 1976.86 1.40 447 1.4 8.2 29.4 584 32.9 0 17.0 3.1 4.4 2.1 5.2 35.3 85 2 13
J3 1985.73 0.34 444 0.2 1.7 57.6 487 1.9 0 1.8 0 92.3 0 0 4.0 66 12 22
J4 1987.62 0.86 445 0.9 4.6 47.5 539 34.4 0 19.3 0.4 0 0 5.1 40.8 93 1 6
J5 1989.67 0.95 444 0.8 4.8 41.3 502 4.9 0 2.3 0 86.0 0 0 6.8 50 23 27
J6 2003.73 2.66 453 1.8 12.7 55.7 476 23.6 0 23.5 0.3 20.7 0 3.1 28.8 61 12 27
J7 2009.67 1.48 445 2.3 7.1 53.6 478 26.9 0 25.3 2.7 16.5 1.2 4.1 23.3 75 8 17
J8 2020.90 1.15 436 1.2 4.7 41.7 405 34.0 0 18.6 3.7 0 0 3.1 40.6 89 2 9
J9 2025.45 2.05 446 2.4 9.1 37.1 444 30.0 3.4 26.8 7.3 0 1.1 3.0 28.4 72 10 18
J10 2035.55 2.03 435 2.8 9.1 57.0 446 30.0 0 14.2 10.9 5.8 0 1.7 37.5 74 9 17
J11 2048.18 2.11 452 2.1 12.5 71.9 593 35.0 0 12.4 9.6 0 0 1.9 41.1 87 4 9
J12 2051.29 2.38 452 2.5 11.8 43.6 496 33.5 1.6 18.5 4.5 0 0 3.6 38.2 76 8 16
J13 2055.60 1.04 443 3.4 6.4 29.2 612 14.0 0 8.0 66.1 5.0 0.4 2.1 4.3 84 4 12
J14 2062.55 2.68 456 2.3 11.5 45.6 430 41.0 0 12.9 4.5 0 0 0.6 41.0 68 16 16
Tab.1  Bulk geochemical parameters and XRD results of the shale samples of the Q1 Formation
Fig.5  Percentage content of group components of EOM.
Number Chloroform asphalt "A"/wt.% Saturated hydrocarbon/% Aromatic hydrocarbon/% Non-
hydrocarbon /%
Asphaltene/%
J2 0.56 61.8 18.6 11.1 5.3
J3 0.11 51.3 14.4 14.6 17.7
J5 0.24 58.9 16.2 12.7 8.2
J9 0.77 57.1 18.9 10.0 10.2
J11 0.89 62.4 16.8 9.0 5.9
J12 0.85 55.5 18.3 8.7 8.5
J14 0.66 61.9 15.7 7.5 4.4
Tab.2  Group compounds separation results of the shale samples of the Q1 Formation
Fig.6  QGF spectrum of the shale grains of the Q1 Formation.
Number Original Extracted
QGF intensity/pc QGF ratio QGF index QGF max/pc λmax/nm QGF intensity/pc QGF ratio QGF index QGF Max/pc λmax/nm
J1 26.5 0.9 5.1 36.0 372.4 9.9 0.7 2.7 14.8 354.1
J2 38.5 0.9 7.8 52.5 373.6 11.2 0.6 2.9 20.4 347.9
J3 83.8 2.1 26.6 106.8 502.8 68.5 2.6 27.1 98.1 517.6
J4 27.9 0.9 5.5 37.9 373.6 11.1 0.6 2.7 18.1 351.1
J5 61.4 1.4 14.7 67.7 384.1 16.5 1.4 8.9 22.6 528.8
J6 16.3 0.9 6.1 21.3 373.2 7.4 0.7 3.4 10.9 353.5
J7 19.4 0.8 7.7 26.2 368.1 9.2 0.5 3.2 19.6 346.3
J8 20.0 0.9 6.2 27.1 371.6 9.1 0.7 3.3 14.0 354.5
J9 19.8 0.6 5.3 32.4 357.4 20.0 0.3 2.5 62.6 346.7
J10 25.7 1.0 7.6 33.4 374.9 10.0 0.9 3.4 12.1 364.3
J11 26.6 0.9 4.8 36.7 374.4 11.1 1.0 3.2 12.5 388.4
J12 17.6 0.9 5.0 23.7 372.9 9.5 0.8 3.2 11.5 358.7
J13 143.3 0.8 16.7 241.3 374.4 31.3 1.0 7.7 36.5 374.1
J14 12.1 1.0 4.7 14.9 376.2 4.8 1.0 3.1 5.5 383.7
J3-2 90.9 1.1 3.2 124.8 507.2 39.8 1.3 3.1 61.5 510.4
J5-2 53.1 0.8 2.0 70.5 367.5 16.4 0.7 1.1 24.7 492.0
J13-2 450.0 0.7 6.5 719.6 371.5 33.5 0.7 1.4 50.4 361.9
Tab.3  QGF results of the continental shale grains of the Q1 Formation.
Number FO CO KO
QGF-E/pc λmax/nm TSF Max/pc Max Ex
/nm
Max Em/
nm
R1 R2 QGF-E/pc λmax /nm TSF Max/pc Max Ex
/nm
Max Em/
nm
R1 R2 QGF-E
/pc
λmax
/nm
TSF Max/pc Max Ex
/nm
Max Em/
nm
R1 R2
J1 45150.4 379 75880.1 258 378 2.984 4.441 748.8 362 1370.5 220 420 2.337 3.303 / / / / / / /
J2 46256.8 376 75754.7 258 378 2.836 4.286 525.8 372 467.6 254 369 1.835 2.803 / / / / / / /
J3 9893.6 381 17722.7 258 378 2.425 3.243 933.5 375 1409.1 220 420 3.301 4.988 899.8 428 761.4 254 429 1.344 1.382
J4 32306.2 377 58188.4 258 378 2.589 3.68 502.3 369 1223.2 252 427 2.750 4.798 1239.5 428 1221.7 254 429 1.734 2.175
J5 21566.1 378 37739.7 258 378 2.537 3.624 950.9 444 855.7 220 420 2.006 3.003 545.6 417 509.1 244 389 1.033 0.982
J6 57886.6 376 97589.7 258 378 3.423 5.393 735.5 381 2082.4 220 420 3.179 4.578 / / / / / / /
J7 67287.6 379 111268.0 258 378 3.291 5.057 1253.6 374 1054.2 254 379 2.629 3.830 / / / / / / /
J8 32193.6 376 54699.9 260 375 2.55 3.786 1970.0 439 1750.6 252 422 2.349 3.525 1926.1 429 1655.4 260 425 1.465 1.797
J9 63050.5 375 105888.8 258 378 3.156 4.992 2037.0 377 1680.8 258 373 2.545 3.664 / / / / / / /
J10 60074.3 376 103598.4 258 378 2.859 4.302 1648.2 377 1448.3 260 375 2.465 3.556 3305.6 414 2858.0 258 428 2.304 3.197
J11 53355.8 379 93181.8 258 378 2.805 4.336 1589.5 374 1313.9 258 373 2.514 3.566 / / / / / / /
J12 60774.8 375 101038.3 258 378 2.794 4.363 551.8 376 1776.5 220 420 2.768 4.242 2476.2 422 2134.9 258 428 2.079 2.699
J13 52569.1 376 83181.8 258 378 3.246 5.023 758.8 372 909.1 220 420 3.430 5.482 / / / / / / /
J14 70466.4 376 83181.8 258 378 3.246 5.023 454.8 386 1438.5 254 374 2.561 3.567 / / / / / / /
Tab.4  QGF-E and TSF results of shale oils in different phase states
Fig.7  QGF-E spectrum of shale oils in different phase states.
Fig.8  TSF spectrum of shale oils in different phase states.
Fig.9  (a) Correlation between QGF intensity and the sum of non-hydrocarbon and asphaltene. (b) Correlation between QGF intensity and the sum of saturated and aromatic hydrocarbon. (c) Correlation between Carbonate minerals content and the sum of non-hydrocarbon and asphaltene. (d) Correlation between Carbonate minerals content and the sum of saturated and aromatic hydrocarbon.
Fig.10  (a) Correlations between the normalized FO QGF-E intensity and S1, EOM respectively. (b) Correlation between the normalized FO QGF-E intensity and normalized TSF intensity of FO. (c) Correlation between the normalized ACO QGF-E intensity and Carbonate minerals. (d) Correlation between the normalized ACO QGF-E intensity and TOC. (e) Correlation between the normalized AKO QGF-E intensity and TOC. (f) TSF R1 distribution of shale oil in different phase states.
Fig.11  (a) Cross plot of QGF-E spectrum of shale oils in different phase states. (b) Cross plot of TSF spectrum of shale oils in different phase states.
1 T Barwise, S Hay (1996). Predicting oil properties from core fluorescence. In: Schumacher D, Abrams M A, eds. Hydrocarbon Migration and Its Near Surface Expression. American Association of Petroleum Geologists Memoir, 66: 363–371
2 J B Curtis (2002). Fractured shale-gas systems. AAPG Bull, 86: 1921–1938
3 J Espitalié, F Marquis, I Barsony (1984). Geochemical logging. In: Voorhess K J, ed. Analytical Pyrolysis. Boston: Butterworths: 53–79
4 M Fleury, M Romero-Sarmiento (2016). Characterization of shales using T1–T2 NMR maps. J Petrol Sci Eng, 137: 55–62
https://doi.org/10.1016/j.petrol.2015.11.006
5 Z Gao, Y Fan, Q Xuan, G Zheng (2020). A review of shale pore structure evolution characteristics with increasing thermal maturities. Adv Geo-Energy Res, 4(3): 247–259
https://doi.org/10.46690/ager.2020.03.03
6 L Gong, J Wang, S Gao, X Fu, B Liu, F Miao, X Zhou, Q Meng (2021). Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs. J Petrol Sci Eng, 203: 108655
https://doi.org/10.1016/j.petrol.2021.108655
7 P Guan, Y Xu, W Liu (1998). Quantitative estimates of different existing state organic matter in source rocks. Chin Sci Bull, 43: 1556–1559 (in Chinese)
https://doi.org/10.1038/sj.cr.7290029
8 X Guo, Z Huang, X Ding, J Chen, X Chen, R Wang (2018). Characterization of continental coal-bearing shale and shale gas potential in Taibei sag of the Turpan Hami Basin, NW China. Energy Fuels, 32(9): 9055–9069
https://doi.org/10.1021/acs.energyfuels.8b01507
9 Y Hou, F Wang, S He, T Dong, S Wu (2017). Properties and shale oil potential of saline lacustrine shales in the Qianjiang Depression, Jianghan Basin, China. Mar Pet Geol, 86: 1173–1190
https://doi.org/10.1016/j.marpetgeo.2017.07.008
10 D M Jarvie (2012). Shale resource systems for oil and gas: Part 2-shale-oil resource systems. In: Breyer J A, ed. Shale Resevoirs—Giant Resources for the 21st Century: AAPG Memoir 97, 89–119
11 D M Jarvie, R J Hill, T E Ruble, R M Pollastro (2007). Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull, 91(4): 475–499
https://doi.org/10.1306/12190606068
12 Q Jiang, M Li, M Qian, Z Li, Z Li, Z Huang, C Zhang, Y Ma (2016). Quantitative characterization of shale oil in different occurrence states and its application. Petrol Geol & Exper, 38: 842–849 doi: 10.11781/sysydz201606842 (in Chinese)
13 G K Khorasani (1986). Novel development in fluorescence microscopy of complex organic mixtures: application in petroleum geochemistry. Organic Geochem, 11(3): 157–168
14 F F Langford, M M Blanc-Valleron (1990). Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. Am Assoc Pet Geol Bull, 74: 799–804
15 J Li, C Jiang, M Wang, S Lu, Z Chen, G Chen, J Li, Z Li, S Lu (2020). Adsorbed and free hydrocarbons in unconventional shale reservoir: a new insight from NMR T1–T2 maps. Mar Pet Geol, 116: 104311
https://doi.org/10.1016/j.marpetgeo.2020.104311
16 M Li, Z Chen, X Ma, T Cao, Z Li, Q Jiang (2018). A numerical method for calculating total oil yield using a single routine Rock-Eval program: a case study of the Eocene Shahejie Formation in Dongying Depression, Bohai Bay Basin, China. Int J Coal Geol, 191: 49–65
https://doi.org/10.1016/j.coal.2018.03.004
17 M Li, Z Chen, X Ma, T Cao, M Qian, Q Jiang, G Tao, Z Li, G Song (2019d). Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China. Int J Coal Geol, 204: 130–143
https://doi.org/10.1016/j.coal.2019.01.013
18 T Li, Z Huang, Y Feng, X Cheng, Q Ma, B Liu, X Guo (2020). Reservoir characteristics and evaluation of fluid mobility in organic-rich mixed siliciclastic-carbonate sediments: a case study of the lacustrine Qiketai Formation in Shengbei Sag, Turpan-Hami Basin, Northwest China. J Petrol Sci Eng, 185: 106667
https://doi.org/10.1016/j.petrol.2019.106667
19 Z Li, Y R Zou, X Xu, J Sun, M Li, P Peng (2016). Adsorption of mudstone source rock for shale oil–Experiments, model and a case study. Org Geochem, 92: 55–62
https://doi.org/10.1016/j.orggeochem.2015.12.009
20 B Liu, L Bai, Y Chi, R Jia, X Fu, L Yang (2019a). Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extraction: a case study from the Qingshankou Formation in Southern Songliao Basin, northeast China. Mar Pet Geol, 109: 561–573
https://doi.org/10.1016/j.marpetgeo.2019.06.046
21 B Liu, J He, Y Lü, Q Ran, C Dai, M Li (2014b). Parameters and method for shale oil assessment: taking Qingshankou Formation shale oil of northern Songliao Basin. J Cent South Univ (Science and Technology), 45: 3846–3852 (in Chinese)
22 B Liu, J Sun, Y Zhang, J He, X Fu, L Yang, J Xing, X Zhao (2021). Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling sag, southern Songliao Basin, NE China. Pet Explor Dev, 48(3): 608–624
23 B Liu, H Wang, X Fu, Y Bai, L Bai, M Jia, B He (2019b). Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China. AAPG Bull, 103(2): 405–432
https://doi.org/10.1306/08031817416
24 B Liu, Y Yang, J Li, Y Chi, J Li, X Fu (2020). Stress sensitivity of tight reservoirs and its effect on oil saturation: a case study of Lower Cretaceous tight clastic reservoirs in the Hailar Basin, Northeast China. J Petrol Sci Eng, 184: 106484
https://doi.org/10.1016/j.petrol.2019.106484
25 C L Liu, Z Wang, Z Guo, W Hong, C Dun, X Zhang, B Li, L Wu (2017). Enrichment and distribution of shale oil in the Cretaceous Qingshankou Formation, Songliao Basin, northeast China. Mar Pet Geol, 86: 751–770
https://doi.org/10.1016/j.marpetgeo.2017.06.034
26 K Liu, P Eadington (2005). Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history. Org Geochem, 36(7): 1023–1036
https://doi.org/10.1016/j.orggeochem.2005.02.008
27 K Liu, P Eadington, H Middleton, S Fenton, T Cable (2007). Application of quantitative grain fluorescence techniques in investigating hydrocarbon charge history in some major petroleum producing basins in Australia and Papua New Guinea. J Petrol Sci Eng, 57: 139–151
https://doi.org/10.1016/j.petrol.2005.11.019
28 K Liu, S C George, P J Eadington (2003). Predicting abundances and n-alkane profiles of oil inclusions from bulk fluorescence spectroscopy. In: 21st International Meeting on Organic Geochemistry. Book of Abstracts Part II. EAOG, Kraków, 177–178
29 K Liu, S C George, X Lu, S Gong, H Tian, L Gui (2014b). Innovative fluorescence spectroscopic techniques for rapidly characterising oil inclusions. Org Geochem, 72: 34–45
https://doi.org/10.1016/j.orggeochem.2014.04.010
30 K Liu, M Ostadhassan (2019). The impact of pore size distribution data presentation format on pore structure interpretation of shales. Adv Geo-Energy Res, 3(2): 187–197
https://doi.org/10.26804/ager.2019.02.08
31 K Liu, X Xiao, D Mills, S C George, H Volk, S Gong (2009). Cautions in the interpretation of petroleum fluid inclusion data in petroleum system analysis: insight from spectroscopic analyses of naturally occurred and synthetic petroleum inclusions. J Geochem Explor, 101: 62
https://doi.org/10.1016/j.gexplo.2008.11.058
32 P Liu, X Wang, X Li, T Zhang, W Liu (2019c). Geochemical characteristics of released organic matters by acid decomposition of hydrocarbon source rocks from different sedimentary basins. Geofluids, 2019: 4816218
https://doi.org/10.1155/2019/4816218
33 R G Loucks, R M Reed, S C Ruppel, U Hammes (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull, 96(6): 1071–1098
https://doi.org/10.1306/08171111061
34 J M Moldowan, P Sundararaman, M Schoell (1986). Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany. Org Geochem, 10(4-6): 915–926
https://doi.org/10.1016/S0146-6380(86)80029-8
35 S Morad, J M Ketzer, L F De Ros (2000). Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology, 47: 95–120
https://doi.org/10.1046/j.1365-3091.2000.00007.x
36 Y Pan, M Li, Y Sun, Z Li, Q Jiang, Y Liao (2018). Geochemical characterization of soluble organic matters with different existing states in low-maturity argillaceous source rocks of lacustrine facies. Geochimica, 47: 335–344 (in Chinese)
37 Y Pan, M Li, Y Sun, Z Li, P Liu, B Jiang, Y Liao (2019). Characterization of free and bound bitumen fractions in a thermal maturation shale sequence. Part 1: acidic and neutral compounds by negative-ion ESI FT-ICR MS. Org Geochem, 134: 1–15
https://doi.org/10.1016/j.orggeochem.2019.05.005
38 M Radke, A Hilkert, J Rullkötter (1998). Molecular stable carbon isotope compositions of alkylphenanthrenes in coals and marine shales related to source and maturity. Org Geochem, 28(12): 785–795
https://doi.org/10.1016/S0146-6380(98)00048-5
39 M V Reyes (1994). Application of fluorescence techniques for mud-logging analysis of oil drilled with oil-based muds. SPE Form Eval, 9(04): 300–305
https://doi.org/10.2118/25355-PA
40 C Rivard, D Lavoie, R Lefebvre, S Sejourne, C Lamontagne, M Duchesne (2014). An overview of Canadian shale gas production and environmental concerns. Int J Coal Geol, 126: 64–76
https://doi.org/10.1016/j.coal.2013.12.004
41 M F Romero-Sarmiento (2019). A quick analytical approach to estimate both free versus sorbed hydrocarbon contents in liquid rich source rocks. AAPG Bull, 103(9): 9
https://doi.org/10.1306/02151918152
42 M F Romero-Sarmiento, D Pillot, G Letort, V Lamoureux-Var, V Beaumont, A-Y Huc, B Garcia (2015). New rock-eval method for characterization of unconventional shale resource systems. Oil & Gas Sci Tech, 71: 37
43 B Spiro (1978). Thermal effects in “oil shales”, naturally occurring kaolinite and metakaolinite organic associations. Chem Geol, 25(1–2): 67–78
https://doi.org/10.1016/0009-2541(79)90084-6
44 B Spiro (1984). Effects of mineral matrix on the distribution of geochemical markers in thermally affected sedimentary sequences. Org Geochem, 6: 543–559
https://doi.org/10.1016/0146-6380(84)90077-9
45 L D Stasiuk, L R Snowdon (1997). Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: crude oil chemistry, density and application to petroleum migration. Appl Geochem, 12: 229–241
https://doi.org/10.1016/S0883-2927(96)00047-9
46 L Sun, H Liu, W He, G Li, S Zhang, R Zhu (2021). An analysis inof major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Pet Explor Dev, 48(3): 453–463
47 F Zeng, C Dong, C Lin, Y Wu, S Tian, X Zhang, J Lin (2021). Analyzing the effects of multi-scale pore systems on reservoir properties—a case study on Xihu Depression, East China Sea Shelf Basin, China. J Petrol Sci Eng, 203: 108609
https://doi.org/10.1016/j.petrol.2021.108609
48 H Zhang, H Huang, Z Li, M Liu (2019). Oil physical status in lacustrine shale reservoir–a case study on Eocene Shale Formation shales, Donging Depression, East China. Fuel, 257: 116027
49 C Zou, D Dong, S Wang, J Li, X Li, Y Wang, D Li, K Cheng (2010). Geological characteristics, formation mechanism and resource potential of shale gas in China. Pet Explor Dev, 37: 641–653
https://doi.org/10.1016/S1876-3804(11)60001-3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed