Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (4) : 989-1004    https://doi.org/10.1007/s11707-021-0960-3
RESEARCH ARTICLE
Cenozoic potassic volcanic rocks from the Keluo and Wudalianchi volcanic districts, northeast China: origin from the new sub-continental lithospheric mantle (SCLM) metasomatized by potassium-rich fluids from delaminated lower crust
Fanchao MENG1,2,3(), Yulu TIAN1, Yaoqi ZHOU1,2,3, Jiaqi LIU4, Gengchao ZUO1, Qing DU1
1. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
2. Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
3. Shandong Provincial Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China
4. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
 Download: PDF(27430 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of Cenozoic potassium-rich volcanic rocks developed in the Xiaoguli-Keluo-Wudalianchi-Erkeshan districts, northeast China. The source region and potassium-rich mechanism of the potassic rocks remain highly disputed. In this paper, the major elements, trace elements, and Sr-Nd-Pb isotopes of the volcanic rocks in Keluo (KL) and Wudalianchi (WDLC) volcanic districts were analyzed systematically. The results show that the volcanic rocks are characterized by high K2O (4.36wt.%−6.13wt.%), remarkable enrichment in LREEs and LILEs, as well as the strong fractionation of HREEs. The isotopic characteristics with high 87Sr/86Sr (0.704990–0.705272), low 143Nd/144Nd (0.512306–0.512417), low 206Pb/204Pb (16.546–17.135) and 207Pb/204Pb (15.002–15.783) of the volcanic rocks suggest the involvement of EM-I-type mantle. On the basis of the geochemical characteristics, the potassium-rich volcanic magma originated from the new SCLM forming after delamination of the ancient SCLM, with metasomatism of the potassium-rich fluids released from the ancient lower crust during the Late Mesozoic. The proposed genetic model assumes the source which represented by a phlogopite-bearing garnet peridotite (with modal garnet in the range of 2%–10%) experienced very low degrees (i.e., ~0.5) of partial melting. During Cenozoic, the lithosphere in northeast China was affected by the extension and decompression of continental rift, and the metasomatized SCLM underwent low degree partial melting, resulting in the formation of potassium-rich primitive basaltic magma.

Keywords northeast China      Keluo-Wudalianchi volcanic districts      Cenozoic potassic volcanic rocks      petrogenesis      sub-continental lithospheric mantle     
Corresponding Author(s): Fanchao MENG   
Online First Date: 22 September 2022    Issue Date: 11 January 2023
 Cite this article:   
Fanchao MENG,Yulu TIAN,Yaoqi ZHOU, et al. Cenozoic potassic volcanic rocks from the Keluo and Wudalianchi volcanic districts, northeast China: origin from the new sub-continental lithospheric mantle (SCLM) metasomatized by potassium-rich fluids from delaminated lower crust[J]. Front. Earth Sci., 2022, 16(4): 989-1004.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0960-3
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I4/989
Fig.1  (a) Geological sketch of northeast China (after Ren et al., 2002); (b) the investigated Cenozoic potassium-rich volcanic districts (after Zhao et al., 2014); (c) Geological sketch maps of Keluo and (d) Wudalianchi volcanic districts (after Zhao et al., 2014).
Fig.2  Photos of outcrops from the Bijiashan (a) and Huoshaoshan (b–c) volcanic cones in Wudalianchi, optical microscope images (d–f) of the Cenozoic volcanic rocks in Wudalianchi in northeast China. Ol, olivine; Cpx, clinopyroxene.
Sample number Wudalianchi Keluo
WDLC-1 WDLC-2 WDLC-3 WDLC-4 KL-1 KL-2 KL-3 KL-4 KL-5 KL-6 KL-7
SiO2 50.14 50.48 49.63 51.82 52.52 51.96 52.46 53.23 53.12 53.20 53.19
TiO2 2.30 2.30 2.60 2.33 2.35 2.42 2.39 2.71 2.74 2.82 2.81
Al2O3 13.27 13.33 13.42 13.86 13.98 14.04 14.16 14.35 14.36 14.35 14.33
Fe2O3T 9.69 9.65 9.83 9.01 8.97 9.06 8.67 8.32 8.26 8.63 8.53
MnO 0.131 0.13 0.124 0.116 0.107 0.11 0.11 0.10 0.10 0.101 0.1
MgO 7.62 7.54 7.43 7.08 6.08 5.92 5.88 4.38 4.31 4.25 4.24
CaO 7.60 7.39 7.15 6.70 6.30 6.30 6.17 5.34 5.39 5.46 5.44
Na2O 3.70 3.69 3.52 3.45 3.55 3.73 3.93 4.11 3.94 3.86 3.95
K2O 4.36 4.44 4.71 4.47 4.83 5.05 4.93 5.95 5.91 6.13 6.07
P2O5 0.988 0.948 0.993 0.901 0.907 0.926 0.93 1.09 1.07 1.09 1.1
LOI 0.10 0.00 0.55 0.16 0.28 0.37 ?0.16 0.06 0.22 0.01 0.13
Total 99.90 99.90 99.96 99.90 99.87 99.89 99.47 99.64 99.42 99.90 99.89
La 97.3 94.9 84.4 79.2 82.8 80.8 82.6 95.6 102 103 105
Ce 174 171 151 143 150 147 146 168 178 185 188
Pr 20.2 20 17.3 17.2 17.5 17 16.9 19.9 20.6 21.4 21.7
Nd 77.5 76.5 66.7 64.7 68 66.2 68.1 77.6 78.2 81 79.5
Sm 12.9 12.8 10.9 11.2 11.3 11 10.6 12.2 12.3 13.3 12.9
Eu 3.81 3.8 3.31 3.39 3.34 3.27 3.25 3.57 3.64 3.88 3.78
Gd 10.3 10.3 8.96 9.1 9 8.7 8.87 9.5 9.83 10.3 10
Tb 1.39 1.37 1.2 1.22 1.19 1.15 1.21 1.31 1.32 1.35 1.31
Dy 6.64 6.59 5.84 5.74 5.66 5.41 5.42 5.77 5.71 6.28 6.19
Ho 1.02 1.01 0.89 0.884 0.854 0.824 0.755 0.808 0.856 0.945 0.929
Er 2.6 2.6 2.34 2.41 2.2 2.11 1.91 2.1 2.09 2.37 2.35
Tm 0.299 0.303 0.27 0.292 0.247 0.236 0.213 0.213 0.214 0.265 0.259
Yb 1.65 1.63 1.53 1.65 1.39 1.32 1.39 1.37 1.43 1.47 1.4
Lu 0.218 0.218 0.206 0.225 0.177 0.168 0.182 0.163 0.163 0.18 0.175
Sc 15.3 15.8 15.5 14.7 14.2 13.5 9.55 6.99 6.97 11.6 11.6
V 155 160 163 152 148 146 146 126 119 137 135
Cr 310 334 225 270 247 215 191 101 79.3 149 138
Co 39.3 40.5 38.9 38.7 36.3 35.6 37.3 29.7 30.1 30.2 29.6
Ni 169 168 148 163 111 101 106 58.5 60.5 59.8 58.6
Cu 42.7 42.3 38.5 53.5 33 32.1 40.1 34.3 32.7 34.2 39.5
Zn 131 140 126 129 132 132 137 126 149 142 144
Ga 20.9 22.2 21.8 22.8 25.3 24.3 25.8 25.3 26.9 26.2 26.4
Rb 82.4 86.8 95.7 106 97.6 97.5 102 118 122 120 120
Sr 1563 1550 1361 1408 1296 1326 1158 1348 1443 1618 1588
Y 25.3 25.4 23.2 23.6 21.6 20.8 20.9 21.6 22.5 23.7 23.4
Zr 753 785 787 798 867 826 ? ? ? 1183 1170
Nb 61.3 63 65.4 56.1 59.3 57.4 57.1 70.6 74.9 77.2 76.7
Ba 1765 1797 1863 1773 1749 1771 1657 1828 1952 2149 2155
Hf 15.9 16.7 17 17.2 18.4 17.7 ? ? ? 24.9 24.8
Ta 3.15 3.27 3.65 3.23 3.18 3.09 3.26 4.09 4.29 4.04 4.04
Pb 10.9 13.1 10.9 11.2 12.9 9.76 13 16.9 17.9 16.3 16.5
Th 7.32 7.57 7.47 6.56 7.34 6.92 7.17 8.28 8.96 8.97 8.85
U 1.54 1.65 1.54 1.46 1.55 1.48 1.49 1.82 1.98 2.01 1.98
Nb/U 39.81 38.18 42.47 38.42 38.26 38.78 38.32 38.79 37.83 38.41 38.74
Ce/Pb 15.96 13.05 13.85 12.77 11.63 15.06 11.23 9.94 9.94 11.35 11.39
Tab.1  Major elements (wt.%) and trace elements (×10?6) contents for the investigated volcanic rocks from the Keluo and Wudalianchi volcanic districts
Fig.3  K2O-Na2O ((a), after Foley and Peccerillo, 1992) and TAS ((b), after Le Bas et al., 1986) diagrams for the volcanic rocks from the Keluo and Wudalianchi volcanic districts. B = basalt; Ph = phonolite; T = trachyte; O1 = basaltic andesite; O2 = andesite; O3 = dacite; S1 = trachybasalt; S2 = basaltic trachyandesite; S3 = trachyandesite; U1 = tephrite/basanite; U2 = phonotephrite; U3 = tephriphonolite.
Fig.4  Selected major and trace elements binary variation diagrams for the volcanic rocks from the Keluo and Wudalianchi volcanic districts (symbols and data source as in Fig. 3).
Fig.5  (a) Chondrite-normalized (after Sun and McDonough, 1989) and (b) primitive mantle-normalized (after McDonough and Sun, 1995) multielement plots for the volcanic rocks from the Keluo and Wudalianchi volcanic districts (symbols and data source as in Fig. 3). OIB, E-MORB and N-MORB are from Sun and McDonough (1989); GLOSS-Average are from Plank and Langmuir (1998).
Sample number Wudalianchi Keluo
WDLC-1 WDLC-2 WDLC-3 WDLC-4 KL-1 KL-2 KL-3 KL-4 KL-5 KL-6 KL-7
87Sr/86Sr 0.704993 0.704990 0.705060 0.705182 0.705120 0.705130 0.705177 0.705170 0.705272 0.70517 0.705139
2б 0.000012 0.000011 0.000011 0.000017 0.000013 0.000011 0.000009 0.000014 0.000009 0.000014 0.000011
143Nd/144Nd 0.512373 0.512334 0.512417 0.512415 0.512350 0.512417 0.512412 0.512312 0.512403 0.512312 0.512306
2б 0.000007 0.000007 0.000008 0.000011 0.000001 0.000017 0.000010 0.000008 0.000011 0.000008 0.000007
206Pb/204Pb 17.135 16.805 16.766 16.982 16.762 16.858 16.546 16.777 16.821
2б 0.002 0.003 0.002 0.002 0.003 0.009 0.002 0.007 0.002
207Pb/204Pb 15.783 15.002 15.421 15.228 15.497 15.360 15.412 15.365 15.718
2б 0.002 0.003 0.002 0.002 0.002 0.009 0.002 0.008 0.001
208Pb/204Pb 37.201 36.997 36.912 36.756 36.711 36.784 36.493 36.638 37.228
2б 0.005 0.007 0.005 0.005 0.006 0.009 0.005 0.008 0.004
Tab.2  Sr-Nd-Pb isotope ratios for the investigated volcanic rocks from the Keluo and Wudalianchi volcanic districts
Fig.6  (a) 143Nd/144Nd vs. 87Sr/86Sr; (b) enlarged view of (a); (c) 207Pb/204Pb vs. 206Pb/204Pb; (d) 208Pb/204Pb vs. 206Pb/204Pb; (e) 143Nd/144Nd vs. 206Pb/204Pb; (f) 87Sr/86Sr vs. 206Pb/204Pb for the volcanic rocks from the Keluo and Wudalianchi volcanic districts (symbols and data source as in Fig. 3). DMM A (depleted MORB-mantle A), DMM B (depleted MORB-mantle B), EM I (enriched mantle I), EM II (enriched mantle II), PREMA (prevalent mantle), HIMU (mantle with high 238U/204Pb, U/Pb and Th/Pb values), MORB (mid-ocean ridge basalt) and BSE (bulk silicate earth) are from Zindler (1986).
Fig.7  CaO/Al2O3 vs. MgO diagram for the volcanic rocks from the Keluo and Wudalianchi volcanic districts (symbols and data source as in Fig. 3).
Fig.8  (a) Ba/La, (b) Sr/Th, (c) Ba/Th and (d) Pb/U vs. Th/Nd plots for the volcanic rocks from the Keluo and Wudalianchi volcanic districts (symbols and data source as in Fig. 3). Melt and fluids metasomatism trends are indicated with arrows.
Fig.9  (a) La/Yb vs. La and (b) (Dy/Er)N vs. (La/Sm) N diagrams for the volcanic rocks from the Keluo and Wudalianchi volcanic districts (symbols and data source as in Fig. 3). 0%gt?15%gt reflects the different proportion of garnet in the source region, F = 0.001?F = 0.03 reflects different melting degree of the source region.
Parameters of partial melting simulation References
Molten formula CL/C0 = 1/(D + F?DF) Shaw (1970)
Initial composition of the source region PM: 0.687La, 0.444Sm, 0.737Dy, 0.480Er Sun and McDonough (1989)
Mineral proportion of molten residual phase 0.15Cpx, 0.25Opx, 0.45?0.60Ol, 0.01?0.15Gt Chen et al. (2007)
Partition coefficient Cpx: 0.042La, 0.28Sm, 0.402Dy, 0.422Er; Opx: 0.0005La, 0.01Sm, 0.025Dy, 0.041Er; Ol: 0.00005La, 0.0006Sm, 0.004Dy, 0.0087Er; Gt: 0.001La, 0.115Sm, 1.4Dy, 3.2Er Donnelly et al. (2004)
Tab.3  Parameters of partial melting simulation for the volcanic rocks from the Keluo and Wudalianchi volcanic districts (modified after Zhang and Guo, 2016)
1 R, Avanzinelli, T, Elliott, S, Tommasini, S Conticelli. ( 2007). Constraints on the genesis of potassium-rich Italian volcanic rocks from U/Th disequilibrium. J Petrol, 49( 2): 195– 223
https://doi.org/10.1093/petrology/egm076
2 S, Aulbach, W L, Griffin, N J, Pearson, S Y, O’Reilly, K, Kivi, B J Doyle. ( 2004). Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem Geol, 208( 1−4): 61– 88
https://doi.org/10.1016/j.chemgeo.2004.04.006
3 P J F, Bogaard, G Wörner. ( 2003). Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. J Petrol, 44( 3): 569– 602
https://doi.org/10.1093/petrology/44.3.569
4 R W, Carlson, W K Hart. ( 1988). Flood basalt volcanism in the Northern United States. In: Macdougall J D, ed. Continental Flood Basalts. Dordrecht: Kluwer Academic Publications, 35– 61
5 Y, Chen, Y S, Ai, M M, Jiang, Y J, Yang, J S Lei. ( 2021). New insights into potassic intraplate volcanism in northeast China from joint tomography of ambient noise and teleseismic surface waves. J Geophys Res Solid Earth, 126( 8): e2021JB021856
https://doi.org/10.1029/2021JB021856
6 Y, Chen, Y X, Zhang, D W, Graham, S G, Su, J F Deng. ( 2007). Geochemistry of Cenozoic basalts and mantle xenoliths in northeast China. Lithos, 96( 1−2): 108– 126
https://doi.org/10.1016/j.lithos.2006.09.015
7 S H, Choi, S B, Mukasa, S T, Kwon, A V Andronikov. ( 2006). Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chem Geol, 232( 3−4): 134– 151
https://doi.org/10.1016/j.chemgeo.2006.02.014
8 Z Y, Chu, J, Harvey, C Z, Liu, J H, Guo, F Y, Wu, W, Tian, Y L, Zhang, Y H Yang. ( 2013). Source of highly potassic basalts in northeast China: evidence from Re-Os, Sr-Nd-Hf isotopes and PGE geochemistry. Chem Geol, 357: 52– 66
https://doi.org/10.1016/j.chemgeo.2013.08.007
9 R, Dasgupta, M M, Hirschmann, A C Withers. ( 2004). Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227( 1−2): 73– 85
https://doi.org/10.1016/j.epsl.2004.08.004
10 G R, Davies, A J, Stolz, I L, Mahotkin, G M, Nowell, D G Pearson. ( 2006). Trace element and Sr-Pb-Nd-Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan shield lamproites. J Petrol, 47( 6): 1119– 1146
https://doi.org/10.1093/petrology/egl005
11 K E, Donnelly, S L, Goldstein, C H, Langmuir, M Spiegelman. ( 2004). Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett, 226( 3−4): 347– 366
https://doi.org/10.1016/j.epsl.2004.07.019
12 X Z, Duan H R, Fan H F, Zhang G, Yaxley M, Santosh H C, Tian K X, Tan Z P, Tang Y S, Xie Y L, Xiao Z H, Hou H F Guo ( 2019). Melt inclusions in phenocrysts track enriched upper mantle source for Cenozoic Tengchong volcanic field, Yunnan Province, SW China. Lithos, 324−325: 180− 201
13 X Z, Duan, H F, Zhang, M, Santosh, H C, Tian, H, Sun, K X, Tan, S L, Han, Y L, Xiao, Z H, Hou, Y Q, Zhang, L Jiang. ( 2020). The transformation of the lithospheric mantle beneath South China Block (SCB): constraints from petrological and geochemical studies of Daoxian and Ningyuan basalts and their melt inclusions. Int Geol Rev, 62( 4): 479– 502
https://doi.org/10.1080/00206814.2019.1621778
14 M, Elburg, J Foden. ( 1999). Geochemical response to varying tectonic settings: an example from southern Sulawesi (Indonesia). Geochim Cosmochim Acta, 63( 7−8): 1155– 1172
https://doi.org/10.1016/S0016-7037(98)00298-1
15 Q C, Fan, P R Hooper. ( 1991). The Cenozoic basaltic rocks of eastern China: petrology and chemical composition. J Petrol, 32( 4): 765– 810
https://doi.org/10.1093/petrology/32.4.765
16 Q C, Fan R X, Liu J L (1999) Sui. Petrology and geochemistry of rift type Wudalianchi K-rich volcanic rock zone. Geol Rev, 25(supp.): 358− 368 (in Chinese)
17 X L, Fan, Q F, Chen, Y S, Ai, L, Chen, M M, Jiang, Q J, Wu, Z Guo. ( 2021). Quaternary sodic and potassic intraplate volcanism in northeast China controlled by the underlying heterogeneous lithospheric structures. Geology, 49( 10): 1260– 1264
https://doi.org/10.1130/G48932.1
18 S, Foley, A Peccerillo. ( 1992). Potassic and ultrapotassic magmas and their origin. Lithos, 28( 3−6): 181– 185
https://doi.org/10.1016/0024-4937(92)90005-J
19 S, Gao, R L, Rudnick, R W, Carlson, W F, McDonough, Y S Liu. ( 2002). Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 198( 3−4): 307– 322
https://doi.org/10.1016/S0012-821X(02)00489-2
20 S, Gao R L, Rudnick R W, Carlson W F, McDonough Y S (2003) Liu. Removal of lithospheric mantle in the North China Craton: Re-Os isotopic evidence for coupled crust-mantle growth. Earth Sci Front, 10(3): 61− 67 (in Chinese)
21 S, Gao, R L, Rudnick, H L, Yuan, X M, Liu, Y S, Liu, W L, Xu, W L, Ling, J, Ayers, X C, Wang, Q H Wang. ( 2004). Recycling lower continental crust in the North China Craton. Nature, 432( 7019): 892– 897
https://doi.org/10.1038/nature03162 pmid: 15602559
22 W L, Griffin, B J, Doyle, C G, Ryan, N J, Pearson, S Y, O’Reilly, R, Davies, K, Kivi, E V, Achterbergh, L M Natapov. ( 1999). Layered mantle lithosphere in the Lac de Gras Area, Slave Craton: composition, structure and origin. J Petrol, 40( 5): 705– 727
https://doi.org/10.1093/petroj/40.5.705
23 Z F, Guo, M, Wilson, J Q, Liu, Q Mao. ( 2006). Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol, 47( 6): 1177– 1220
https://doi.org/10.1093/petrology/egl007
24 Z F, Guo, M, Wilson, M L, Zhang, Z H, Cheng, L H Zhang. ( 2013). Post-collisional, K-rich mafic magmatism in south Tibet: constraints on Indian slabto-wedge transport processes and plateau uplift. Contrib Mineral Petrol, 165( 6): 1311– 1340
https://doi.org/10.1007/s00410-013-0860-y
25 A W Hofmann. ( 1986). Nd in Hawaiian magmas: constraints on source compositionand evolution. Chem Geol, 57( 1−2): 17– 30
https://doi.org/10.1016/0009-2541(86)90091-4
26 D A, Ionov, A W Hofmann. ( 1995). Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett, 131( 3−4): 341– 356
https://doi.org/10.1016/0012-821X(95)00037-D
27 B M, Jahn, F Y, Wu, B Chen. ( 2000). Massive granitoid generation in central Asia: Nd isopic evidence and implication for continental growth in the Phanerozoic. Episodes, 23( 2): 82– 92
https://doi.org/10.18814/epiiugs/2000/v23i2/001
28 N, Jiang, J H, Guo, G H Chang. ( 2013). Nature and evolution of the lower crust in the eastern North China Craton: a review. Earth Sci Rev, 122: 1– 9
https://doi.org/10.1016/j.earscirev.2013.03.006
29 S, Jung, P Masberg. ( 1998). Major- and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany): constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources. J Volcanol Geotherm Res, 86( 1−4): 151– 177
https://doi.org/10.1016/S0377-0273(98)00087-0
30 S, Jung, J A, Pfänder, M, Brauns, R Maas. ( 2011). Crustal contamination and mantle source characteristics in continental intra-plate volcanic rocks: Pb, Hf and Os isotopes from central European volcanic province basalts. Geochim Cosmochim Acta, 75( 10): 2664– 2683
https://doi.org/10.1016/j.gca.2011.02.017
31 T, Kuritani J I, Kimura E, Ohtani H, Miyamoto K (2013) Furuyama. Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos, 156−159: 1− 12
32 T, Kuritani, E, Ohtani, J I Kimura. ( 2011). Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat Geosci, 4( 10): 713– 716
https://doi.org/10.1038/ngeo1250
33 Bas M J, Le, Maitre R W, Le, A, Streckeisen, B Zanettin. ( 1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol, 27( 3): 745– 750
https://doi.org/10.1093/petrology/27.3.745
34 J Y Li. ( 2006). Permian geodynamic setting of northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J Asian Earth Sci, 26( 3−4): 207– 224
https://doi.org/10.1016/j.jseaes.2005.09.001
35 N, Li L Y, Zhang Y W, Zhao Y Y, Cao X D (2012) Pan. Genesis of potassic minerals in the Xiaoguli-Keluo-Wudalianchi-Erkeshan volcanic belt, northeast China and their geological implications. Acta Petrol Sin, 28(4): 1173− 1180 (in Chinese)
36 J L, Liang, X, Ding, X M, Sun, Z M, Zhang, H, Zhang, W D Sun. ( 2009). Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chem Geol, 268( 1−2): 27– 40
https://doi.org/10.1016/j.chemgeo.2009.07.006
37 C Q, Liu G H, Xie A (1995) Masuda. Geochemistry of Cenozoic basalts from eastern China—I: major element and trace element compositions: petrogenesis and characteristics of mantle source. Geochimica, 24(1): 1− 19 (in Chinese)
38 J Q (1989) Liu. Discussion on the forming and evolving of the contiental rift in the northeastern of China. Scie Geol Sin, 3: 209− 216 (in Chinese)
39 J Q (1999) Liu. Volcano in China. Beijing: Science Press (in Chinese)
40 J Q, Liu, J T, Han, W S Fyfe. ( 2001). Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology. Tectonophysics, 339( 3−4): 385– 401
https://doi.org/10.1016/S0040-1951(01)00132-9
41 Y S, Liu, S, Gao, H L, Yuan, L, Zhou, X M, Liu, X C, Wang, Z C, Hu, L S Wang. ( 2004). U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chem Geol, 211( 1−2): 87– 109
https://doi.org/10.1016/j.chemgeo.2004.06.023
42 W F, McDonough, S S Sun. ( 1995). The composition of the Earth. Chem Geol, 120( 3−4): 223– 253
https://doi.org/10.1016/0009-2541(94)00140-4
43 F C, Meng, I, Safonova, S S, Chen, P Rioual. ( 2018). Late Cenozoic intra-plate basalts of the Greater Khingan Range in NE China and Khangai Province in Central Mongolia. Gondwana Res, 63: 65– 84
https://doi.org/10.1016/j.gr.2018.05.009
44 F C, Meng J Q, Liu Y, Cui J L, Gao X, Liu Y (2014) Tong. Mesozoic tectonic regimes transition in the northeast China: constraints from teporal-spatial distribution and associations of volcanic rocks. Acta Petrologica Sin, 30(12): 3569− 3586 (in Chinese)
45 K, Mibe, T, Kawamoto, K N, Matsukage, Y, Fei, S Ono. ( 2011). Slab melting versus slab dehydration in subduction-zone magmatism. Proc Natl Acad Sci USA, 108( 20): 8177– 8182
https://doi.org/10.1073/pnas.1010968108 pmid: 21536910
46 D T, Murphy, K D, Collerson, B S Kamber. ( 2002). Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol, 43( 6): 981– 1001
https://doi.org/10.1093/petrology/43.6.981
47 D, Prelevic, S Foley. ( 2007). Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth Planet Sci Lett, 256( 1−2): 120– 135
https://doi.org/10.1016/j.epsl.2007.01.018
48 L, Qi, M F Zhou. ( 2008). Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chem Geol, 248( 1−2): 83– 103
https://doi.org/10.1016/j.chemgeo.2007.11.004
49 M, Rehkämper, A W Hofmann. ( 1997). Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet Sci Lett, 147( 1−4): 93– 106
https://doi.org/10.1016/S0012-821X(97)00009-5
50 J Y, Ren, K, Tamaki, S T, Li, J X Zhang. ( 2002). Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas. Tectonophysics, 344( 3−4): 175– 205
https://doi.org/10.1016/S0040-1951(01)00271-2
51 J M Rosenbaum ( 1993). Mantle phlogopite: a significant lead repository? Chem Geol, 106( 3–4): 475– 483
52 D M Shaw. ( 1970). Trace element fractionation during anatexis. Geochim Cosmochim Acta, 34( 2): 237– 243
https://doi.org/10.1016/0016-7037(70)90009-8
53 S S, Sun, W F McDonough. ( 1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ, 42( 1): 313– 345
https://doi.org/10.1144/GSL.SP.1989.042.01.19
54 Y, Sun, J, Ying, B, Su, X, Zhou, J A Shao. ( 2015). Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, northeast China: new constraints from mineral chemistry and oxygen isotopes of olivine. Chem Geol, 405: 10– 18
https://doi.org/10.1016/j.chemgeo.2015.04.005
55 Y, Sun J, Ying X, Zhou J A, Shao Z, Chu B (2014) Su. Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China: implications for the role of ancient subducted sediments. Lithos, 208−209: 53− 66
56 H C, Tian, W, Yang, S G, Li, S, Ke, Z Y Chu. ( 2016). Origin of low δ26Mg basalts with EM-I component: evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta, 188: 93– 105
https://doi.org/10.1016/j.gca.2016.05.021
57 X J, Wang, L H, Chen, A W, Hofmann, F G, Mao, J Q, Liu, Y, Zhong, L W, Xie, Y H Yang. ( 2017). Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth Planet Sci Lett, 465: 16– 28
https://doi.org/10.1016/j.epsl.2017.02.028
58 F Y, Wu, B M, Jahn, S, Wilde, D Y Sun. ( 2000). Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeast China. Tectonophysics, 328( 1−2): 89– 113
https://doi.org/10.1016/S0040-1951(00)00179-7
59 F Y, Wu, R J, Walker, X W, Ren, D Y, Sun, X H Zhou. ( 2003). Osmium isotopic constraints on the age of lithospheric mantle beneath northeast China. Chem Geol, 196( 1−4): 107– 129
https://doi.org/10.1016/S0009-2541(02)00409-6
60 Q K, Xia, X Z, Yang, E, Deloule, Y M, Sheng, Y T Hao. ( 2006). Water in the lower crustal granulite xenoliths from Nushan, eastern China. J Geophys Res, 111( B11): B11202
https://doi.org/10.1029/2006JB004296
61 J F, Xu, K, Suzuki, Y G, Xu, H J, Mei, J Li. ( 2007). Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: insights into the source of a large igneous province. Geochim Cosmochim Acta, 71( 8): 2104– 2119
https://doi.org/10.1016/j.gca.2007.01.027
62 W L, Xu, F P, Pei, F, Wang, E, Meng, W Q, Ji, D B, Yang, W Wang. ( 2013). Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes. J Asian Earth Sci, 74( 0): 167– 193
https://doi.org/10.1016/j.jseaes.2013.04.003
63 Y G, Xu, J L, Ma, F A, Frey, M D, Feigenson, J F Liu. ( 2005). Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem Geol, 224( 4): 247– 271
https://doi.org/10.1016/j.chemgeo.2005.08.004
64 Y G, Xu H H, Zhang H N, Qiu W C, Ge F Y Wu ( 2012). Oceanic crust components in continental basalts from Shuangliao, northeast China: derived from the mantle transition zone? Chem Geol, 328( 11): 168− 184
65 Y Q (1997) Xu. Eruption types and stlye of Wudalianchi volcanic belt. Heilongjiang Geo, 8(4): 3− 11 (in Chinese)
66 M, Zhang, M A, Menzies, P, Suddaby, M F Thirlwall. ( 1991). EM I signature from within the post-Archaean subcontinental lithospheric mantle: Isotopic evidence from the potassic volcanic rocks in NE China. Geochem J, 25( 5): 387– 398
https://doi.org/10.2343/geochemj.25.387
67 M, Zhang, P, Suddaby, S Y, O’Reilly, M, Norman, J Qiu. ( 2000). Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenolith evidence. Tectonophysics, 328( 1−2): 131– 156
https://doi.org/10.1016/S0040-1951(00)00181-5
68 M, Zhang, P, Suddaby, R N, Thompson, M F, Thirlwall, M A Menzies. ( 1995). Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. J Petrol, 36( 5): 1275– 1303
https://doi.org/10.1093/petrology/36.5.1275
69 M L, Zhang, Z F Guo. ( 2016). Origin of Late Cenozoic Abaga-Dalinuoer basalts, eastern China: implications for a mixed pyroxenite-peridotite source related with deepsubduction of the Pacificslab. Gondwana Res, 37: 130– 151
https://doi.org/10.1016/j.gr.2016.05.014
70 M L, Zhang, Z F, Guo, Z H, Cheng, L H, Zhang, J Q Liu. ( 2015). Late Cenozoic intraplate volcanism in Changbai volcanic field, on the border of China and North Korea: insights into deep subduction of the Pacific slab and intraplate volcanism. J Geol Soc London, 172( 5): 648– 663
https://doi.org/10.1144/jgs2014-080
71 X Z, Zhang B J, Yang F Y, Wu G X (2006) Liu. The lithosphere structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) region, northeast China. Geo China, 33(4): 816− 823 (in Chinese)
72 Y L, Zhang, C Z, Liu, W C, Ge, F Y, Wu, Z Y Chu. ( 2011). Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian Orogenic Belt (CAOB): implications for crust-mantle decoupling. Lithos, 126( 3−4): 233– 247
https://doi.org/10.1016/j.lithos.2011.07.022
73 D P, Zhao, S, Yu, E Ohtani. ( 2011). East Asia: seismotectonics, magmatism and mantle dynamics. J Asian Earth Sci, 40( 3): 689– 709
https://doi.org/10.1016/j.jseaes.2010.11.013
74 Y, Zhao Z Y, Yang X H (1994) Ma. Geotectonic transition from paleoasian system and paleotethyan system to paleopacific active contiental margin in eastern Asia. Sci Geol Sin, 29: 105− 119 (in Chinese)
75 Y W, Zhao, N, Li, Q C, Fan, H B, Zou, Y G Xu. ( 2014). Two episodes of volcanism in the Wudalianchi volcanic belt, NE China: evidence for tectonic controls on volcanic activities. J Volcanol Geotherm Res, 285: 170– 179
https://doi.org/10.1016/j.jvolgeores.2014.08.016
76 J P, Zheng, W L, Griffin, S Y, O’Reilly, J H, Zhao, Y B, Wu, G L, Liu, N, Pearson, M, Zhang, C Q, Ma, Z H, Zhang, C M, Yu, Y P, Su, H Y Tang. ( 2009). Neoarchean (2.7–2.8 Ga) accretion beneath the North China Craton: U-Pb age, trace elements and Hf isotopes of zircons in diamondiferous kimberlites. Lithos, 112( 3−4): 188– 202
https://doi.org/10.1016/j.lithos.2009.02.003
77 J B, Zhou, S A, Wilde, X Z, Zhang, G C, Zhao, C Q, Zheng, Y J, Wang, X H Zhang. ( 2009). The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478( 3−4): 230– 246
https://doi.org/10.1016/j.tecto.2009.08.009
78 R X, Zhu, J H, Yang, F Y Wu. ( 2012). Timing of destruction of the North China Craton. Lithos, 149: 51– 60
https://doi.org/10.1016/j.lithos.2012.05.013
79 A, Zindler, S R Hart. ( 1986). Chemical geodynamics. In: Workshop on the Earth as a Planet, 14: 493– 571
https://doi.org/10.1146/annurev.ea.14.050186.002425
80 H B, Zou, M R, Reid, Y S, Liu, Y P, Yao, X S, Xu, Q C Fan. ( 2003). Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chem Geol, 200( 1−2): 189– 201
https://doi.org/10.1016/S0009-2541(03)00188-8
[1] Lihong SONG,Hongkai LI,Kehong WANG,Donghui WU,Haitao WU. Ecology of testate amoebae and their potential use as palaeohydrologic indicators from peatland in Sanjiang Plain, Northeast China[J]. Front. Earth Sci., 2014, 8(4): 564-572.
[2] QIN Jiangfeng, LAI Shaocong, LI Yongfei. Post-collisional adakitic biotite plagiogranites from Guangtoushan pluton (Mianxian, central China): Petrogenesis and tectonic implication[J]. Front. Earth Sci., 2007, 1(3): 299-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed