|
|
|
Cenozoic potassic volcanic rocks from the Keluo and Wudalianchi volcanic districts, northeast China: origin from the new sub-continental lithospheric mantle (SCLM) metasomatized by potassium-rich fluids from delaminated lower crust |
Fanchao MENG1,2,3( ), Yulu TIAN1, Yaoqi ZHOU1,2,3, Jiaqi LIU4, Gengchao ZUO1, Qing DU1 |
1. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China 2. Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China 3. Shandong Provincial Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China 4. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China |
|
|
|
|
Abstract A series of Cenozoic potassium-rich volcanic rocks developed in the Xiaoguli-Keluo-Wudalianchi-Erkeshan districts, northeast China. The source region and potassium-rich mechanism of the potassic rocks remain highly disputed. In this paper, the major elements, trace elements, and Sr-Nd-Pb isotopes of the volcanic rocks in Keluo (KL) and Wudalianchi (WDLC) volcanic districts were analyzed systematically. The results show that the volcanic rocks are characterized by high K2O (4.36wt.%−6.13wt.%), remarkable enrichment in LREEs and LILEs, as well as the strong fractionation of HREEs. The isotopic characteristics with high 87Sr/86Sr (0.704990–0.705272), low 143Nd/144Nd (0.512306–0.512417), low 206Pb/204Pb (16.546–17.135) and 207Pb/204Pb (15.002–15.783) of the volcanic rocks suggest the involvement of EM-I-type mantle. On the basis of the geochemical characteristics, the potassium-rich volcanic magma originated from the new SCLM forming after delamination of the ancient SCLM, with metasomatism of the potassium-rich fluids released from the ancient lower crust during the Late Mesozoic. The proposed genetic model assumes the source which represented by a phlogopite-bearing garnet peridotite (with modal garnet in the range of 2%–10%) experienced very low degrees (i.e., ~0.5) of partial melting. During Cenozoic, the lithosphere in northeast China was affected by the extension and decompression of continental rift, and the metasomatized SCLM underwent low degree partial melting, resulting in the formation of potassium-rich primitive basaltic magma.
|
| Keywords
northeast China
Keluo-Wudalianchi volcanic districts
Cenozoic potassic volcanic rocks
petrogenesis
sub-continental lithospheric mantle
|
|
Corresponding Author(s):
Fanchao MENG
|
|
Online First Date: 22 September 2022
Issue Date: 11 January 2023
|
|
| 1 |
R, Avanzinelli, T, Elliott, S, Tommasini, S Conticelli. ( 2007). Constraints on the genesis of potassium-rich Italian volcanic rocks from U/Th disequilibrium. J Petrol, 49( 2): 195– 223
https://doi.org/10.1093/petrology/egm076
|
| 2 |
S, Aulbach, W L, Griffin, N J, Pearson, S Y, O’Reilly, K, Kivi, B J Doyle. ( 2004). Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem Geol, 208( 1−4): 61– 88
https://doi.org/10.1016/j.chemgeo.2004.04.006
|
| 3 |
P J F, Bogaard, G Wörner. ( 2003). Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. J Petrol, 44( 3): 569– 602
https://doi.org/10.1093/petrology/44.3.569
|
| 4 |
R W, Carlson, W K Hart. ( 1988). Flood basalt volcanism in the Northern United States. In: Macdougall J D, ed. Continental Flood Basalts. Dordrecht: Kluwer Academic Publications, 35– 61
|
| 5 |
Y, Chen, Y S, Ai, M M, Jiang, Y J, Yang, J S Lei. ( 2021). New insights into potassic intraplate volcanism in northeast China from joint tomography of ambient noise and teleseismic surface waves. J Geophys Res Solid Earth, 126( 8): e2021JB021856
https://doi.org/10.1029/2021JB021856
|
| 6 |
Y, Chen, Y X, Zhang, D W, Graham, S G, Su, J F Deng. ( 2007). Geochemistry of Cenozoic basalts and mantle xenoliths in northeast China. Lithos, 96( 1−2): 108– 126
https://doi.org/10.1016/j.lithos.2006.09.015
|
| 7 |
S H, Choi, S B, Mukasa, S T, Kwon, A V Andronikov. ( 2006). Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chem Geol, 232( 3−4): 134– 151
https://doi.org/10.1016/j.chemgeo.2006.02.014
|
| 8 |
Z Y, Chu, J, Harvey, C Z, Liu, J H, Guo, F Y, Wu, W, Tian, Y L, Zhang, Y H Yang. ( 2013). Source of highly potassic basalts in northeast China: evidence from Re-Os, Sr-Nd-Hf isotopes and PGE geochemistry. Chem Geol, 357: 52– 66
https://doi.org/10.1016/j.chemgeo.2013.08.007
|
| 9 |
R, Dasgupta, M M, Hirschmann, A C Withers. ( 2004). Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227( 1−2): 73– 85
https://doi.org/10.1016/j.epsl.2004.08.004
|
| 10 |
G R, Davies, A J, Stolz, I L, Mahotkin, G M, Nowell, D G Pearson. ( 2006). Trace element and Sr-Pb-Nd-Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan shield lamproites. J Petrol, 47( 6): 1119– 1146
https://doi.org/10.1093/petrology/egl005
|
| 11 |
K E, Donnelly, S L, Goldstein, C H, Langmuir, M Spiegelman. ( 2004). Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett, 226( 3−4): 347– 366
https://doi.org/10.1016/j.epsl.2004.07.019
|
| 12 |
X Z, Duan H R, Fan H F, Zhang G, Yaxley M, Santosh H C, Tian K X, Tan Z P, Tang Y S, Xie Y L, Xiao Z H, Hou H F Guo ( 2019). Melt inclusions in phenocrysts track enriched upper mantle source for Cenozoic Tengchong volcanic field, Yunnan Province, SW China. Lithos, 324−325: 180− 201
|
| 13 |
X Z, Duan, H F, Zhang, M, Santosh, H C, Tian, H, Sun, K X, Tan, S L, Han, Y L, Xiao, Z H, Hou, Y Q, Zhang, L Jiang. ( 2020). The transformation of the lithospheric mantle beneath South China Block (SCB): constraints from petrological and geochemical studies of Daoxian and Ningyuan basalts and their melt inclusions. Int Geol Rev, 62( 4): 479– 502
https://doi.org/10.1080/00206814.2019.1621778
|
| 14 |
M, Elburg, J Foden. ( 1999). Geochemical response to varying tectonic settings: an example from southern Sulawesi (Indonesia). Geochim Cosmochim Acta, 63( 7−8): 1155– 1172
https://doi.org/10.1016/S0016-7037(98)00298-1
|
| 15 |
Q C, Fan, P R Hooper. ( 1991). The Cenozoic basaltic rocks of eastern China: petrology and chemical composition. J Petrol, 32( 4): 765– 810
https://doi.org/10.1093/petrology/32.4.765
|
| 16 |
Q C, Fan R X, Liu J L (1999) Sui. Petrology and geochemistry of rift type Wudalianchi K-rich volcanic rock zone. Geol Rev, 25(supp.): 358− 368 (in Chinese)
|
| 17 |
X L, Fan, Q F, Chen, Y S, Ai, L, Chen, M M, Jiang, Q J, Wu, Z Guo. ( 2021). Quaternary sodic and potassic intraplate volcanism in northeast China controlled by the underlying heterogeneous lithospheric structures. Geology, 49( 10): 1260– 1264
https://doi.org/10.1130/G48932.1
|
| 18 |
S, Foley, A Peccerillo. ( 1992). Potassic and ultrapotassic magmas and their origin. Lithos, 28( 3−6): 181– 185
https://doi.org/10.1016/0024-4937(92)90005-J
|
| 19 |
S, Gao, R L, Rudnick, R W, Carlson, W F, McDonough, Y S Liu. ( 2002). Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 198( 3−4): 307– 322
https://doi.org/10.1016/S0012-821X(02)00489-2
|
| 20 |
S, Gao R L, Rudnick R W, Carlson W F, McDonough Y S (2003) Liu. Removal of lithospheric mantle in the North China Craton: Re-Os isotopic evidence for coupled crust-mantle growth. Earth Sci Front, 10(3): 61− 67 (in Chinese)
|
| 21 |
S, Gao, R L, Rudnick, H L, Yuan, X M, Liu, Y S, Liu, W L, Xu, W L, Ling, J, Ayers, X C, Wang, Q H Wang. ( 2004). Recycling lower continental crust in the North China Craton. Nature, 432( 7019): 892– 897
https://doi.org/10.1038/nature03162
pmid: 15602559
|
| 22 |
W L, Griffin, B J, Doyle, C G, Ryan, N J, Pearson, S Y, O’Reilly, R, Davies, K, Kivi, E V, Achterbergh, L M Natapov. ( 1999). Layered mantle lithosphere in the Lac de Gras Area, Slave Craton: composition, structure and origin. J Petrol, 40( 5): 705– 727
https://doi.org/10.1093/petroj/40.5.705
|
| 23 |
Z F, Guo, M, Wilson, J Q, Liu, Q Mao. ( 2006). Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol, 47( 6): 1177– 1220
https://doi.org/10.1093/petrology/egl007
|
| 24 |
Z F, Guo, M, Wilson, M L, Zhang, Z H, Cheng, L H Zhang. ( 2013). Post-collisional, K-rich mafic magmatism in south Tibet: constraints on Indian slabto-wedge transport processes and plateau uplift. Contrib Mineral Petrol, 165( 6): 1311– 1340
https://doi.org/10.1007/s00410-013-0860-y
|
| 25 |
A W Hofmann. ( 1986). Nd in Hawaiian magmas: constraints on source compositionand evolution. Chem Geol, 57( 1−2): 17– 30
https://doi.org/10.1016/0009-2541(86)90091-4
|
| 26 |
D A, Ionov, A W Hofmann. ( 1995). Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett, 131( 3−4): 341– 356
https://doi.org/10.1016/0012-821X(95)00037-D
|
| 27 |
B M, Jahn, F Y, Wu, B Chen. ( 2000). Massive granitoid generation in central Asia: Nd isopic evidence and implication for continental growth in the Phanerozoic. Episodes, 23( 2): 82– 92
https://doi.org/10.18814/epiiugs/2000/v23i2/001
|
| 28 |
N, Jiang, J H, Guo, G H Chang. ( 2013). Nature and evolution of the lower crust in the eastern North China Craton: a review. Earth Sci Rev, 122: 1– 9
https://doi.org/10.1016/j.earscirev.2013.03.006
|
| 29 |
S, Jung, P Masberg. ( 1998). Major- and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany): constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources. J Volcanol Geotherm Res, 86( 1−4): 151– 177
https://doi.org/10.1016/S0377-0273(98)00087-0
|
| 30 |
S, Jung, J A, Pfänder, M, Brauns, R Maas. ( 2011). Crustal contamination and mantle source characteristics in continental intra-plate volcanic rocks: Pb, Hf and Os isotopes from central European volcanic province basalts. Geochim Cosmochim Acta, 75( 10): 2664– 2683
https://doi.org/10.1016/j.gca.2011.02.017
|
| 31 |
T, Kuritani J I, Kimura E, Ohtani H, Miyamoto K (2013) Furuyama. Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos, 156−159: 1− 12
|
| 32 |
T, Kuritani, E, Ohtani, J I Kimura. ( 2011). Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat Geosci, 4( 10): 713– 716
https://doi.org/10.1038/ngeo1250
|
| 33 |
Bas M J, Le, Maitre R W, Le, A, Streckeisen, B Zanettin. ( 1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol, 27( 3): 745– 750
https://doi.org/10.1093/petrology/27.3.745
|
| 34 |
J Y Li. ( 2006). Permian geodynamic setting of northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J Asian Earth Sci, 26( 3−4): 207– 224
https://doi.org/10.1016/j.jseaes.2005.09.001
|
| 35 |
N, Li L Y, Zhang Y W, Zhao Y Y, Cao X D (2012) Pan. Genesis of potassic minerals in the Xiaoguli-Keluo-Wudalianchi-Erkeshan volcanic belt, northeast China and their geological implications. Acta Petrol Sin, 28(4): 1173− 1180 (in Chinese)
|
| 36 |
J L, Liang, X, Ding, X M, Sun, Z M, Zhang, H, Zhang, W D Sun. ( 2009). Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chem Geol, 268( 1−2): 27– 40
https://doi.org/10.1016/j.chemgeo.2009.07.006
|
| 37 |
C Q, Liu G H, Xie A (1995) Masuda. Geochemistry of Cenozoic basalts from eastern China—I: major element and trace element compositions: petrogenesis and characteristics of mantle source. Geochimica, 24(1): 1− 19 (in Chinese)
|
| 38 |
J Q (1989) Liu. Discussion on the forming and evolving of the contiental rift in the northeastern of China. Scie Geol Sin, 3: 209− 216 (in Chinese)
|
| 39 |
J Q (1999) Liu. Volcano in China. Beijing: Science Press (in Chinese)
|
| 40 |
J Q, Liu, J T, Han, W S Fyfe. ( 2001). Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology. Tectonophysics, 339( 3−4): 385– 401
https://doi.org/10.1016/S0040-1951(01)00132-9
|
| 41 |
Y S, Liu, S, Gao, H L, Yuan, L, Zhou, X M, Liu, X C, Wang, Z C, Hu, L S Wang. ( 2004). U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chem Geol, 211( 1−2): 87– 109
https://doi.org/10.1016/j.chemgeo.2004.06.023
|
| 42 |
W F, McDonough, S S Sun. ( 1995). The composition of the Earth. Chem Geol, 120( 3−4): 223– 253
https://doi.org/10.1016/0009-2541(94)00140-4
|
| 43 |
F C, Meng, I, Safonova, S S, Chen, P Rioual. ( 2018). Late Cenozoic intra-plate basalts of the Greater Khingan Range in NE China and Khangai Province in Central Mongolia. Gondwana Res, 63: 65– 84
https://doi.org/10.1016/j.gr.2018.05.009
|
| 44 |
F C, Meng J Q, Liu Y, Cui J L, Gao X, Liu Y (2014) Tong. Mesozoic tectonic regimes transition in the northeast China: constraints from teporal-spatial distribution and associations of volcanic rocks. Acta Petrologica Sin, 30(12): 3569− 3586 (in Chinese)
|
| 45 |
K, Mibe, T, Kawamoto, K N, Matsukage, Y, Fei, S Ono. ( 2011). Slab melting versus slab dehydration in subduction-zone magmatism. Proc Natl Acad Sci USA, 108( 20): 8177– 8182
https://doi.org/10.1073/pnas.1010968108
pmid: 21536910
|
| 46 |
D T, Murphy, K D, Collerson, B S Kamber. ( 2002). Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol, 43( 6): 981– 1001
https://doi.org/10.1093/petrology/43.6.981
|
| 47 |
D, Prelevic, S Foley. ( 2007). Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth Planet Sci Lett, 256( 1−2): 120– 135
https://doi.org/10.1016/j.epsl.2007.01.018
|
| 48 |
L, Qi, M F Zhou. ( 2008). Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chem Geol, 248( 1−2): 83– 103
https://doi.org/10.1016/j.chemgeo.2007.11.004
|
| 49 |
M, Rehkämper, A W Hofmann. ( 1997). Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet Sci Lett, 147( 1−4): 93– 106
https://doi.org/10.1016/S0012-821X(97)00009-5
|
| 50 |
J Y, Ren, K, Tamaki, S T, Li, J X Zhang. ( 2002). Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas. Tectonophysics, 344( 3−4): 175– 205
https://doi.org/10.1016/S0040-1951(01)00271-2
|
| 51 |
J M Rosenbaum ( 1993). Mantle phlogopite: a significant lead repository? Chem Geol, 106( 3–4): 475– 483
|
| 52 |
D M Shaw. ( 1970). Trace element fractionation during anatexis. Geochim Cosmochim Acta, 34( 2): 237– 243
https://doi.org/10.1016/0016-7037(70)90009-8
|
| 53 |
S S, Sun, W F McDonough. ( 1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ, 42( 1): 313– 345
https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
| 54 |
Y, Sun, J, Ying, B, Su, X, Zhou, J A Shao. ( 2015). Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, northeast China: new constraints from mineral chemistry and oxygen isotopes of olivine. Chem Geol, 405: 10– 18
https://doi.org/10.1016/j.chemgeo.2015.04.005
|
| 55 |
Y, Sun J, Ying X, Zhou J A, Shao Z, Chu B (2014) Su. Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China: implications for the role of ancient subducted sediments. Lithos, 208−209: 53− 66
|
| 56 |
H C, Tian, W, Yang, S G, Li, S, Ke, Z Y Chu. ( 2016). Origin of low δ26Mg basalts with EM-I component: evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta, 188: 93– 105
https://doi.org/10.1016/j.gca.2016.05.021
|
| 57 |
X J, Wang, L H, Chen, A W, Hofmann, F G, Mao, J Q, Liu, Y, Zhong, L W, Xie, Y H Yang. ( 2017). Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth Planet Sci Lett, 465: 16– 28
https://doi.org/10.1016/j.epsl.2017.02.028
|
| 58 |
F Y, Wu, B M, Jahn, S, Wilde, D Y Sun. ( 2000). Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeast China. Tectonophysics, 328( 1−2): 89– 113
https://doi.org/10.1016/S0040-1951(00)00179-7
|
| 59 |
F Y, Wu, R J, Walker, X W, Ren, D Y, Sun, X H Zhou. ( 2003). Osmium isotopic constraints on the age of lithospheric mantle beneath northeast China. Chem Geol, 196( 1−4): 107– 129
https://doi.org/10.1016/S0009-2541(02)00409-6
|
| 60 |
Q K, Xia, X Z, Yang, E, Deloule, Y M, Sheng, Y T Hao. ( 2006). Water in the lower crustal granulite xenoliths from Nushan, eastern China. J Geophys Res, 111( B11): B11202
https://doi.org/10.1029/2006JB004296
|
| 61 |
J F, Xu, K, Suzuki, Y G, Xu, H J, Mei, J Li. ( 2007). Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: insights into the source of a large igneous province. Geochim Cosmochim Acta, 71( 8): 2104– 2119
https://doi.org/10.1016/j.gca.2007.01.027
|
| 62 |
W L, Xu, F P, Pei, F, Wang, E, Meng, W Q, Ji, D B, Yang, W Wang. ( 2013). Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes. J Asian Earth Sci, 74( 0): 167– 193
https://doi.org/10.1016/j.jseaes.2013.04.003
|
| 63 |
Y G, Xu, J L, Ma, F A, Frey, M D, Feigenson, J F Liu. ( 2005). Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem Geol, 224( 4): 247– 271
https://doi.org/10.1016/j.chemgeo.2005.08.004
|
| 64 |
Y G, Xu H H, Zhang H N, Qiu W C, Ge F Y Wu ( 2012). Oceanic crust components in continental basalts from Shuangliao, northeast China: derived from the mantle transition zone? Chem Geol, 328( 11): 168− 184
|
| 65 |
Y Q (1997) Xu. Eruption types and stlye of Wudalianchi volcanic belt. Heilongjiang Geo, 8(4): 3− 11 (in Chinese)
|
| 66 |
M, Zhang, M A, Menzies, P, Suddaby, M F Thirlwall. ( 1991). EM I signature from within the post-Archaean subcontinental lithospheric mantle: Isotopic evidence from the potassic volcanic rocks in NE China. Geochem J, 25( 5): 387– 398
https://doi.org/10.2343/geochemj.25.387
|
| 67 |
M, Zhang, P, Suddaby, S Y, O’Reilly, M, Norman, J Qiu. ( 2000). Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenolith evidence. Tectonophysics, 328( 1−2): 131– 156
https://doi.org/10.1016/S0040-1951(00)00181-5
|
| 68 |
M, Zhang, P, Suddaby, R N, Thompson, M F, Thirlwall, M A Menzies. ( 1995). Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. J Petrol, 36( 5): 1275– 1303
https://doi.org/10.1093/petrology/36.5.1275
|
| 69 |
M L, Zhang, Z F Guo. ( 2016). Origin of Late Cenozoic Abaga-Dalinuoer basalts, eastern China: implications for a mixed pyroxenite-peridotite source related with deepsubduction of the Pacificslab. Gondwana Res, 37: 130– 151
https://doi.org/10.1016/j.gr.2016.05.014
|
| 70 |
M L, Zhang, Z F, Guo, Z H, Cheng, L H, Zhang, J Q Liu. ( 2015). Late Cenozoic intraplate volcanism in Changbai volcanic field, on the border of China and North Korea: insights into deep subduction of the Pacific slab and intraplate volcanism. J Geol Soc London, 172( 5): 648– 663
https://doi.org/10.1144/jgs2014-080
|
| 71 |
X Z, Zhang B J, Yang F Y, Wu G X (2006) Liu. The lithosphere structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) region, northeast China. Geo China, 33(4): 816− 823 (in Chinese)
|
| 72 |
Y L, Zhang, C Z, Liu, W C, Ge, F Y, Wu, Z Y Chu. ( 2011). Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian Orogenic Belt (CAOB): implications for crust-mantle decoupling. Lithos, 126( 3−4): 233– 247
https://doi.org/10.1016/j.lithos.2011.07.022
|
| 73 |
D P, Zhao, S, Yu, E Ohtani. ( 2011). East Asia: seismotectonics, magmatism and mantle dynamics. J Asian Earth Sci, 40( 3): 689– 709
https://doi.org/10.1016/j.jseaes.2010.11.013
|
| 74 |
Y, Zhao Z Y, Yang X H (1994) Ma. Geotectonic transition from paleoasian system and paleotethyan system to paleopacific active contiental margin in eastern Asia. Sci Geol Sin, 29: 105− 119 (in Chinese)
|
| 75 |
Y W, Zhao, N, Li, Q C, Fan, H B, Zou, Y G Xu. ( 2014). Two episodes of volcanism in the Wudalianchi volcanic belt, NE China: evidence for tectonic controls on volcanic activities. J Volcanol Geotherm Res, 285: 170– 179
https://doi.org/10.1016/j.jvolgeores.2014.08.016
|
| 76 |
J P, Zheng, W L, Griffin, S Y, O’Reilly, J H, Zhao, Y B, Wu, G L, Liu, N, Pearson, M, Zhang, C Q, Ma, Z H, Zhang, C M, Yu, Y P, Su, H Y Tang. ( 2009). Neoarchean (2.7–2.8 Ga) accretion beneath the North China Craton: U-Pb age, trace elements and Hf isotopes of zircons in diamondiferous kimberlites. Lithos, 112( 3−4): 188– 202
https://doi.org/10.1016/j.lithos.2009.02.003
|
| 77 |
J B, Zhou, S A, Wilde, X Z, Zhang, G C, Zhao, C Q, Zheng, Y J, Wang, X H Zhang. ( 2009). The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478( 3−4): 230– 246
https://doi.org/10.1016/j.tecto.2009.08.009
|
| 78 |
R X, Zhu, J H, Yang, F Y Wu. ( 2012). Timing of destruction of the North China Craton. Lithos, 149: 51– 60
https://doi.org/10.1016/j.lithos.2012.05.013
|
| 79 |
A, Zindler, S R Hart. ( 1986). Chemical geodynamics. In: Workshop on the Earth as a Planet, 14: 493– 571
https://doi.org/10.1146/annurev.ea.14.050186.002425
|
| 80 |
H B, Zou, M R, Reid, Y S, Liu, Y P, Yao, X S, Xu, Q C Fan. ( 2003). Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chem Geol, 200( 1−2): 189– 201
https://doi.org/10.1016/S0009-2541(03)00188-8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|