Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (4) : 1005-1024    https://doi.org/10.1007/s11707-022-0971-8
RESEARCH ARTICLE
Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean
Jianjun XUE1,2,4, Ziniu XIAO1(), David H. BROMWICH3(), Lesheng BAI3
1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Polar Meteorology Group, Byrd Polar and Climate Research Center, The Ohio State University, Columbus OH 43210, USA
4. China Meteorological Administration Training Centre, Beijing 100081, China
 Download: PDF(12613 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A recent version of the Polar Weather Research and Forecasting model (Polar WRF) has been upgraded to the version 4.X era with an improved NoahMP Land Surface Model (LSM). To assess the model performance over the Antarctic and Southern Ocean, downscaling simulations with different LSM (NoahMP, Noah), WRF versions (Polar WRF 4.1.1 and earlier version 4.0.3, WRF 4.1.1), and driving data (ERA-Interim, ERA5) are examined with two simulation modes: the short-term that consists of a series of 48 h segments initialized daily at 0000 UTC with the first 24 h selected for model spin-up, whereas the long-term component used to evaluate long-term prediction consists of a series of 38−41 day segments initialized using the first 10 days for spin-up of the hydrological cycle and planetary boundary layer structure. Simulations using short-term mode driven by ERA-Interim with NoahMP and Noah are selected for benchmark experiments. The results show that Polar WRF 4.1.1 has good skills over the Antarctic and Southern Ocean and better performance than earlier simulations. The reduced downward shortwave radiation bias released with WRF 4.1.1 performed well with PWRF411. Although NoahMP and Noah led to very similar conclusions, NoahMP is slightly better than Noah, particularly for the 2 m temperature and surface radiation because the minimum albedo is set at 0.8 over the ice sheet. Moreover, a suitable nudging setting plays an important role in long-term forecasts, such as reducing the surface temperature diurnal cycle near the coast. The characteristics investigated in this study provide a benchmark to improve the model and guidance for further application of Polar WRF in the Antarctic.

Keywords Polar WRF      downscaling simulation      performance evaluation      the Antarctic and Southern Ocean     
Corresponding Author(s): Ziniu XIAO,David H. BROMWICH   
Online First Date: 30 June 2022    Issue Date: 11 January 2023
 Cite this article:   
Jianjun XUE,Ziniu XIAO,David H. BROMWICH, et al. Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean[J]. Front. Earth Sci., 2022, 16(4): 1005-1024.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-0971-8
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I4/1005
Fig.1  Location of the observation sites. (a) Total surface data stations used (97). Red dots (43), blue dots (54) denotes stations from OGIMET and AMRC, respectively. Inset maps are for the Antarctic Peninsula (top) and Ross ice shelf (bottom). (b) Five BSRN stations used (DOM, GVN, LAU, SPO, and SYO). (c) Total upper air radiosounding stations used (22). Red dots (21), blue dots (1) denotes stations from UW and PNRA, respectively.
NO Mode Model LSMs Driven data Simulation period Comments (compared to benchmark experiment)
1 FM PWRF411 NoahMP ERA−Interim Jun 2008−May 2009 benchmark experiment
2 FM PWRF411 Noah ERA−Interim Jun 2008−May 2009 benchmark experiment
3 CM PWRF411 NoahMP ERA−Interim Jun 2008−May 2009 different mode
4 CM PWRF411 Noah ERA−Interim Jun 2008−May 2009 different mode
5 FM PWRF403 NoahMP ERA−Interim Jun 2008−Aug 2008,Dec 2008−Feb 2009 different model version
6 FM PWRF403 Noah ERA−Interim Jun 2008−Aug 2008,Dec 2008−Feb 2009 different model version
7 FM WRF411 NoahMP ERA−Interim Jun 2008−Aug 2008,Dec 2008−Feb 2009 different model version
8 FM WRF411 Noah ERA−Interim Jun 2008−Aug 2008,Dec 2008−Feb 2009 different model version
9 FM PWRF411 NoahMP ERA5 July 2008, Jan 2009 different driving data
10 FM PWRF411 Noah ERA5 July 2008, Jan 2009 different driving data
Tab.1  Summary of the characteristics for each experiment
Description Forecast mode (FM) Climate mode (CM)
Horizontal resolution 15 km
Simulation Short-term48 h run Long-term38–41days run
Spin-up 24 h 10 days
Lateral boundary data ERA-Interim/ERA5
Vertical Level 71 levels, Model top level at 3hPa
Coordinate Hybrid Vertical Coordinate, eta = 0.3
Land surface options Noah (2) NoahMP (4)
Microphysics Morrison 2-mom (10)
PBL scheme MYNN2 (5)
Short/Long wave Both RRTMG (4&4)
Cumulus Kain-Fritsch (1)
Surface layer MYNN (5)
Nudging Wave number 17, spectral nudging t, ph, u,v, above 200 hPa
Seaice options seaice_thickness_default = 1.0seaice_albedo_default = 0.80seaice_snowdepth_max = 0.02 (min)−0.05 (max)Change with monthly time from 0.02 in July and 0.05 inJanuary with 0.005 interval for each monthy with annual cycle.seaice_snowdepth_min = 0.002 (min)−0.02 (max)Change with monthly time from 0.02 in July and 0.002in January with 0.003 interval for each monthy with annual cycle.
Tab.2  Main setup of experiment strategy and model configuration
Fig.2  (a)–(c) Domain-averaged monthly 2 m air temperature statistics, total station numbers from June 2008 to May 2009 are 70, 67, 67, 67, 67, 75, 87, 87, 91, 90, 89, 85, respectively
Fig.3  (a)–(c) Domain-averaged monthly 2 m dew point statistics, total station numbers from June 2008 to May 2009 are 58, 57, 57, 57, 57, 64, 71, 70, 75, 73, 73, 70, respectively
Fig.4  (a)–(c) Domain-averaged monthly surface pressure statistics, total station numbers from June 2008 to May 2009 are 67, 66, 62, 66, 64, 71, 84, 83, 84, 83, 83, 80, respectively.
Fig.5  (a)–(c) Domain-averaged monthly 10m wind speed statistics, total station numbers from June 2008 to May 2009 are 59, 59, 56, 59, 58, 65, 80, 80, 83, 84, 78, 71, respectively
Longwave AAN Shortwave AAN
JJA SON DJF MAM JJA SON DJF MAM
Correlation
DOM 0.81 0.83 0.61 0.84 0.77 0.99 0.99 0.98 0.99
SPO 0.88 0.88 0.58 0.84 0.79 0.95 0.75 0.97 0.87
GVN 0.86 0.84 0.77 0.83 0.83 0.72 0.96 0.98 0.91 0.91
LAU 0.70 0.80 0.81 0.70 0.75 0.85 0.92 0.90 0.90 0.89
SYO 0.82 0.84 0.70 0.82 0.79 0.86 0.99 0.96 0.92 0.93
Bias (W/m2)
DOM 14.56 20.77 15.83 16.78 16.99 −1.83 −12.49 −9.99 −7.64
SPO 11.04 11.11 5.61 10.89 9.66 16.42 19.68 5.29 16.23
GVN −10.83 −11.00 −17.38 −9.66 −12.22 −1.47 23.11 28.30 9.09 16.23
LAU −9.19 −14.60 −15.18 −14.99 −13.49 15.65 43.30 60.48 25.77 36.30
SYO −9.20 −4.60 −17.02 −10.18 −10.25 0.79 16.17 38.72 9.25 17.78
RMSE (W/m2)
DOM 19.20 25.02 26.59 19.61 22.61 20.40 34.87 14.71 21.79
SPO 17.71 17.98 21.95 19.98 19.40 22.54 38.58 9.70 27.58
GVN 24.93 26.87 31.66 25.25 27.18 10.15 54.91 60.20 27.32 40.69
LAU 27.31 25.49 24.79 28.79 26.59 67.43 117.47 152.05 87.00 105.99
SYO 26.90 23.46 29.78 26.00 26.54 9.38 33.64 79.54 27.79 40.81
Tab.3  Seasonal and annual statistics of downwelling surface longwave and shortwave radiation statistics for the five BSRN stations. Here, only the results of NoahMP with FM mode are shown
Fig.6  (a)–(b) Mean monthly incident longwave radiation at the surface. BSRN, Model, denotes station-averaged observation and forecast data (NoahMP FM simulation) respectively. Group is computed for additional locations of similar characteristics from the forecasts. (a) Coastal stations, Group number is 16, including 3 BSRN station sites (GVN, LAU, SYO). (b) Inland stations, Group number is 12, including 2 BSRN station sites (DOM, SPO).
Fig.7  (a)–(c) Mean monthly incident shortwave radiation at the surface. BSRN, Model, denotes station-averaged observation and forecast data (NoahMP FM simulation) respectively. Group is computed for additional locations of similar characteristics from the forecasts. (a) Coastal stations. Group number is 16, including 3 BSRN station sites (GVN, LAU, SYO). (b) Plateau stations. Group number is 5, including 1 BSRN station site (DOM). (c) South Pole other inland stations. Group number is 7, including 1 BSRN station site (SPO).
Level(hPa) July January July January
CORR BIAS RMSE CORR BIAS RMSE CORR BIAS RMSE CORR BIAS RMSE
Air temperature (°C) Height (m)
975 0.83 −0.85 2.18 0.83 −0.10 1.64 0.99 −2.46 8.45 0.94 −2.28 11.05
950 0.90 −0.28 1.79 0.88 −0.50 1.56 0.99 −0.69 9.88 0.96 −1.43 10.39
925 0.94 0.05 1.47 0.91 −0.28 1.22 0.99 0.70 9.43 0.98 0.19 9.46
850 0.95 0.12 1.26 0.94 −0.20 1.03 0.91 −1.08 25.39 0.98 0.08 9.56
700 0.96 −0.13 1.00 0.96 −0.19 0.93 0.99 1.95 11.27 0.98 −0.13 10.26
600 0.97 0.04 0.99 0.96 0.00 0.90 0.98 1.21 16.38 0.97 −1.06 15.34
500 0.97 0.09 0.79 0.98 −0.02 0.74 0.99 5.74 15.08 0.99 2.36 13.51
400 0.98 0.07 0.69 0.98 −0.04 0.70 0.99 4.16 15.36 0.99 0.88 14.71
300 0.96 0.00 0.81 0.96 0.01 0.87 0.97 6.96 27.36 0.99 2.01 17.53
200 0.96 0.20 1.15 0.97 0.01 1.04 0.97 17.97 30.01 0.97 11.90 29.46
150 0.95 0.10 0.98 0.95 −0.15 0.93 0.96 13.25 33.66 0.96 4.98 28.13
100 0.91 0.11 1.04 0.92 −0.25 1.04 0.95 15.88 45.46 0.96 4.33 24.58
Wind speed (m/s) Relative humidity (%)
975 0.74 0.73 3.36 0.66 0.31 3.03 0.52 3.94 19.06 0.51 7.90 17.03
950 0.83 0.16 3.93 0.75 0.24 3.34 0.64 −2.09 17.12 0.66 5.12 14.59
925 0.86 −0.10 3.76 0.84 −0.13 3.24 0.73 −3.21 16.90 0.72 4.37 14.59
850 0.91 −0.41 3.09 0.87 −0.12 2.76 0.82 −2.55 17.07 0.75 3.11 15.68
700 0.92 −0.39 2.53 0.91 −0.49 2.19 0.83 −0.89 17.16 0.79 1.51 17.26
600 0.93 −0.07 2.77 0.92 −0.30 2.25 0.82 1.23 16.52 0.79 2.32 17.12
500 0.95 −0.22 3.07 0.95 −0.23 2.22 0.80 1.63 16.64 0.75 4.75 17.45
400 0.96 −0.32 3.41 0.95 −0.67 3.47 0.78 2.60 15.26 0.73 6.54 16.72
300 0.97 −0.17 3.54 0.97 −0.23 2.95 0.77 4.22 13.55 0.75 7.81 16.46
200 0.97 0.34 2.90 0.97 0.04 2.27            
150 0.97 0.53 2.67 0.96 0.15 2.16            
100 0.94 0.36 2.96 0.88 0.34 2.59            
Tab.4  Domain-averaged upper air statistics for July 2008 and January 2009
Fig.8  (a)–(c) July 2008 and (d)–(f) January 2009 monthly means vertical temperature profiles for 22 stations of observations (Figs. 8(a) and 8(d)), PWRFs (Figs. 8(b) and 8(e)), and means (Figs. 8(c) and 8(f)) plotted from 925 hPh to 100 hPa vertical levels. Figures 8(a), 8(b), 8(d), and 8(e) are individual stations plotted with dashed lines. Figures 8(c) and 8(f) are the station means with the blue solid line for observation and red dashed line for PWRF. Thick horizontal bars (blue) and thin horizontal bars (red) at the vertical standard levels represent standard deviation for observation and PWRF, respectively.
Fig.9  (a)–(c) July 2009 and (d)–(f) January 2009 monthly means vertical distribution of horizontal wind speed profiles for 22 stations of observations (Figs. 9(a) and 9(d)), PWRFs (Figs. 9(b) and 9(e)), and means (Figs. 9(c) and 9(f)) plotted from 925 hPh to 100 hPa vertical level. Figures 9(a), 9(b), 9(d), and 9(e) are individual stations plotted with dashed lines. Figures 9(c) and 9(f) are the stations means with the blue solid line for observation and red dashed line for PWRF. Thick horizontal bars (blue) and thin horizontal bars (red) at the vertical standard levels represent standard deviation for observation and PWRF, respectively.
Model PWRF403 WRF411 PWRF411
LSM NoahMP Noah NoahMP Noah NoahMP Noah
January ( n = 87)
CORR 0.69 0.71 0.69 0.72 0.73 0.72
BIAS 0.62 −0.95 0.74 −0.86 −1.15 −0.84
RMSE 3.27 3.06 3.29 3.06 2.88 3.00
July( n = 67)
CORR 0.85 0.85 0.84 0.84 0.84 0.84
BIAS −0.87 −0.72 −0.96 −0.77 −0.96 −0.77
RMSE 4.08 4.03 4.03 3.99 4.03 3.99
Tab.5  Domin-averaged 2 m temperature statistics for January and July (°C, n = number of stations)
Fig.10  The bias (Model versus Observations) of 2 m temperature for (a) PWRF411 NoahMP, (b) PWRF411 Noah, and (c) WRF NoahMP in January 2009. The total station number is 87. Dots with a black circle means the correlation ≥ the annual average of domain-averaged (0.81).
Fig.11  The bias of (Model versus ERA-Interim forecast) of 2 m temperature for (a) PWRF411 NoahMP, (b) PWRF411 Noah, and (c) WRF NoahMP in January 2009.
Fig.12  The bias (Model versus ERA-Interim forecast) of longwave radiation at the surface down for (a) PWRF411 NoahMP, (b) PWRF411 Noah, and (c) WRF NoahMP in January 2009.
Fig.13  The bias (Model versus ERA-Interim forecast) of shortwave radiation at the surface down for (a) PWRF411 NoahMP, (b) WRF411 NoahMP, (c) PWRF403 NoahMP, (d) PWRF411 Noah, (e) WRF411 Noah, and (f) PWRF403 Noah in January 2009.
Reanalysis NoahMP Noah
E5 EI E5 EI E5 EI
January
2 m Temperature (°C) n = 87
CORR 0.80 0.85 0.74 0.73 0.74 0.72
BIAS −0.97 −0.20 −1.56 −1.15 −1.17 −0.84
RMSE 2.14 2.00 2.80 2.88 2.92 3.00
2 m Dew point (°C) n = 70
CORR 0.78 0.72 0.72 0.71 0.72 0.70
BIAS −0.54 0.09 −0.21 0.26 −0.39 −0.03
RMSE 2.53 2.73 2.92 3.03 2.87 3.00
Surface pressure (hPa) n = 83
CORR 0.97 0.99 0.99 0.99 0.99 0.99
BIAS 1.43 0.61 1.06 0.52 1.00 0.48
RMSE 2.21 1.70 1.94 1.65 1.91 1.65
10 m Wind speed (m/s) n = 80
CORR 0.69 0.66 0.65 0.62 0.65 0.62
BIAS −0.70 −0.58 0.30 −0.02 0.31 0.02
RMSE 2.88 2.98 2.94 3.04 2.94 3.04
July
2 m Temperature (°C) n = 67
CORR 0.89 0.89 0.83 0.84 0.84 0.84
BIAS 0.22 −0.06 −1.25 −0.96 −1.09 −0.77
RMSE 2.98 3.21 3.94 4.03 3.90 3.99
2 m Dew point (°C) n = 57
CORR 0.86 0.83 0.84 0.83 0.83 0.83
BIAS −0.65 −0.69 −1.17 −0.78 −1.53 −0.91
RMSE 3.59 4.20 3.97 4.03 4.10 4.01
Surface pressure (hPa) n = 66
CORR 0.99 0.99 0.99 0.99 0.99 0.99
BIAS 2.60 1.46 2.20 1.41 2.18 1.40
RMSE 3.36 2.57 2.98 2.43 2.97 2.42
10 m Wind speed (m/s) n = 59
CORR 0.72 0.67 0.69 0.68 0.69 0.68
BIAS −0.67 0.05 1.55 0.99 1.82 1.23
RMSE 3.98 4.15 4.51 4.34 4.62 4.41
Tab.6  January and July correlations (CORR), RMSE, and bias from the Reanalysis, PWRF 48 hour forecast (spin-up 24 hour) with ERA5 (E5) and ERA-Interim (EI) (n = number of stations, domain-averaged statistics)
MPFM MPCM
JJA SON DJF MAM JJA SON DJF MAM
2 m Temperature (°C)
CORR 0.84 0.84 0.77 0.82 0.84 0.84 0.77 0.82
BIAS −0.99 −0.58 −1.18 −1.21 −0.92 −0.50 −0.96 −1.02
RMSE 4.03 3.34 3.06 4.04 3.94 3.25 2.88 3.87
2 m Dew point (°C)
CORR 0.83 0.80 0.72 0.81 0.83 0.80 0.73 0.81
BIAS −0.84 −0.16 0.28 −1.22 −0.76 −0.08 0.51 −1.03
RMSE 4.19 3.50 3.25 4.28 4.15 3.45 3.16 4.16
Surface pressure (hPa)
CORR 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
BIAS 1.38 1.15 0.67 1.08 1.36 1.11 0.65 1.06
RMSE 2.28 2.00 1.76 2.14 2.27 1.99 1.75 2.13
10 m Wind speed (m/s)
CORR 0.66 0.66 0.65 0.66 0.66 0.66 0.64 0.66
BIAS 0.87 0.41 −0.01 0.32 0.87 0.42 −0.02 0.31
RMSE 4.20 3.88 3.20 4.14 4.19 3.88 3.21 4.14
Tab.7  Seasonal domain-averaged statistics for NoahMP of FM and CM
Fig.14  Diurnal 2 m temperature cycle of nine stations located at Antarctic coastline for observation (solid blue line), PWRF411 NoahMP simulated with FM and CM (solid green line and dashed green line), and PWRF411 Noah simulated with FM and CM (solid red line and dashed red line), respectively. The standard deviation plotted as vertical error bar for observation (OBS), NoahMP and Noah in FM. Note that observations are every 3 h at Halley, Neumayer, Syowa, Mawson, Davis, Casey, and Dumont D’Urville while every 6 h at Mirny and McMurdo.
1 R B Alley, K A Emanuel, F Zhang. ( 2019). Advances in weather prediction. Science, 363( 6425): 342– 344
https://doi.org/10.1126/science.aav7274
2 P Bauer, A Thorpe, G Brunet. ( 2015). The quiet revolution of numerical weather prediction. Nature, 525( 7567): 47– 55
https://doi.org/10.1038/nature14956
3 P Berrisford D P Dee P Poli R Brugge M Fielding M Fuentes P W Kållberg S Kobayashi S Uppala A Simmons ( 2011). The ERA-Interim archive Version 2.0. ECMWF
4 T J Bracegirdle, G J Marshall. ( 2012). The reliability of antarctic tropospheric pressure and temperature in the latest global reanalyses. J Clim, 25( 20): 7138– 7146
https://doi.org/10.1175/JCLI-D-11-00685.1
5 D H Bromwich, L Bai, G G Bjarnason. ( 2005). High-resolution regional climate simulations over iceland using Polar MM5*. Mon Weather Rev, 133( 12): 3527– 3547
https://doi.org/10.1175/MWR3049.1
6 D H Bromwich, K M Hines, L Bai. ( 2009). Development and testing of polar weather research and forecasting model: 2. Arctic Ocean. J Geophys Res, 114( D8): D08122
https://doi.org/10.1029/2008JD010300
7 D H Bromwich, J P Nicolas, K M Hines, J E Kay, E L Key, M A Lazzara, D Lubin, G M McFarquhar, I V Gorodetskaya, D P Grosvenor, T Lachlan-Cope, N P M van Lipzig. ( 2012). Tropospheric clouds in Antarctica. Rev Geophys, 50( 1): RG1004
https://doi.org/10.1029/2011RG000363
8 D H Bromwich, J P Nicolas, A J Monaghan, M A Lazzara, L M Keller, G A Weidner, A B Wilson. ( 2013a). Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci, 6( 2): 139– 145
https://doi.org/10.1038/ngeo1671
9 D H Bromwich, J P Nicolas, A J Monaghan, M A Lazzara, L M Keller, G A Weidner, A B Wilson. ( 2014). Erratum: corrigendum: Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci, 7( 1): 76
https://doi.org/10.1038/ngeo2016
10 D H Bromwich F O Otieno K M Hines K W Manning E Shilo ( 2013b). Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic J Geophys Res D Atmospheres, 118( 2): 274− 292
11 D H Bromwich, A B Wilson, L Bai, Z Liu, M Barlage, C F Shih, S Maldonado, K M Hines, S H Wang, J Woollen, B Kuo, H C Lin, T K Wee, M C Serreze, J E Walsh. ( 2018). The arctic system reanalysis, Version 2. Bull Am Meteorol Soc, 99( 4): 805– 828
https://doi.org/10.1175/BAMS-D-16-0215.1
12 J J Cassano, M E Higgins, M W Seefeldt. ( 2011). Performance of the weather research and forecasting model for month-long Pan-Arctic simulations. Mon Weather Rev, 139( 11): 3469– 3488
https://doi.org/10.1175/MWR-D-10-05065.1
13 S Y Chen, T K Wee, Y H Kuo, D H Bromwich. ( 2014). An impact assessment of GPS radio occultation data on prediction of a rapidly developing cyclone over the Southern Ocean. Mon Weather Rev, 142( 11): 4187– 4206
https://doi.org/10.1175/MWR-D-14-00024.1
14 R M DeConto, D Pollard. ( 2016). Contribution of Antarctica to past and future sea-level rise. Nature, 531( 7596): 591– 597
https://doi.org/10.1038/nature17145
15 J M Glisan, W J Jr Gutowski, J J Cassano, M E Higgins. ( 2013). Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J Clim, 26( 12): 3985– 3999
https://doi.org/10.1175/JCLI-D-12-00318.1
16 Z Guo, D H Bromwich, J J Cassano. ( 2003). Evaluation of Polar MM5 simulations of antarctic atmospheric circulation. Mon Weather Rev, 131( 2): 384– 411
https://doi.org/10.1175/1520-0493(2003)131<0384:EOPMSO>2.0.CO;2
17 K M Hines, D H Bromwich. ( 2008). Development and testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland ice sheet meteorology. Mon Weather Rev, 136( 6): 1971– 1989
https://doi.org/10.1175/2007MWR2112.1
18 K M Hines, D H Bromwich. ( 2017). Simulation of late summer Arctic clouds during ASCOS with Polar WRF. Mon Weather Rev, 145( 2): 521– 541
https://doi.org/10.1175/MWR-D-16-0079.1
19 K M Hines, D H Bromwich, L Bai, C M Bitz, J G Powers, K W Manning. ( 2015). Sea ice enhancements to Polar WRF. Mon Weather Rev, 143( 6): 2363– 2385
https://doi.org/10.1175/MWR-D-14-00344.1
20 K M Hines, D H Bromwich, L S Bai, M Barlage, A G Slater. ( 2011). Development and testing of Polar WRF. Part III: Arctic land. J Clim, 24( 1): 26– 48
https://doi.org/10.1175/2010JCLI3460.1
21 K M Hines D H Bromwich S H Wang I Silber J Verlinde D Lubin( 2019). Microphysics of summer clouds in central west Antarctica simulated by Polar WRF and AMPS. Atmos Chem Phys Discuss,
22 M J Iacono, J S Delamere, E J Mlawer, M W Shephard, S A Clough, W D Collins. ( 2008). Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res, 113( D13): D13103
https://doi.org/10.1029/2008JD009944
23 P D Jones, D H Lister. ( 2015). Antarctic near-surface air temperatures compared with ERA-Interim values since 1979. Int J Climatol, 35( 7): 1354– 1366
https://doi.org/10.1002/joc.4061
24 T Jung P Bauer H Goessling N Gordon S Klebe D Bromwich F Doblas-Reyes J Day C Fairall M Holland T Iversen P Lemke B Mills P Nurmi D Perovich P Reid I Renfrew G Smith G Svensson M Tolstykh. ( 2015). The WWRP Polar Prediction Project (PPP). In: Seamless Prediction of The Earth System: From Minutes to Months, WMO-No. 1156, Geneva, WMO
25 J S Kain. ( 2004). The Kain-Fritsch convective parameterization: an update. J Appl Meteorol, 43( 1): 170– 181
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
26 M C 2nd Kennicutt, S L Chown, J J Cassano, D Liggett, R Massom, L S Peck, S R Rintoul, J W V Storey, D G Vaughan, T J Wilson, W J Sutherland. ( 2014). Polar research: six priorities for Antarctic science. Nature, 512( 7512): 23– 25
https://doi.org/10.1038/512023a
27 M C II Kennicutt, S L Chown, J J Cassano, D Liggett, L S Peck, R Massom, S R Rintoul, J Storey, D G Vaughan, T J Wilson, I Allison, J Ayton, R Badhe, J Baeseman, P J Barrett, R E Bell, N Bertler, S Bo, A Brandt, D Bromwich, S C Cary, M S Clark, P Convey, E S Costa, D Cowan, R Deconto, R Dunbar, C Elfring, C Escutia, J Francis, H A Fricker, M Fukuchi, N Gilbert, J Gutt, C Havermans, D Hik, G Hosie, C Jones, Y D Kim, Maho Y Le, S H Lee, M Leppe, G Leitchenkov, X Li, V Lipenkov, K Lochte, J López-Martínez, C Lüdecke, W Lyons, S Marenssi, H Miller, P Morozova, T Naish, S Nayak, R Ravindra, J Retamales, C A Ricci, M Rogan-Finnemore, Y Ropert-Coudert, A A Samah, L Sanson, T Scambos, I R Schloss, K Shiraishi, M J Siegert, J C Simões, B Storey, M D Sparrow, D H Wall, J C Walsh, G Wilson, J G Winther, J C Xavier, H Yang, W J Sutherland. ( 2015). A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct Sci, 27( 1): 3– 18
https://doi.org/10.1017/S0954102014000674
28 M C II Kennicutt, Y D Kim, M Rogan-Finnemore, S Anandakrishnan, S L Chown, S Colwell, D Cowan, C Escutia, Y Frenot, J Hall, D Liggett, A J Mcdonald, U Nixdorf, M J Siegert, J Storey, A Wåhlin, A Weatherwax, G S Wilson, T Wilson, R Wooding, S Ackley, N Biebow, D Blankenship, S Bo, J Baeseman, C A Cárdenas, J Cassano, C Danhong, J Dañobeitia, J Francis, J Guldahl, G Hashida, L J Corbalán, A Klepikov, J Lee, M Leppe, F Lijun, J López-Martinez, M Memolli, Y Motoyoshi, R M Bueno, J Negrete, M A O Cárdenes, M P Silva, S Ramos-Garcia, H Sala, H Shin, X Shijie, K Shiraishi, T Stockings, S Trotter, D G Vaughan, Menezes J V D U De, V Vlasich, Q Weijia, J G Winther, H Miller, S Rintoul, H Yang. ( 2016). Delivering 21st century Antarctic and Southern Ocean science. Antarct Sci, 28( 6): 407– 423
https://doi.org/10.1017/S0954102016000481
29 P A Mayewski, M P Meredith, C P Summerhayes, J Turner, A Worby, P J Barrett, G Casassa, N A N Bertler, T Bracegirdle, A C Naveira Garabato, D Bromwich, H Campbell, G S Hamilton, W B Lyons, K A Maasch, S Aoki, C Xiao, T van Ommen. ( 2009). State of the Antarctic and Southern Ocean climate system. Rev Geophys, 47( 1): RG1003
https://doi.org/10.1029/2007RG000231
30 G Miguez-Macho, G L Stenchikov, A Robock. ( 2004). Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res D Atmosph, 109: D13104
https://doi.org/10.1029/2003JD004495
31 A Monaghan, D Bromwich. ( 2008). Global warming at the poles. Nat Geosci, 1( 11): 728– 729
https://doi.org/10.1038/ngeo346
32 M Nakanishi, H Niino. ( 2009). Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn, 87( 5): 895– 912
https://doi.org/10.2151/jmsj.87.895
33 G Y Niu, Z L Yang, K E Mitchell, F Chen, M B Ek, M Barlage, A Kumar, K Manning, D Niyogi, E Rosero, M Tewari, Y Xia. ( 2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res D Atmospheres, 116( D12): D12109
https://doi.org/10.1029/2010JD015139
34 J B Olson J S Kenyon W A Angevine J M Brown M Pagowski K Sušelj ( 2019). A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW
35 J G Powers, J B Klemp, W C Skamarock, C A Davis, J Dudhia, D O Gill, J L Coen, D J Gochis, R Ahmadov, S E Peckham, G A Grell, J Michalakes, S Trahan, S G Benjamin, C R Alexander, G J Dimego, W Wang, C S Schwartz, G S Romine, Z Liu, C Snyder, F Chen, M J Barlage, W Yu, M G Duda. ( 2017). The weather research and forecasting model: overview, system efforts, and future directions. Bull Am Meteorol Soc, 98( 8): 1717– 1737
https://doi.org/10.1175/BAMS-D-15-00308.1
36 J G Powers, K W Manning, D H Bromwich, J J Cassano, A M Cayette. ( 2012). A decade of Antarctic science support through AMPS. Bull Am Meteorol Soc, 93( 11): 1699– 1712
https://doi.org/10.1175/BAMS-D-11-00186.1
37 T A Scambos, R E Bell, R B Alley, S Anandakrishnan, D H Bromwich, K Brunt, K Christianson, T Creyts, S B Das, R DeConto, P Dutrieux, H A Fricker, D Holland, J MacGregor, B Medley, J P Nicolas, D Pollard, M R Siegfried, A M Smith, E J Steig, L D Trusel, D G Vaughan, P L Yager. ( 2017). How much, how fast? A science review and outlook for research on the instability of Antarctica’s Thwaites Glacier in the 21st century. Global Planet Change, 153: 16– 34
https://doi.org/10.1016/j.gloplacha.2017.04.008
38 R C Scott, J P Nicolas, D H Bromwich, J R Norris, D Lubin. ( 2019). Meteorological drivers and large-scale climate forcing of West Antarctic surface melt. J Clim, 32( 3): 665– 684
https://doi.org/10.1175/JCLI-D-18-0233.1
39 M C Urban, G Bocedi, A P Hendry, J B Mihoub, G Pe’er, A Singer, J R Bridle, L G Crozier, Meester L De, W Godsoe, A Gonzalez, J J Hellmann, R D Holt, A Huth, K Johst, C B Krug, P W Leadley, S C F Palmer, J H Pantel, A Schmitz, P A Zollner, J M Travis. ( 2016). Improving the forecast for biodiversity under climate change. Science, 353( 6304): aad8466
https://doi.org/10.1126/science.aad8466
40 A B Wilson, D H Bromwich, K M Hines. ( 2011). Evaluation of Polar WRF forecasts on the Arctic system reanalysis domain: surface and upper air analysis. J Geophys Res, 116( D11): D11112
https://doi.org/10.1029/2010JD015013
41 A B Wilson, D H Bromwich, K M Hines. ( 2012). Evaluation of Polar WRF forecasts on the Arctic System Reanalysis Domain: 2. atmospheric hydrologic cycle. J Geophys Res D Atmosph, 117: D04107
https://doi.org/10.1029/2011JD016765
42 J Xue, D H Bromwich, Z Xiao, L Bai. ( 2021). Impacts of initial conditions and model configuration on simulations of polar lows near Svalbard using Polar WRF with 3DVAR. Q J R Meteorol Soc, 147( 740): 3806– 3834
https://doi.org/10.1002/qj.4158
43 X Zou, D H Bromwich, J P Nicolas, A Montenegro, S H Wang. ( 2019). West Antarctic surface melt event of January 2016 facilitated by föhn warming. Q J R Meteorol Soc, 145( 719): 687– 704
https://doi.org/10.1002/qj.3460
[1] Sheng WANG, Guanghe RAN, Lin WANG, Biao SHI, . An evaluation on performance of rural eco-environment public expenditure of Chinese local governments : theoretical and empirical analysis[J]. Front. Earth Sci., 2009, 3(4): 431-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed