Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (2) : 391-406    https://doi.org/10.1007/s11707-022-1005-2
RESEARCH ARTICLE
Hybrid global gridded snow products and conceptual simulations of distributed snow budget: evaluation of different scenarios in a mountainous watershed
Mercedeh TAHERI1,2, Milad Shamsi ANBOOHI1, Rahimeh MOUSAVI3, Mohsen NASSERI1()
1. School of Civil Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
2. Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
3. Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 45371-38791, Iran
 Download: PDF(23802 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Considering snowmelt in mountainous areas as the important source of streamflow, the snow accumulation/melting processes are vital for accurate simulation of the hydrological regimes. The lack of snow-related data and its uncertainties/conceptual ambiguity in snowpack modeling are the different challenges of developing hydro-climatological models. To tackle these challenges, Global Gridded Snow Products (GGSPs) are introduced, which effectively simplify the identification of the spatial characteristics of snow hydrological variables. This research aims to investigate the performance of multi-source GGSPs using multi-stage calibration strategies in hydrological modeling. The used GGSPs were Snow-Covered Area (SCA) and Snow Water Equivalent (SWE), implemented individually or jointly to calibrate an appropriate water balance model. The study area was a mountainous watershed located in Western Iran with a considerable contribution of snowmelt to the generated streamflow. The results showed that using GGSPs as complementary information in the calibration process, besides streamflow time series, could improve the modeling accuracy compared to the conventional calibration, which is only based on streamflow data. The SCA with NSE, KGE, and RMSE values varying within the ranges of 0.47–0.57, 0.54–0.65, and 4–6.88, respectively, outperformed the SWE with the corresponding metrics of 0.36–0.59, 0.47–0.60, and 5.22–7.46, respectively, in simulating the total streamflow of the watershed. In addition to the superiority of the SCA over SWE, the two-stage calibration strategy reduced the number of optimized parameters in each stage and the dependency of internal processes on the streamflow and improved the accuracy of the results compared with the conventional calibration strategy. On the other hand, the consistent contribution of snowmelt to the total generated streamflow (ranging from 0.9 to 1.47) and the ratio of snow melting to snowfall (ranging from 0.925 to 1.041) in different calibration strategies and models resulted in a reliable simulation of the model.

Keywords global gridded snow products      snow hydrology      multi-stage calibration strategy      hydro-climatological modeling      mountainous watershed     
Corresponding Author(s): Mohsen NASSERI   
Online First Date: 27 October 2022    Issue Date: 04 August 2023
 Cite this article:   
Mercedeh TAHERI,Milad Shamsi ANBOOHI,Rahimeh MOUSAVI, et al. Hybrid global gridded snow products and conceptual simulations of distributed snow budget: evaluation of different scenarios in a mountainous watershed[J]. Front. Earth Sci., 2023, 17(2): 391-406.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1005-2
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I2/391
Fig.1  Gheshlagh watershed along with hydrometric stations, rain gauges, river network, and altitude image.
Fig.2  The proposed framework to simulate the snowmelt and total runoff using one and two-stage calibration strategies and GGSPs
ScenarioCalibration StageParametersCalibration ReferenceObjective Function
???Sub-surface runoff coefficient (Kg)Surface runoff coefficient (Ks)Maximum soil moisture storage (Smax)Rainfall threshold temperature (Train)Snowfall threshold temperature (Tsnow)Snowmelt coefficient (Ksn)Snow density (P)SCA threshold to convert simulated SCA to 1 or 0 (SM)SCA threshold to convert satellite SCA to 1 (T1)SCA threshold to convert satellite SCA to 0 (T2)
S1*******RunoffObj1
S2***************SCASWESCA and SWEObj2Obj3 Obj7
****RunoffObj1
S3********************* * * ******SCA and RunoffSWE and RunoffSCA and SWE and RunoffObj4Obj5Obj6
Tab.1  Parameter set of hydrological model by scenario, calibration stage and reference, and objective function
NSER
CalibrationValidationCalibrationValidation
Water balance modelWang0.720.420.730.68
abc0.370.530.590.60
WASMOD-M0.340.550.590.56
RAO?0.110.300.310.24
Karpouzos0.040.400.310.40
Guo0.180.500.640.64
Jazim0.310.420.550.65
Water balance model combined with snowpack moduleWang-Guo0.730.420.740.68
Wang- McCabe0.6710.4340.8250.66
Wang-Xu0.012?0.0990.4970.383
Wang-Parajaka?0.117?0.104??
Wang-WASMOD-M?0.128?0.118??
Tab.2  NSE and CC indicators for monthly water balance conceptual models and snowpack simulation modules
Fig.3  NSE, KGE, and RMSE (mm) metrics for the proposed scenarios using SCA, SWE, and SCA&SWE products and hydrologic models (MWWB-1 and MWWB-2).
Fig.4  Time series of the observed and simulated streamflow during the period of 2000–2015 based on the proposed calibration scenarios and hydrologic models, (a) calibration using SCA, (b) calibration using SWE, (c) calibration using SCA & SWE.
Fig.5  Spatial distribution of HSS for SCA variable in the second and third calibration scenarios using SCA and SWE&SCA.
Fig.6  Spatial distribution of RE for SWE variable in the second and third calibration scenarios using SWE and SWE&SCA.
ScenarioSCASWESCA & SWESCA/SCA & SWESWE/SCA & SWESCA/SWE
MWWB-1Ratio of snowmelt to streamflow
S20.7630.7280.8070.9450.9021.048
S30.6120.5910.6270.9770.9421.037
Ratio of snowmelt to snowfall
S20.8610.8320.8690.9910.9571.035
S30.7450.7870.7620.9781.0320.948
MWWB-2Ratio of snowmelt to streamflow
S20.7590.7460.7251.0471.0301.017
S30.7130.6820.7101.0040.9611.045
Ratio of snowmelt to snowfall
S20.9350.9810.9830.9520.9990.953
S30.9300.8930.9660.9630.9251.041
Tab.3  Contribution of snowmelt in generated streamflow and snowfall in the hydrologic models (the second and third calibration scenarios, and the three calibration references)
1 N K, Ajami H, Gupta T, Wagener S Sorooshian (2004). Calibration of a semi-distributed hydrologic model for streamflow estimation along with a river system. J Hydrol (Amst), 298(1−4): 112−135
2 Y, Amini M Nasseri (2021). Improving spatial estimation of hydrologic attributes via optimized moving search strategies.Arab J Geosci, 14(8): 723
https://doi.org/10.1007/s12517-021-06961-3
3 K M, Andreadis D P Lettenmaier (2006). Assimilating remotely sensed snow observations into a macroscale hydrology model.Adv Water Resour, 29(6): 872–886
https://doi.org/10.1016/j.advwatres.2005.08.004
4 K J Beven (2011). Rainfall-Runoff Modeling: the Primer. New York: John Wiley & Sons
5 Q, Bian Z, Xu L, Zhao Y F, Zhang H, Zheng C, Shi S, Zhang C, Xie Z L Yang (2019). Evaluation and intercomparison of multiple snow water equivalent products over the Tibetan Plateau.J Hydrometeorol, 20(10): 2043–2055
https://doi.org/10.1175/JHM-D-19-0011.1
6 M, Bigdeli M, Taheri A Mohammadian (2021). Spatial sensitivity analysis of COVID-19 infections concerning the satellite-based four air pollutants levels.Int J Environ Sci Technol, 18(3): 751–760
https://doi.org/10.1007/s13762-020-03112-1 pmid: 33456479
7 X, Chen D, Long Y, Hong C, Zeng D Yan (2017). Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour Res, 53(3): 2431–2466
8 M P, Clark A G, Slater A P, Barrett L E, Hay G J, McCabe B, Rajagopalan G H Leavesley (2006). Assimilation of snow-covered area information into hydrological and land-surface models.Adv Water Resour, 29(8): 1209–1221
https://doi.org/10.1016/j.advwatres.2005.10.001
9 D, Cline K, Elder R Bales (1998). Scale effects in a distributed snow water equivalence and snowmelt model for mountain basins. Hydrol Processes, 12(10−11): 1527−1536
10 C, Corbari G, Ravazzani J, Martinelli M Mancini (2009). Elevation-based correction of snow coverage retrieved from satellite images to improve model calibration.Hydrol Earth Syst Sci, 13(5): 639–649
https://doi.org/10.5194/hess-13-639-2009
11 L, Dai T, Che Y Ding (2015). Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China.Remote Sens (Basel), 7(6): 7212–7230
https://doi.org/10.3390/rs70607212
12 B, Debele R, Srinivasan A K Gosain (2010). Comparison of process-based and temperature-index snowmelt modeling in SWAT.Water Resour Manage, 24(6): 1065–1088
https://doi.org/10.1007/s11269-009-9486-2
13 C, Derksen A, Walker B Goodison (2005). Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada. Remote Sens Environ, 96(3−4): 315−327
14 A J, Dietz C, Kuenzer U, Gessner S Dech (2012). Remote sensing of snow–a review of available methods.Int J Remote Sens, 33(13): 4094–4134
https://doi.org/10.1080/01431161.2011.640964
15 K A, Dressler G H, Leavesley R C, Bales S R Fassnacht (2006). Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrological model.Hydrol Process, 20(4): 673–688
https://doi.org/10.1002/hyp.6130
16 Q, Duan S, Sorooshian V Gupta (1992). Effective and efficient global optimization for conceptual rainfall-runoff models.Water Resour Res, 28(4): 1015–1031
https://doi.org/10.1029/91WR02985
17 D, Duethmann J, Peters T, Blume S, Vorogushyn A Güntner (2014). The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia.Water Resour Res, 50(3): 2002–2021
https://doi.org/10.1002/2013WR014382
18 R V, Engeset H C, Udnæs T, Guneriussen H, Koren E, Malnes R, Solberg E Alfnes (2003). Improving runoff simulations using satellite-observed time-series of snow-covered areas.Nord Hydrol, 34(4): 281–294
https://doi.org/10.2166/nh.2003.0008
19 D, Finger F, Pellicciotti M, Konz S, Rimkus P Burlando (2011). The value of glacier mass balance, satellite snow cover images, and hourly discharge for improving the performance of a physically based distributed hydrological model. Water Resour Res, 47(7)
20 K J, Franz L R Karsten (2013). Calibration of a distributed snow model using MODIS snow covered area data.J Hydrol (Amst), 494: 160–175
https://doi.org/10.1016/j.jhydrol.2013.04.026
21 H, Gao J, Dong X, Chen H, Cai Zh, Liu Zh, Jin D, Mao Z, Yang Z Duan (2020). Stepwise modeling and the importance of internal variables validation to test model realism in a data scarce glacier basin.J Hydro, 591: 125457
https://doi.org/10.1016/j.jhydrol.2020.125457
22 A, Güntner S, Uhlenbrook J, Seibert C Leibundgut (1999). Multi-criterial validation of TOPMODEL in a mountainous catchment.Hydrol Processes, 13(11): 1603–1620
https://doi.org/10.1002/(SICI)1099-1085(19990815)13:11<1603::AID-HYP830>3.0.CO;2-K
23 S, Guo H, Chen H, Zhang L, Xiong P, Liu B, Pang G, Wang Y Wang (2005). A semi-distributed monthly water balance model and its application in a climate change impact study in the middle and lower Yellow River basin.Water Int, 30(2): 250–260
https://doi.org/10.1080/02508060508691864
24 D K, Hall G A Riggs (2007). Accuracy assessment of the MODIS snow products.Hydrol Processes, 21(12): 1534–1547
https://doi.org/10.1002/hyp.6715
25 D K, Hall G A Riggs (2015). MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, Version 6. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center
26 D K, Hall G A Riggs (2021). MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, Version 61. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center
27 P, Han D, Long Z, Han M, Du L, Dai X Hao (2019). Improved understanding of snowmelt runoff from the headwaters of China’s Yangtze River using remotely sensed snow products and hydrological modeling.Remote Sens Environ, 224: 44–59
https://doi.org/10.1016/j.rse.2019.01.041
28 Z H, He J, Parajka F Q, Tian G Blöschl (2014). Estimating degree day factors from MODIS for snowmelt runoff modeling.Hydrol Earth Syst Sci, 18(12): 4773–4789
https://doi.org/10.5194/hess-18-4773-2014
29 W W, Immerzeel P, Droogers Jong S M, De M F P Bierkens (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing.Remote Sens Environ, 113(1): 40–49
https://doi.org/10.1016/j.rse.2008.08.010
30 A A Jazim (2006). A monthly six-parameter water balance model and its application at arid and semiarid low yielding catchments.J King Saud U Eng Sci, 19(1): 65–81
https://doi.org/10.1016/S1018-3639(18)30848-1
31 D K, Karpouzos E A, Baltas S, Kavalieratou C Babajimopoulos (2011). A hydrological investigation using a lumped water balance model: the Aison River Basin case (Greece).Water Environ J, 25(3): 297–307
https://doi.org/10.1111/j.1747-6593.2010.00222.x
32 B, Khakbaz B, Imam K, Hsu S Sorooshian (2012). From lumped to distributed via semi-distributed: calibration strategies for semi-distributed hydrologic models.J Hydrol (Amst), 418−419: 61–77
https://doi.org/10.1016/j.jhydrol.2009.02.021
33 R S, Kim S, Kumar C, Vuyovich P, Houser J, Lundquist L, Mudryk M, Durand A, Barros E J, Kim B A, Forman E D, Gutmann M L, Wrzesien C, Garnaud M, Sandells H P, Marshall N, Cristea J M, Pflug J, Johnston Y, Cao D, Mocko S Wang (2021). Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling.Cryosphere, 15(2): 771–791
https://doi.org/10.5194/tc-15-771-2021
34 W J, Knoben J E, Freer R A Woods (2019). Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores..Hydrol Earth Syst Sci, 23(10): 4323–4331
https://doi.org/10.5194/hess-23-4323-2019
35 E, Lévesque F, Anctil Griensven A N N, Van N Beauchamp (2008). Evaluation of streamflow simulation by SWAT model for two small watersheds under snowmelt and rainfall.Hydrol Sci J, 53(5): 961–976
https://doi.org/10.1623/hysj.53.5.961
36 X, Li M W Williams (2008). Snowmelt runoff modelling in an arid mountain watershed, Tarim Basin, China.Hydrol Processes, 22(19): 3931–3940
https://doi.org/10.1002/hyp.7098
37 S, Li M, Liu J C, Adam H, Pi F, Su D, Li Z, Liu Z Yao (2021). Contribution of snow-melt water to the streamflow over the Three-River Headwater Region, China.Remote Sens (Basel), 13(8): 1585
https://doi.org/10.3390/rs13081585
38 J, Martinec A, Rango R Roberts (1994). The snowmelt runoff model user’s manual. In: Baumgartner M F, ed. Geographica Bernensia. University of Berne
39 G J, McCabe S L Markstrom (2007). A monthly water-balance model driven by a graphical user interface (Vol. 1088). Reston, VA: US Geological Survey
40 J Muñoz-Sabater (2019). ERA5-Land monthly averaged data from 1981 to present. In: Copernicus Climate Change Service (C3S) Climate Data Store (CDS)
41 S, Nemri Ch Kinnard (2020). Comparing calibration strategies of a conceptual snow hydrology model and their impact on model performance and parameter identifiability.J Hydrol (Amst), 582: 124474
https://doi.org/10.1016/j.jhydrol.2019.124474
42 Y, Orsolini M, Wegmann E, Dutra B, Liu G, Balsamo K, Yang Rosnay P, de C, Zhu W, Wang R, Senan G Arduini (2019). Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations.Cryosphere, 13(8): 2221–2239
https://doi.org/10.5194/tc-13-2221-2019
43 J, Parajka G Blöschl (2008). The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J Hydrol (Amst), 358(3−4): 240−258
44 J, Parajka R, Merz G Blöschl (2007). Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments.Hydrol Processes, 21(4): 435–446
https://doi.org/10.1002/hyp.6253
45 J Pulliainen (2006). Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations.Remote Sens Environ, 101(2): 257–269
https://doi.org/10.1016/j.rse.2006.01.002
46 D, Rabuffetti G, Ravazzani C, Corbari M Mancini (2008). Verification of operational Quantitative Discharge Forecast (QDF) for a regional warning system? the AMPHORE case studies in the upper Po River..Nat Hazards Earth Syst Sci, 8(1): 161–173
https://doi.org/10.5194/nhess-8-161-2008
47 A R, Rao A Al-Wagdany (1995). Effects of climatic change in Wabash river basin.J Irrig Drain Eng, 121(2): 207–215
https://doi.org/10.1061/(ASCE)0733-9437(1995)121:2(207
48 S, Reed V, Koren M, Smith Z, Zhang F, Moreda D J, Seo D M I P Participants (2004). Overall distributed model intercomparison project results. J Hydrol (Amst), 298(1−4): 27−60
49 J C Refsgaard (1997). Parameterisation, calibration and validation of distributed hydrological models. J Hydrol (Amst), 198(1−4): 69−97
50 P, Riboust G, Thirel Moine N, Le P Ribstein (2019). Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses.J Hydrol Hydromech, 67(1): 70–81
https://doi.org/10.2478/johh-2018-0004
51 P J Roebber (2009). Visualizing multiple measures of forecast quality.Weather Forecast, 24(2): 601–608
https://doi.org/10.1175/2008WAF2222159.1
52 M, Rodell P R Houser (2004). Updating a land surface model with MODIS-derived snow cover.J Hydrometeorol, 5(6): 1064–1075
https://doi.org/10.1175/JHM-395.1
53 A, Roy A, Royer R Turcotte (2010). Improvement of springtime streamflow simulations in a boreal environment by incorporating snow-covered area derived from remote sensing data. J Hydrol (Amst), 390(1−2): 35−44
54 J Seibert (2000). Multi-criteria calibration of a conceptual runoff model using a genetic algorithm.Hydrol Earth Syst Sci, 4(2): 215–224
https://doi.org/10.5194/hess-4-215-2000
55 M, Shrestha T, Koike Y, Hirabayashi Y, Xue L, Wang G, Rasul B Ahmad (2015). Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region.J Geophys Res Atmos, 120(10): 4889–4919
https://doi.org/10.1002/2014JD022666
56 M, Shrestha L, Wang T, Koike H, Tsutsui Y, Xue Y Hirabayashi (2014). Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote-sensing data.Hydrol Earth Syst Sci, 18(2): 747–761
https://doi.org/10.5194/hess-18-747-2014
57 A G, Slater M P Clark (2006). Snow data assimilation via an ensemble Kalman filter.J Hydrometeorol, 7(3): 478–493
https://doi.org/10.1175/JHM505.1
58 M B, Smith V, Koren Z, Zhang Y, Zhang S M, Reed Z, Cui F, Moreda B A, Cosgrove N, Mizukami E A, Anderson V, Andreassian J, Lerat C, Loumagne C, Perrin P, Ribstein H V, Gupta K K, Yilmaz P, Pokhrel T, Wagener M, Butts K, Yamagata S, Sorooshian B, Khakbaz A, Behrangi K, Hsu B, Imam Smedt F, De A, Safari M, Tavakoli L, Li X, Wang J, Wu C, Yang M, Yang Z, Yu T, Gan Z, Islam B, Vieux J, Looper Y, Xia K, Mitchell M, Ek N, McIntyre B, Orellana M, Sivapalan H, Li F, Tian J, Ryu J, Arnold G, Whittaker R, Confesor Luzio M Di (2012). Results of the DMIP 2 Oklahoma experiments.J Hydrol (Amst), 418-419: 17–48
https://doi.org/10.1016/j.jhydrol.2011.08.056
59 A A, Şorman A, Şensoy A E, Tekeli A Ü, Şorman Z Akyürek (2009). Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey.Hydrol Processes, 23(7): 1031–1040
https://doi.org/10.1002/hyp.7204
60 M, Taheri N, Dolatabadi M, Nasseri B, Zahraie Y, Amini G Schoups (2020). Localized linear regression methods for estimating monthly precipitation grids using elevation, rain gauge, and TRMM data.Theor Appl Climatol, 142(1–2): 623–641
https://doi.org/10.1007/s00704-020-03320-2
61 M, Taheri A, Mohammadian F, Ganji M, Bigdeli M Nasseri (2022). Energy-based approaches in estimating actual evapotranspiration focusing on land surface temperature: a review of methods, concepts, and challenges.Energies, 15(4): 1264
https://doi.org/10.3390/en15041264
62 A E, Tekeli Z, Akyürek A A, Şorman A, Şensoy A Ü Şorman (2005). Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey.Remote Sens Environ, 97(2): 216–230
https://doi.org/10.1016/j.rse.2005.03.013
63 G, Thirel P, Salamon P, Burek M Kalas (2013). Assimilation of MODIS snow cover area data in a distributed hydrological model using the particle filter.Remote Sens (Basel), 5(11): 5825–5850
https://doi.org/10.3390/rs5115825
64 H C, Udnæs E, Alfnes L M Andreassen (2007). Improving runoff modelling using satellite-derived snow covered area?.Nord Hydrol, 38(1): 21–32
https://doi.org/10.2166/nh.2007.032
65 R M, Vogel A Sankarasubramanian (2003). Validation of a watershed model without calibration. Water Resour Res, 39(10)
66 G Q, Wang J Y, Zhang Y Q, Xuan J F, Liu J L, Jin Z X, Bao R M, He C S, Liu Y L, Liu X L Yan (2013). Simulating the impact of climate change on runoff in a typical river catchment of the Loess Plateau, China.J Hydrometeorol, 14(5): 1553–1561
https://doi.org/10.1175/JHM-D-12-081.1
67 E, Widén-Nilsson S, Halldin C Y Xu (2007). Global water-balance modelling with WASMOD-M: parameter estimation and regionalisation. J Hydrol (Amst), 340(1−2): 105−118.
68 C Y Xu (1999). Estimation of parameters of a conceptual water balance model for ungauged catchments.Water Resour Manage, 13(5): 353–368
https://doi.org/10.1023/A:1008191517801
69 J W, Yang L M, Jiang J, Lemmetyinen K, Luojus M, Takala S L, Wu J M Pan (2020). Validation of remotely sensed estimates of snow water equivalent using multiple reference datasets from the middle and high latitudes of China.J Hydrol (Amst), 590: 125499
https://doi.org/10.1016/j.jhydrol.2020.125499
70 S, Yatheendradas C D P, Lidard V, Koren B A, Cosgrove Goncalves L G, De M, Smith J, Geiger Z, Cui J, Borak S V, Kumar D L, Toll G, Riggs N Mizukami (2012). Distributed assimilation of satellite‐based snow extent for improving simulated streamflow in mountainous, dense forests: an example over the DMIP2 western basins.Water Resour Res, 48(9): 2011WR011347
https://doi.org/10.1029/2011WR011347
71 B F, Zaitchik M Rodell (2009). Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model.J Hydrometeorol, 10(1): 130–148
https://doi.org/10.1175/2008JHM1042.1
72 M, Zappa F, Pos U, Strasser P, Warmerdam J Gurtz (2003). Seasonal water balance of an Alpine catchment as evaluated by different methods for spatially distributed snowmelt modelling.Nord Hydrol, 34(3): 179–202
https://doi.org/10.2166/nh.2003.0003
[1] Molly E. TEDESCHE, Steven R. FASSNACHT, Paul J. MEIMAN. Scales of snow depth variability in high elevation rangeland sagebrush[J]. Front. Earth Sci., 2017, 11(3): 469-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed