|
|
|
Low-latitude hydroclimate changes related to paleomagnetic variations during the Holocene in coastal southern China |
Tingwei ZHANG1, Xiaoqiang YANG1( ), Jian YIN1, Qiong CHEN2, Jianfang HU3, Lu WANG4, Mengshan JU5, Qiangqiang WANG1 |
1. School of Earth Science and Engineering/Guangdong, Provincial Key Laboratory of Geodynamics and Geohazards/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China 2. Institute of Cultural Heritage, Shandong University, Qingdao 266237, China 3. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 4. College of Urban and Environmental Sciences, Peking University, Beijing 100871, China 5. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China |
|
|
|
|
Abstract The variations in precipitation have displayed a complex pattern in different regions since the mid-to-late-Holocene. Cloud formation processes may have a significant impact on precipitation, especially during the tropical marine processes and summer monsoon which convey abundant water vapor to coastal southern China and inland areas. Here, we use two 7500 year sedimentary records from the Pearl River Delta and the closed Maar Lake, respectively, in coastal southern China to reconstruct the mid-to-late-Holocene humidity variability and explore its possible relationship with cloud cover modulated by the Earth’s magnetic fields (EMF). Our proxy records document an apparent increase in wetness in coastal southern China between 3.0 and 1.8 kyr BP. This apparent increase in humidity appears to be consistent with the lower virtual axial dipole moments and, in turn, with a lower EMF. This correlation suggests that the EMF might have been superimposed on the weakened monsoon to regulate the mid-to-late-Holocene hydroclimate in coastal southern China through the medium of galactic cosmic rays, aerosols, and cloud cover. However, further investigations are needed to verify this interaction.
|
| Keywords
hydroclimate variations
Earth’s magnetic field
coastal southern China
the Holocene epoch
|
|
Corresponding Author(s):
Xiaoqiang YANG
|
|
Online First Date: 29 February 2024
Issue Date: 19 July 2024
|
|
| 1 |
A, Abrajevitch K Kodama (2011). Diagenetic sensitivity of paleoenvironmental proxies: a rock magnetic study of Australian continental margin sediments.Geochem Geophys Geosyst, 12(5): Q05Z24
https://doi.org/10.1029/2010GC003481
|
| 2 |
M, Blaauw J Christen (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process.Bayesian Anal, 6(3): 457–474
https://doi.org/10.1214/ba/1339616472
|
| 3 |
Y, Cai L, Tan H, Cheng Z, An R L, Edwards M J, Kelly X, Kong X Wang (2010). The variation of summer monsoon precipitation in central China since the last deglaciation.Earth Planet Sci Lett, 291(1–4): 21–31
https://doi.org/10.1016/j.epsl.2009.12.039
|
| 4 |
S A, Campuzano Santis A, De F J, Pavón-Carrasco M L, Osete E Qamili (2018). New perspectives in the study of the Earth’s magnetic field and climate connection: the use of transfer entropy.PLoS One, 13(11): e0207270
https://doi.org/10.1371/journal.pone.0207270
|
| 5 |
K S, Carslaw R G, Harrison J Kirkby (2002). Cosmic rays, clouds, and climate.Science, 298(5599): 1732–1737
https://doi.org/10.1126/science.1076964
|
| 6 |
J E T, Channell L Vigliotti (2019). The role of geomagnetic field intensity in Late Quaternary evolution of humans and large mammals.Rev Geophys, 57(3): 709–738
https://doi.org/10.1029/2018RG000629
|
| 7 |
C, Constable M, Korte S Panovska (2016). Persistent high paleosecular variation activity in southern hemisphere for at least 10000 years.Earth Planet Sci Lett, 453: 78–86
https://doi.org/10.1016/j.epsl.2016.08.015
|
| 8 |
J L, Conroy J T, Overpeck J E, Cole T M, Shanahan M Steinitz-Kannan (2008). Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record.Quat Sci Rev, 27(11–12): 1166–1180
https://doi.org/10.1016/j.quascirev.2008.02.015
|
| 9 |
A, Cooper C S M, Turney J, Palmer A, Hogg M, McGlone J, Wilmshurst A M, Lorrey T J, Heaton J M, Russell K, McCracken J G, Anet E, Rozanov M, Friedel I, Suter T, Peter R, Muscheler F, Adolphi A, Dosseto J T, Faith P, Fenwick C J, Fogwill K, Hughen M, Lipson J, Liu N, Nowaczyk E, Rainsley Ramsey C, Bronk P, Sebastianelli Y, Souilmi J, Stevenson Z, Thomas R, Tobler R Zech (2021). A global environmental crisis 42000 years ago.Science, 371(6531): 811–818
https://doi.org/10.1126/science.abb8677
|
| 10 |
V, Courtillot Y, Gallet Mouël J L, Le F, Fluteau A Genevey (2007). Are there connections between the Earth’s magnetic field and climate?.Earth Planet Sci Lett, 253(3–4): 328–339
https://doi.org/10.1016/j.epsl.2006.10.032
|
| 11 |
V A, Dergachev P B, Dmitriev O M, Raspopov H Jungner (2007). Cosmic ray flux variations, modulated by the solar and terrestrial magnetic fields, and climate changes. Part 2: the time interval from ∼10000 to ∼100000 years ago.Geomagn Aeron, 47(1): 109–117
https://doi.org/10.1134/S0016793207010173
|
| 12 |
Z, Duan Q, Liu X, Yang X, Gao Y Su (2014). Magnetism of the Huguangyan Maar Lake sediments, Southeast China and its paleoenvironmental implications.Palaeogeogr Palaeoclimatol Palaeoecol, 395: 158–167
https://doi.org/10.1016/j.palaeo.2013.12.033
|
| 13 |
Y, Gallet A, Genevey F Fluteau (2005). Does Earth’s magnetic field secular variation control centennial climate change?.Earth Planet Sci Lett, 236(1–2): 339–347
https://doi.org/10.1016/j.epsl.2005.04.045
|
| 14 |
Z, Hao J, Zheng X, Zhang H, Liu M, Li Q Ge (2016). Spatial patterns of precipitation anomalies in eastern China during centennial cold and warm periods of the past 2000 years.Int J Climatol, 36(1): 467–475
https://doi.org/10.1002/joc.4367
|
| 15 |
I, Harris T J, Osborn P, Jones D Lister (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset.Sci Data, 7(1): 109
https://doi.org/10.1038/s41597-020-0453-3
|
| 16 |
R J, Harrison J M Feinberg (2008). FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing.Geochem Geophys Geosyst, 9(5): Q05016
https://doi.org/10.1029/2008GC001987
|
| 17 |
G H, Haug K A, Hughen D M, Sigman L C, Peterson U Röhl (2001). Southward migration of the intertropical convergence zone through the Holocene.Science, 293(5533): 1304–1308
https://doi.org/10.1126/science.1059725
|
| 18 |
C, Hu G M, Henderson J, Huang S, Xie Y, Sun K R Johnson (2008). Quantification of Holocene Asian monsoon rainfall from spatially separated cave records.Earth Planet Sci Lett, 266(3–4): 221–232
https://doi.org/10.1016/j.epsl.2007.10.015
|
| 19 |
E G, Hyland N D, Sheldon der Voo R, Van C, Badgley A Abrajevitch (2015). A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions.Geol Soc Am Bull, 127(7–8): 975–981
https://doi.org/10.1130/B31207.1
|
| 20 |
C, Jalihal J, Srinivasan A Chakraborty (2019). Modulation of Indian monsoon by water vapor and cloud feedback over the past 22,000 years.Nat Commun, 10(1): 5701
https://doi.org/10.1038/s41467-019-13754-6
|
| 21 |
J F, Ji J, Chen W, Balsam H Y, Lu Y B, Sun H F Xu (2004). High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle: rapid climatic response of the East Asian Monsoon to the tropical Pacific.Geophys Res Lett, 31(3): L03207
https://doi.org/10.1029/2003GL018975
|
| 22 |
Y, Jiang X Q, Yang X, Liu Y, Qian K, Zhang M, Wang F, Li Y, Wang Z Lu (2020). Impacts of wildfire aerosols on global energy budget and climate: the role of climate feedbacks.J Clim, 33(8): 3351–3366
https://doi.org/10.1175/JCLI-D-19-0572.1
|
| 23 |
E, Kalnay M, Kanamitsu R, Kistler W, Collins D, Deaven L, Gandin M, Iredell S, Saha G, White J, Woollen Y, Zhu A, Leetmaa R, Reynolds M, Chelliah W, Ebisuzaki W, Higgins J, Janowiak K C, Mo C, Ropelewski J, Wang R, Jenne D Joseph (1996). The NCEP/NCAR 40-year reanalysis project.Bull Am Meteorol Soc, 77(3): 437–472
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
|
| 24 |
M, Kanamitsu W, Ebisuzaki J, Woollen S K, Yang J J, Hnilo M, Fiorino G L Potter (2002). NCEP–DOE AMIP-II reanalysis (R-2).Bull Am Meteorol Soc, 83(11): 1631–1644
https://doi.org/10.1175/BAMS-83-11-1631
|
| 25 |
G, Kathayat H, Cheng A, Sinha C, Spötl R L, Edwards H, Zhang X, Li L, Yi Y, Ning Y, Cai W L, Lui S F Breitenbach (2016). Indian monsoon variability on millennial-orbital timescales.Sci Rep, 6(1): 24374
https://doi.org/10.1038/srep24374
|
| 26 |
A K Kerton (2009). Climate change and the Earth’s magnetic poles, a possible connection.Energy Environ, 20(1): 75–83
https://doi.org/10.1260/095830509787689286
|
| 27 |
J Kirkby (2007). Cosmic rays and climate.Surv Geophys, 28(5–6): 333–375
https://doi.org/10.1007/s10712-008-9030-6
|
| 28 |
J, Kirkby J, Duplissy K, Sengupta C, Frege H, Gordon C, Williamson M, Heinritzi M, Simon C, Yan J, Almeida J, Tröstl T, Nieminen I K, Ortega R, Wagner A, Adamov A, Amorim A K, Bernhammer F, Bianchi M, Breitenlechner S, Brilke X, Chen J, Craven A, Dias S, Ehrhart R C, Flagan A, Franchin C, Fuchs R, Guida J, Hakala C R, Hoyle T, Jokinen H, Junninen J, Kangasluoma J, Kim M, Krapf A, Kürten A, Laaksonen K, Lehtipalo V, Makhmutov S, Mathot U, Molteni A, Onnela O, Peräkylä F, Piel T, Petäjä A P, Praplan K, Pringle A, Rap N A, Richards I, Riipinen M P, Rissanen L, Rondo N, Sarnela S, Schobesberger C E, Scott J H, Seinfeld M, Sipilä G, Steiner Y, Stozhkov F, Stratmann A, Tomé A, Virtanen A L, Vogel A C, Wagner P E, Wagner E, Weingartner D, Wimmer P M, Winkler P, Ye X, Zhang A, Hansel J, Dommen N M, Donahue D R, Worsnop U, Baltensperger M, Kulmala K S, Carslaw J Curtius (2016). Ion-induced nucleation of pure biogenic particles.Nature, 533(7604): 521–526
https://doi.org/10.1038/nature17953
|
| 29 |
M F, Knudsen P Riisager (2009). Is there a link between Earth’s magnetic field and low-latitude precipitation?.Geology, 37(1): 71–74
https://doi.org/10.1130/G25238A.1
|
| 30 |
M, Korte F, Donadini C G Constable (2009). Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models.Geochem Geophys Geosyst, 10(6): Q06008
https://doi.org/10.1029/2008GC002297
|
| 31 |
J, Laskar A, Fienga M, Gastineau H Manche (2011). La2010: a new orbital solution for the long-term motion of the Earth.Astron Astrophys, 532: A89
https://doi.org/10.1051/0004-6361/201116836
|
| 32 |
Z, Li F, Niu J, Fan Y, Liu D, Rosenfeld Y Ding (2011). Long-term impacts of aerosols on the vertical development of clouds and precipitation.Nat Geosci, 4(12): 888–894
https://doi.org/10.1038/ngeo1313
|
| 33 |
Q, Liu Z, Gu J, Liu H, You H, Lü G, Chu X, Qi J, Negendank J, Mingram G Schettler (2005). Bulk organic carbon isotopic record of Huguangyan maar lake, southeastern China and its paleoclimatic and paleoenvironmental significance since 62 ka BP.Marine Geol & Quater Geol, 25(2): 115–126
https://doi.org/10.16562/j.cnki.0256-1492.2005.02.018
|
| 34 |
Y, Liu C, Fang Q, Li H, Song W, Ta G, Zhao C Sun (2019). Tree-ring δ18O based PDSI reconstruction in the Mt. Tianmu region since 1618 AD and its connection to the East Asian summer monsoon.Ecol Indic, 104: 636–647
https://doi.org/10.1016/j.ecolind.2019.05.043
|
| 35 |
X, Long J, Ji W Balsam (2011). Rainfall-dependent transformations of iron oxides in a tropical saprolite transect of Hainan Island, South China: spectral and magnetic measurements.J Geophys Res, 116(F3): F03015
https://doi.org/10.1029/2010JF001712
|
| 36 |
R, Luo Y, Liu Q, Zhu Y, Tang T Shao (2021). Effects of aerosols on cloud and precipitation in East-Asian drylands.Int J Climatol, 41(9): 4603–4618
https://doi.org/10.1002/joc.7089
|
| 37 |
A, Nilsson R, Holme M, Korte N, Suttie M Hill (2014). Reconstructing Holocene geomagnetic field variation: new methods, models and implications.Geophys J Int, 198(1): 229–248
https://doi.org/10.1093/gji/ggu120
|
| 38 |
J R Pierce (2017). Cosmic rays, aerosols, clouds, and climate: recent findings from the CLOUD experiment.J Geophys Res Atmos, 122(15): 8051–8055
https://doi.org/10.1002/2017JD027475
|
| 39 |
J R, Pierce P J Adams (2007). Efficiency of cloud condensation nuclei formation from ultrafine particles.Atmos Chem Phys, 7(5): 1367–1379
https://doi.org/10.5194/acp-7-1367-2007
|
| 40 |
S G, Robinson J T S, Sahota F Oldfield (2000). Early diagenesis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices.Mar Geol, 163(1–4): 77–107
https://doi.org/10.1016/S0025-3227(99)00108-5
|
| 41 |
A Robock, S Outten (2018). Volcanoes: Role in Climate. In: Reference Module in Earth Systems and Environmental Sciences 10.1016/B978-0-12-409548-9.11423-X
|
| 42 |
Y, Sato D, Goto T, Michibata K, Suzuki T, Takemura H, Tomita T Nakajima (2018). Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model.Nat Commun, 9(1): 985
https://doi.org/10.1038/s41467-018-03379-6
|
| 43 |
A C Scheinost (1998). Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify fe oxide minerals in soils.Clays Clay Miner, 46(5): 528–536
https://doi.org/10.1346/CCMN.1998.0460506
|
| 44 |
U Schneider, A Becker, P Finger, A Meyer-Christoffer, M Ziese (2018). GPCC full data monthly product version 2018 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. 10.5676/DWD_GPCC/FD_M_V2018_050
|
| 45 |
U Schwertmann (1988). Occurrence and formation of iron oxides in various pedoenvironments. In: Iron in Soils and Clay Minerals (pp. 267–308). New York Springer
|
| 46 |
J, Southon M, Kashgarian M, Fontugne B, Metivier W W-S Yim (2002). Marine reservoir corrections for the Indian Ocean and Southeast Asia.Radiocarbon, 44(1): 167–180
https://doi.org/10.1017/S0033822200064778
|
| 47 |
G Stenchikov (2021). The role of volcanic activity in climate and global changes. In: Letcher T M, ed. Climate Change (3rd Ed). Elsevier, 607–643
|
| 48 |
M Stuiver, P J Reimer, R W Reimer (2020). CALIB 7.1 [WWW program] Avaible at CALIB website.
|
| 49 |
H, Svensmark M B, Enghoff N J, Shaviv J Svensmark (2017). Increased ionization supports growth of aerosols into cloud condensation nuclei.Nat Commun, 8(1): 2199
https://doi.org/10.1038/s41467-017-02082-2
|
| 50 |
J, Svensmark M B, Enghoff N J, Shaviv H Svensmark (2016). The response of clouds and aerosols to cosmic ray decreases.J Geophys Res Space Phys, 121(9): 8152–8181
https://doi.org/10.1002/2016JA022689
|
| 51 |
L C, Tan Y J, Cai H, Cheng L R, Edwards Y L, Gao H, Xu H, Zhang Z An (2018). Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years.Earth Planet Sci Let, 482: 580–590
https://doi.org/10.1016/j.epsl.2017.11.044
|
| 52 |
J Torrent, V Barrón (2008). Diffuse Reflectance Spectroscopy. In: Ulery A L, Richard Drees L, eds. Methods of Soil Analysis Part 5—Mineralogical Methods. Soil Sci Soc America, 367–385
|
| 53 |
Q, Wang X, Yang N J, Anderson X Dong (2016). Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China).Quat Res, 86(1): 1–12
https://doi.org/10.1016/j.yqres.2016.03.003
|
| 54 |
Y, Wang H, Cheng R L, Edwards Y, He X, Kong Z, An J, Wu M J, Kelly C A, Dykoski X Li (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic climate.Science, 308(5723): 854–857
https://doi.org/10.1126/science.1106296
|
| 55 |
C J, Williamson A, Kupc D, Axisa K R, Bilsback T, Bui P, Campuzano-Jost M, Dollner K D, Froyd A L, Hodshire J L, Jimenez J K, Kodros G, Luo D M, Murphy B A, Nault E A, Ray B, Weinzierl J C, Wilson F, Yu P, Yu J R, Pierce C A Brock (2019). A large source of cloud condensation nuclei from new particle formation in the tropics.Nature, 574(7778): 399–403
https://doi.org/10.1038/s41586-019-1638-9
|
| 56 |
X Wu, Z Zhang, X Xu, J Shen (2012). Asian summer monsoonal variations during the Holocene revealed by Huguangyan maar lake sediment record. Palaeogeogr Palaeoclimatol Palaeoecol, 323–325(15): 13–21 10.1016/j.palaeo.2012.01.020
|
| 57 |
S, Xie R P, Evershed X, Huang Z, Zhu R D, Pancost P A, Meyers L, Gong C, Hu J, Huang S, Zhang Y, Gu J Zhu (2013). Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China.Geology, 41(8): 827–830
https://doi.org/10.1130/G34318.1
|
| 58 |
H, Xu Y, Goldsmith J, Lan L, Tan X, Wang X, Zhou J, Cheng Y, Lang C Liu (2020). Juxtaposition of western Pacific subtropical high on Asian Summer Monsoon shapes subtropical East Asian precipitation.Geophys Res Let, 47(3): e2019GL084705
https://doi.org/10.1029/2019GL084705
|
| 59 |
H, Yan L, Sun Y, Wang W, Huang S, Qiu C Yang (2011). A record of the Southern Oscillation Index for the past 2000 years from precipitation proxies.Nat Geosci, 4(9): 611–614
https://doi.org/10.1038/ngeo1231
|
| 60 |
X, Yang Z, Su J, Yang W Huang (2012). Magnetic fabrics of maar lake sediments in tropical southern China record hydrodynamic process.Quater Sci, 32(4): 795–802
https://doi.org/10.3969/j.issn.1001-7410.2012.04.25
|
| 61 |
X, Yang G, Wei J, Yang G, Jia C, Huang L, Xie W, Huang K Argyrios (2014). Paleoenvironmental shifts and precipitation variations recorded in tropical maar lake sediments during the Holocene in Southern China.The Holocene, 24(10): 1216–1225
https://doi.org/10.1177/0959683614540962
|
| 62 |
E L, Zhang C, Zhao B, Xue Z H, Liu Z C, Yu R, Chen J Shen (2017). Millennial-scale hydroclimate variations in southwest China linked to tropical Indian Ocean since the Last Glacial Maximum.Geology, 45(5): 435–438
https://doi.org/10.1130/G38309.1
|
| 63 |
H, Zhang H, Cheng A, Sinha C, Spötl Y, Cai B, Liu G, Kathayat H, Li Y, Tian Y, Li J, Zhao L, Sha J, Lu B, Meng X, Niu X, Dong Z, Liang B, Zong Y, Ning J, Lan R L Edwards (2021). Collapse of the Liangzhu and other Neolithic cultures in the lower Yangtze region in response to climate change.Sci Adv, 7(48): eabi9275
https://doi.org/10.1126/sciadv.abi9275
|
| 64 |
J, Zhang H, Lu J, Jia C, Shen S, Wang G, Chu L, Wang A, Cui J, Liu N, Wu F Li (2020a). Seasonal drought events in tropical East Asia over the last 60,000 y.Proc Natl Acad Sci USA, 117(49): 30988–30992
https://doi.org/10.1073/pnas.2013802117
|
| 65 |
P, Zhang H, Cheng R L, Edwards F, Chen Y, Wang X, Yang J, Liu M, Tan X, Wang J, Liu C, An Z, Dai J, Zhou D, Zhang J, Jia L, Jin K R Johnson (2008). A test of climate, sun, and culture relationships from an 1810-year Chinese cave record.Science, 322(5903): 940–942
https://doi.org/10.1126/science.1163965
|
| 66 |
T, Zhang X, Yang Q, Chen J L, Toney Q, Zhou H Gao (2020b). Humidity variations spanning the ‘Little Ice Age’ from an upland lake in southwestern China.The Holocene, 30(2): 289–299
https://doi.org/10.1177/0959683619883026
|
| 67 |
W, Zhang H, Yan C, Liu P, Cheng J, Li F, Lu X, Ma J, Dodson H, Heijnis W, Zhou Z An (2018). Hydrological changes in Shuangchi Lake, Hainan Island, tropical China, during the Little Ice Age.Quater Intern, 487: 54–60
https://doi.org/10.1016/j.quaint.2017.09.007
|
| 68 |
Y G, Zhang J F, Ji W L, Balsam L W, Liu J Chen (2007). High resolution hematite and goethite records from ODP 1143, South China Sea: co-evolution of monsoonal precipitation and El Niño over the past 600000 years.Earth Planet Sci Let, 264(1–2): 136–150
https://doi.org/10.1016/j.epsl.2007.09.022
|
| 69 |
Z, Zhu J M, Feinberg S, Xie M D, Bourne C, Huang C, Hu H Cheng (2017). Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China.Proc Natl Acad Sci USA, 114(5): 852–857
https://doi.org/10.1073/pnas.1610930114
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|