Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (2) : 324-335    https://doi.org/10.1007/s11707-022-1009-y
Low-latitude hydroclimate changes related to paleomagnetic variations during the Holocene in coastal southern China
Tingwei ZHANG1, Xiaoqiang YANG1(), Jian YIN1, Qiong CHEN2, Jianfang HU3, Lu WANG4, Mengshan JU5, Qiangqiang WANG1
1. School of Earth Science and Engineering/Guangdong, Provincial Key Laboratory of Geodynamics and Geohazards/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
2. Institute of Cultural Heritage, Shandong University, Qingdao 266237, China
3. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
4. College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
5. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
 Download: PDF(6567 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The variations in precipitation have displayed a complex pattern in different regions since the mid-to-late-Holocene. Cloud formation processes may have a significant impact on precipitation, especially during the tropical marine processes and summer monsoon which convey abundant water vapor to coastal southern China and inland areas. Here, we use two 7500 year sedimentary records from the Pearl River Delta and the closed Maar Lake, respectively, in coastal southern China to reconstruct the mid-to-late-Holocene humidity variability and explore its possible relationship with cloud cover modulated by the Earth’s magnetic fields (EMF). Our proxy records document an apparent increase in wetness in coastal southern China between 3.0 and 1.8 kyr BP. This apparent increase in humidity appears to be consistent with the lower virtual axial dipole moments and, in turn, with a lower EMF. This correlation suggests that the EMF might have been superimposed on the weakened monsoon to regulate the mid-to-late-Holocene hydroclimate in coastal southern China through the medium of galactic cosmic rays, aerosols, and cloud cover. However, further investigations are needed to verify this interaction.

Keywords hydroclimate variations      Earth’s magnetic field      coastal southern China      the Holocene epoch     
Corresponding Author(s): Xiaoqiang YANG   
Online First Date: 29 February 2024    Issue Date: 19 July 2024
 Cite this article:   
Tingwei ZHANG,Xiaoqiang YANG,Jian YIN, et al. Low-latitude hydroclimate changes related to paleomagnetic variations during the Holocene in coastal southern China[J]. Front. Earth Sci., 2024, 18(2): 324-335.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1009-y
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I2/324
Fig.1  (a) Geographical locations of the DA and HML sites (red circles) and the other sites mentioned in the paper (purple triangles). The Pearl River is shown (in blue line). (b) and (c) are enlarged maps of the locations of the DA and HML cores, respectively.
Fig.2  Modern climatology of the study sites. (a–b) Long-term mean monthly temperature (CMAtmp) and precipitation (CMApre) distributions at the Zhanjiang meteorology station (~1.73 km from the HML core) and Xinhui meteorology station (~19.67 km from the DA core) between 1981 and 2010, respectively. (c) Long-term means monthly total precipitation (GPCCpre) in MJJAS (May to September) during 1981?2010. The results of the air mass back trajectories analysis of the HML core (solid line) and DA core (dashed line) are also shown. (d–e) Vertical profile of zonal wind and vertical velocity at 112.5°E from 10°S to 40°N, respectively. The gray shading represents the terrain. (f–g) Spatial correlations (p < 0.01) of cloud cover (CRUcld) with monthly precipitation (CRUpre) and scPDSI (CRUscPDSI) from 1901 to 2010, respectively.
Sample IDDepth/mMaterial14C age/ (yrs. BP*)Error/ (± yrs.)Calibrated age/ (cal. yrs. BP, 2σ)Mean age/ (cal. yrs. BP)
HML-1-1-29a)0.64Tree branches17530135–225180
HML-2-1-35a)2.52Twig2530252497–25952546
HML-2-2-9a)3.27Leaves3475303685–38343759.5
HML-2-2-71a)4.57Plant fragments5540356288–63996343.5
DA3-C-2a)6.09Plant fragments18520143–217180
DA4-C-3a)7.06Plant fragments23520281–307294
DA4-C-1b)7.34Plant fragments35030310–500405
DA7-C-1a)11.89Plant fragments1370201275–13111293
DA8-C-1a)14.28Plant fragments1745301566–17181642
DA11-C-1b)19.76Conch1990301880–19951937.5
DA16-C-1b)27.19Conch3400303576–37003638
DA17-C-1c)29.15Conch4225254809–48514830
DA18-C-1c)31.12Shell4500255047–52015124
DA19-C-1c)31.83Shell4505255048–51965122
DA20-C-2 c)34.61Shell5455256260–62996279.5
DA21-C-1c)35.33Shell5660256400–64946447
DA22-C-2c)36.94Shell6390257266–73387302
DA23-C-3c)37.26Shell6530257420–74857452.5
Tab.1  AMS radiocarbon dates from the HML and DA cores
Fig.3  Age models and sedimentation rates for the (a) HML core and (b) DA core. The age models were computed using the Bacon software (Blaauw and Christen, 2011). Seven OSL ages (green rectangles with error bars) in (b) were not taken into account to construct the age-model of DA core. The red lines represent the fitted weighted-mean ages, and the shaded areas indicate 2-sigma uncertainties.
Fig.4  Downcores variations in environmental proxies from the DA and HML cores. (a–b) Magnetic susceptibility (κ); (c–d) IHm/(IHm + IGt); (e) δ13C; (f) δ13CTOC in HML (Liu et al., 2005); (g–h) IHm; and (i–j) IGt. The gray lines in (a), (c), (e), (g), and (i) are the raw data of records in core DA, and the 3-point moving average smoothed values are displayed by the colored lines.
Fig.5  Comparison of the IHm/(IHm + IGt) record from the DA core and the PDSI record from Mt. Tianmu, which is located in the southern lower reaches of the Yangtze River (Liu et al., 2019).
Fig.6  Comparison of IHm/(IHm + IGt) records from the HML and DA cores with the Asian monsoon, summer insolation, and the virtual dipole moment records. (a) The stalagmite δ18O record from Dongge Cave (navy blue, Wang et al., 2005) and summer insolation at 22°N (red, Laskar et al., 2011). (b and c) The IHm/(IHm + IGt) records from the HML and DA cores in this study, respectively. (d) Predictions of the virtual dipole moment records in East Asia from global models (Korte et al., 2009; Nilsson et al., 2014; Constable et al., 2016). The blue bar indicates humid conditions during 3.0?1.8 kyr BP corresponding to lower VADMs.
Fig.7  Schematic diagram demonstrating the hydroclimate variability during low-EMF periods. With a decrease in EMF intensity, a high density of GCRs leads to an increase in condensation nuclei, which results in a wetter hydrological condition. Solar radiation, total water vapor, and evaporation are assumed to be constant in this diagram.
1 A, Abrajevitch K Kodama (2011). Diagenetic sensitivity of paleoenvironmental proxies: a rock magnetic study of Australian continental margin sediments.Geochem Geophys Geosyst, 12(5): Q05Z24
https://doi.org/10.1029/2010GC003481
2 M, Blaauw J Christen (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process.Bayesian Anal, 6(3): 457–474
https://doi.org/10.1214/ba/1339616472
3 Y, Cai L, Tan H, Cheng Z, An R L, Edwards M J, Kelly X, Kong X Wang (2010). The variation of summer monsoon precipitation in central China since the last deglaciation.Earth Planet Sci Lett, 291(1–4): 21–31
https://doi.org/10.1016/j.epsl.2009.12.039
4 S A, Campuzano Santis A, De F J, Pavón-Carrasco M L, Osete E Qamili (2018). New perspectives in the study of the Earth’s magnetic field and climate connection: the use of transfer entropy.PLoS One, 13(11): e0207270
https://doi.org/10.1371/journal.pone.0207270
5 K S, Carslaw R G, Harrison J Kirkby (2002). Cosmic rays, clouds, and climate.Science, 298(5599): 1732–1737
https://doi.org/10.1126/science.1076964
6 J E T, Channell L Vigliotti (2019). The role of geomagnetic field intensity in Late Quaternary evolution of humans and large mammals.Rev Geophys, 57(3): 709–738
https://doi.org/10.1029/2018RG000629
7 C, Constable M, Korte S Panovska (2016). Persistent high paleosecular variation activity in southern hemisphere for at least 10000 years.Earth Planet Sci Lett, 453: 78–86
https://doi.org/10.1016/j.epsl.2016.08.015
8 J L, Conroy J T, Overpeck J E, Cole T M, Shanahan M Steinitz-Kannan (2008). Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record.Quat Sci Rev, 27(11–12): 1166–1180
https://doi.org/10.1016/j.quascirev.2008.02.015
9 A, Cooper C S M, Turney J, Palmer A, Hogg M, McGlone J, Wilmshurst A M, Lorrey T J, Heaton J M, Russell K, McCracken J G, Anet E, Rozanov M, Friedel I, Suter T, Peter R, Muscheler F, Adolphi A, Dosseto J T, Faith P, Fenwick C J, Fogwill K, Hughen M, Lipson J, Liu N, Nowaczyk E, Rainsley Ramsey C, Bronk P, Sebastianelli Y, Souilmi J, Stevenson Z, Thomas R, Tobler R Zech (2021). A global environmental crisis 42000 years ago.Science, 371(6531): 811–818
https://doi.org/10.1126/science.abb8677
10 V, Courtillot Y, Gallet Mouël J L, Le F, Fluteau A Genevey (2007). Are there connections between the Earth’s magnetic field and climate?.Earth Planet Sci Lett, 253(3–4): 328–339
https://doi.org/10.1016/j.epsl.2006.10.032
11 V A, Dergachev P B, Dmitriev O M, Raspopov H Jungner (2007). Cosmic ray flux variations, modulated by the solar and terrestrial magnetic fields, and climate changes. Part 2: the time interval from ∼10000 to ∼100000 years ago.Geomagn Aeron, 47(1): 109–117
https://doi.org/10.1134/S0016793207010173
12 Z, Duan Q, Liu X, Yang X, Gao Y Su (2014). Magnetism of the Huguangyan Maar Lake sediments, Southeast China and its paleoenvironmental implications.Palaeogeogr Palaeoclimatol Palaeoecol, 395: 158–167
https://doi.org/10.1016/j.palaeo.2013.12.033
13 Y, Gallet A, Genevey F Fluteau (2005). Does Earth’s magnetic field secular variation control centennial climate change?.Earth Planet Sci Lett, 236(1–2): 339–347
https://doi.org/10.1016/j.epsl.2005.04.045
14 Z, Hao J, Zheng X, Zhang H, Liu M, Li Q Ge (2016). Spatial patterns of precipitation anomalies in eastern China during centennial cold and warm periods of the past 2000 years.Int J Climatol, 36(1): 467–475
https://doi.org/10.1002/joc.4367
15 I, Harris T J, Osborn P, Jones D Lister (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset.Sci Data, 7(1): 109
https://doi.org/10.1038/s41597-020-0453-3
16 R J, Harrison J M Feinberg (2008). FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing.Geochem Geophys Geosyst, 9(5): Q05016
https://doi.org/10.1029/2008GC001987
17 G H, Haug K A, Hughen D M, Sigman L C, Peterson U Röhl (2001). Southward migration of the intertropical convergence zone through the Holocene.Science, 293(5533): 1304–1308
https://doi.org/10.1126/science.1059725
18 C, Hu G M, Henderson J, Huang S, Xie Y, Sun K R Johnson (2008). Quantification of Holocene Asian monsoon rainfall from spatially separated cave records.Earth Planet Sci Lett, 266(3–4): 221–232
https://doi.org/10.1016/j.epsl.2007.10.015
19 E G, Hyland N D, Sheldon der Voo R, Van C, Badgley A Abrajevitch (2015). A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions.Geol Soc Am Bull, 127(7–8): 975–981
https://doi.org/10.1130/B31207.1
20 C, Jalihal J, Srinivasan A Chakraborty (2019). Modulation of Indian monsoon by water vapor and cloud feedback over the past 22,000 years.Nat Commun, 10(1): 5701
https://doi.org/10.1038/s41467-019-13754-6
21 J F, Ji J, Chen W, Balsam H Y, Lu Y B, Sun H F Xu (2004). High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle: rapid climatic response of the East Asian Monsoon to the tropical Pacific.Geophys Res Lett, 31(3): L03207
https://doi.org/10.1029/2003GL018975
22 Y, Jiang X Q, Yang X, Liu Y, Qian K, Zhang M, Wang F, Li Y, Wang Z Lu (2020). Impacts of wildfire aerosols on global energy budget and climate: the role of climate feedbacks.J Clim, 33(8): 3351–3366
https://doi.org/10.1175/JCLI-D-19-0572.1
23 E, Kalnay M, Kanamitsu R, Kistler W, Collins D, Deaven L, Gandin M, Iredell S, Saha G, White J, Woollen Y, Zhu A, Leetmaa R, Reynolds M, Chelliah W, Ebisuzaki W, Higgins J, Janowiak K C, Mo C, Ropelewski J, Wang R, Jenne D Joseph (1996). The NCEP/NCAR 40-year reanalysis project.Bull Am Meteorol Soc, 77(3): 437–472
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
24 M, Kanamitsu W, Ebisuzaki J, Woollen S K, Yang J J, Hnilo M, Fiorino G L Potter (2002). NCEP–DOE AMIP-II reanalysis (R-2).Bull Am Meteorol Soc, 83(11): 1631–1644
https://doi.org/10.1175/BAMS-83-11-1631
25 G, Kathayat H, Cheng A, Sinha C, Spötl R L, Edwards H, Zhang X, Li L, Yi Y, Ning Y, Cai W L, Lui S F Breitenbach (2016). Indian monsoon variability on millennial-orbital timescales.Sci Rep, 6(1): 24374
https://doi.org/10.1038/srep24374
26 A K Kerton (2009). Climate change and the Earth’s magnetic poles, a possible connection.Energy Environ, 20(1): 75–83
https://doi.org/10.1260/095830509787689286
27 J Kirkby (2007). Cosmic rays and climate.Surv Geophys, 28(5–6): 333–375
https://doi.org/10.1007/s10712-008-9030-6
28 J, Kirkby J, Duplissy K, Sengupta C, Frege H, Gordon C, Williamson M, Heinritzi M, Simon C, Yan J, Almeida J, Tröstl T, Nieminen I K, Ortega R, Wagner A, Adamov A, Amorim A K, Bernhammer F, Bianchi M, Breitenlechner S, Brilke X, Chen J, Craven A, Dias S, Ehrhart R C, Flagan A, Franchin C, Fuchs R, Guida J, Hakala C R, Hoyle T, Jokinen H, Junninen J, Kangasluoma J, Kim M, Krapf A, Kürten A, Laaksonen K, Lehtipalo V, Makhmutov S, Mathot U, Molteni A, Onnela O, Peräkylä F, Piel T, Petäjä A P, Praplan K, Pringle A, Rap N A, Richards I, Riipinen M P, Rissanen L, Rondo N, Sarnela S, Schobesberger C E, Scott J H, Seinfeld M, Sipilä G, Steiner Y, Stozhkov F, Stratmann A, Tomé A, Virtanen A L, Vogel A C, Wagner P E, Wagner E, Weingartner D, Wimmer P M, Winkler P, Ye X, Zhang A, Hansel J, Dommen N M, Donahue D R, Worsnop U, Baltensperger M, Kulmala K S, Carslaw J Curtius (2016). Ion-induced nucleation of pure biogenic particles.Nature, 533(7604): 521–526
https://doi.org/10.1038/nature17953
29 M F, Knudsen P Riisager (2009). Is there a link between Earth’s magnetic field and low-latitude precipitation?.Geology, 37(1): 71–74
https://doi.org/10.1130/G25238A.1
30 M, Korte F, Donadini C G Constable (2009). Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models.Geochem Geophys Geosyst, 10(6): Q06008
https://doi.org/10.1029/2008GC002297
31 J, Laskar A, Fienga M, Gastineau H Manche (2011). La2010: a new orbital solution for the long-term motion of the Earth.Astron Astrophys, 532: A89
https://doi.org/10.1051/0004-6361/201116836
32 Z, Li F, Niu J, Fan Y, Liu D, Rosenfeld Y Ding (2011). Long-term impacts of aerosols on the vertical development of clouds and precipitation.Nat Geosci, 4(12): 888–894
https://doi.org/10.1038/ngeo1313
33 Q, Liu Z, Gu J, Liu H, You H, Lü G, Chu X, Qi J, Negendank J, Mingram G Schettler (2005). Bulk organic carbon isotopic record of Huguangyan maar lake, southeastern China and its paleoclimatic and paleoenvironmental significance since 62 ka BP.Marine Geol & Quater Geol, 25(2): 115–126
https://doi.org/10.16562/j.cnki.0256-1492.2005.02.018
34 Y, Liu C, Fang Q, Li H, Song W, Ta G, Zhao C Sun (2019). Tree-ring δ18O based PDSI reconstruction in the Mt. Tianmu region since 1618 AD and its connection to the East Asian summer monsoon.Ecol Indic, 104: 636–647
https://doi.org/10.1016/j.ecolind.2019.05.043
35 X, Long J, Ji W Balsam (2011). Rainfall-dependent transformations of iron oxides in a tropical saprolite transect of Hainan Island, South China: spectral and magnetic measurements.J Geophys Res, 116(F3): F03015
https://doi.org/10.1029/2010JF001712
36 R, Luo Y, Liu Q, Zhu Y, Tang T Shao (2021). Effects of aerosols on cloud and precipitation in East-Asian drylands.Int J Climatol, 41(9): 4603–4618
https://doi.org/10.1002/joc.7089
37 A, Nilsson R, Holme M, Korte N, Suttie M Hill (2014). Reconstructing Holocene geomagnetic field variation: new methods, models and implications.Geophys J Int, 198(1): 229–248
https://doi.org/10.1093/gji/ggu120
38 J R Pierce (2017). Cosmic rays, aerosols, clouds, and climate: recent findings from the CLOUD experiment.J Geophys Res Atmos, 122(15): 8051–8055
https://doi.org/10.1002/2017JD027475
39 J R, Pierce P J Adams (2007). Efficiency of cloud condensation nuclei formation from ultrafine particles.Atmos Chem Phys, 7(5): 1367–1379
https://doi.org/10.5194/acp-7-1367-2007
40 S G, Robinson J T S, Sahota F Oldfield (2000). Early diagenesis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices.Mar Geol, 163(1–4): 77–107
https://doi.org/10.1016/S0025-3227(99)00108-5
41 A Robock, S Outten (2018). Volcanoes: Role in Climate. In: Reference Module in Earth Systems and Environmental Sciences 10.1016/B978-0-12-409548-9.11423-X
42 Y, Sato D, Goto T, Michibata K, Suzuki T, Takemura H, Tomita T Nakajima (2018). Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model.Nat Commun, 9(1): 985
https://doi.org/10.1038/s41467-018-03379-6
43 A C Scheinost (1998). Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify fe oxide minerals in soils.Clays Clay Miner, 46(5): 528–536
https://doi.org/10.1346/CCMN.1998.0460506
44 U Schneider, A Becker, P Finger, A Meyer-Christoffer, M Ziese (2018). GPCC full data monthly product version 2018 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. 10.5676/DWD_GPCC/FD_M_V2018_050
45 U Schwertmann (1988). Occurrence and formation of iron oxides in various pedoenvironments. In: Iron in Soils and Clay Minerals (pp. 267–308). New York Springer
46 J, Southon M, Kashgarian M, Fontugne B, Metivier W W-S Yim (2002). Marine reservoir corrections for the Indian Ocean and Southeast Asia.Radiocarbon, 44(1): 167–180
https://doi.org/10.1017/S0033822200064778
47 G Stenchikov (2021). The role of volcanic activity in climate and global changes. In: Letcher T M, ed. Climate Change (3rd Ed). Elsevier, 607–643
48 M Stuiver, P J Reimer, R W Reimer (2020). CALIB 7.1 [WWW program] Avaible at CALIB website.
49 H, Svensmark M B, Enghoff N J, Shaviv J Svensmark (2017). Increased ionization supports growth of aerosols into cloud condensation nuclei.Nat Commun, 8(1): 2199
https://doi.org/10.1038/s41467-017-02082-2
50 J, Svensmark M B, Enghoff N J, Shaviv H Svensmark (2016). The response of clouds and aerosols to cosmic ray decreases.J Geophys Res Space Phys, 121(9): 8152–8181
https://doi.org/10.1002/2016JA022689
51 L C, Tan Y J, Cai H, Cheng L R, Edwards Y L, Gao H, Xu H, Zhang Z An (2018). Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years.Earth Planet Sci Let, 482: 580–590
https://doi.org/10.1016/j.epsl.2017.11.044
52 J Torrent, V Barrón (2008). Diffuse Reflectance Spectroscopy. In: Ulery A L, Richard Drees L, eds. Methods of Soil Analysis Part 5—Mineralogical Methods. Soil Sci Soc America, 367–385
53 Q, Wang X, Yang N J, Anderson X Dong (2016). Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China).Quat Res, 86(1): 1–12
https://doi.org/10.1016/j.yqres.2016.03.003
54 Y, Wang H, Cheng R L, Edwards Y, He X, Kong Z, An J, Wu M J, Kelly C A, Dykoski X Li (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic climate.Science, 308(5723): 854–857
https://doi.org/10.1126/science.1106296
55 C J, Williamson A, Kupc D, Axisa K R, Bilsback T, Bui P, Campuzano-Jost M, Dollner K D, Froyd A L, Hodshire J L, Jimenez J K, Kodros G, Luo D M, Murphy B A, Nault E A, Ray B, Weinzierl J C, Wilson F, Yu P, Yu J R, Pierce C A Brock (2019). A large source of cloud condensation nuclei from new particle formation in the tropics.Nature, 574(7778): 399–403
https://doi.org/10.1038/s41586-019-1638-9
56 X Wu, Z Zhang, X Xu, J Shen (2012). Asian summer monsoonal variations during the Holocene revealed by Huguangyan maar lake sediment record. Palaeogeogr Palaeoclimatol Palaeoecol, 323–325(15): 13–21 10.1016/j.palaeo.2012.01.020
57 S, Xie R P, Evershed X, Huang Z, Zhu R D, Pancost P A, Meyers L, Gong C, Hu J, Huang S, Zhang Y, Gu J Zhu (2013). Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China.Geology, 41(8): 827–830
https://doi.org/10.1130/G34318.1
58 H, Xu Y, Goldsmith J, Lan L, Tan X, Wang X, Zhou J, Cheng Y, Lang C Liu (2020). Juxtaposition of western Pacific subtropical high on Asian Summer Monsoon shapes subtropical East Asian precipitation.Geophys Res Let, 47(3): e2019GL084705
https://doi.org/10.1029/2019GL084705
59 H, Yan L, Sun Y, Wang W, Huang S, Qiu C Yang (2011). A record of the Southern Oscillation Index for the past 2000 years from precipitation proxies.Nat Geosci, 4(9): 611–614
https://doi.org/10.1038/ngeo1231
60 X, Yang Z, Su J, Yang W Huang (2012). Magnetic fabrics of maar lake sediments in tropical southern China record hydrodynamic process.Quater Sci, 32(4): 795–802
https://doi.org/10.3969/j.issn.1001-7410.2012.04.25
61 X, Yang G, Wei J, Yang G, Jia C, Huang L, Xie W, Huang K Argyrios (2014). Paleoenvironmental shifts and precipitation variations recorded in tropical maar lake sediments during the Holocene in Southern China.The Holocene, 24(10): 1216–1225
https://doi.org/10.1177/0959683614540962
62 E L, Zhang C, Zhao B, Xue Z H, Liu Z C, Yu R, Chen J Shen (2017). Millennial-scale hydroclimate variations in southwest China linked to tropical Indian Ocean since the Last Glacial Maximum.Geology, 45(5): 435–438
https://doi.org/10.1130/G38309.1
63 H, Zhang H, Cheng A, Sinha C, Spötl Y, Cai B, Liu G, Kathayat H, Li Y, Tian Y, Li J, Zhao L, Sha J, Lu B, Meng X, Niu X, Dong Z, Liang B, Zong Y, Ning J, Lan R L Edwards (2021). Collapse of the Liangzhu and other Neolithic cultures in the lower Yangtze region in response to climate change.Sci Adv, 7(48): eabi9275
https://doi.org/10.1126/sciadv.abi9275
64 J, Zhang H, Lu J, Jia C, Shen S, Wang G, Chu L, Wang A, Cui J, Liu N, Wu F Li (2020a). Seasonal drought events in tropical East Asia over the last 60,000 y.Proc Natl Acad Sci USA, 117(49): 30988–30992
https://doi.org/10.1073/pnas.2013802117
65 P, Zhang H, Cheng R L, Edwards F, Chen Y, Wang X, Yang J, Liu M, Tan X, Wang J, Liu C, An Z, Dai J, Zhou D, Zhang J, Jia L, Jin K R Johnson (2008). A test of climate, sun, and culture relationships from an 1810-year Chinese cave record.Science, 322(5903): 940–942
https://doi.org/10.1126/science.1163965
66 T, Zhang X, Yang Q, Chen J L, Toney Q, Zhou H Gao (2020b). Humidity variations spanning the ‘Little Ice Age’ from an upland lake in southwestern China.The Holocene, 30(2): 289–299
https://doi.org/10.1177/0959683619883026
67 W, Zhang H, Yan C, Liu P, Cheng J, Li F, Lu X, Ma J, Dodson H, Heijnis W, Zhou Z An (2018). Hydrological changes in Shuangchi Lake, Hainan Island, tropical China, during the Little Ice Age.Quater Intern, 487: 54–60
https://doi.org/10.1016/j.quaint.2017.09.007
68 Y G, Zhang J F, Ji W L, Balsam L W, Liu J Chen (2007). High resolution hematite and goethite records from ODP 1143, South China Sea: co-evolution of monsoonal precipitation and El Niño over the past 600000 years.Earth Planet Sci Let, 264(1–2): 136–150
https://doi.org/10.1016/j.epsl.2007.09.022
69 Z, Zhu J M, Feinberg S, Xie M D, Bourne C, Huang C, Hu H Cheng (2017). Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China.Proc Natl Acad Sci USA, 114(5): 852–857
https://doi.org/10.1073/pnas.1610930114
[1] FES-22009-OF-YXQ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed